F. Hartmann. IEKP - Universität Karlsruhe (TH) IEKP - Universität Karlsruhe (TH)

Size: px
Start display at page:

Download "F. Hartmann. IEKP - Universität Karlsruhe (TH) IEKP - Universität Karlsruhe (TH)"

Transcription

1 Results on proton irradiation tests in Karlsruhe p do Bulk & Surface Damage Strip parameters after irrad. V FD for (300µm) and 500µm sensors after 10 years LHC Expectedpower for500 µm sensors after 10 years LHC Outlook F. Hartmann 1

2 Irradiation Facility 34 MeV protons 1000 na Beam spot: 2cm O T < -10 C Area: 20x40cm 2 Duration: 100cm 2 in 15min (1 sensor, 5e13p/cm 2 ) Compact Cyclotron at Forschungszentrum Karlsruhe 2

3 Cold Box Dry N 2 atmosphere at 10 C. Flexible box to hold sensors, teststructures and/or modules! Laser focus Simple power lines Temp. monitor 3

4 Simulate LHC bias conditions with respect to surface damage! During proton irrad.: Diode acts as a current source due to the p ionising effect SOLVE: 1V potential by applying V bias = 1V, But AC must also be on GND! DC diode LHC Rpoly CC AC readout (on GND) Current source Vbias Rpoly Here we need potentia like in LHC 1M Ω at 1µ A = 1V Strip current after irrad 4

5 Simulate LHC bias conditions with respect to surface damage! Bias ring --> GND Rpoly AC DC Short all AC to bias (GND) How to Realize? Backplane to +Vbias= 1V Conductive rubber V bias = 1V during irrad 5

6 Sensors before/after Irradiation 6

7 Fluences in the Tracker ~1.5e14 n/cm 2 for 320µm Upper limits: U FD <500V P(-10 C)<400mW ~0.5e14 n/cm 2 for 500µm 7

8 Irradiation Scheme 2 fluences chosen: Inner Tracker: 1.8e14 p/cm 2 (~3e14 n/cm 2 ): expected for low resisitivity silicon (300µm) * yLHC Outer Tracker: 0.5e14 p/cm 2 (~8e13 n/cm 2 ): expected for high resistivity silicon (500µm) *1.5 15yLHC Material (6, 500µm thick): 1 sensor W6b from Hamamatsu 1 sensor OB2 from ST Microelectronics 6 teststructures from Hamamatsu Biasing: 1V, 12V, 100V, non Notice: Inner Tracker fluence on Outer Tracker (500µm) sensors instead of 300µm, PRO: 1. resistivity almost right 2. No 320µm sensors present, 3. HPK will in future deliver inner 300µm sensors CON: unusual high V FD 8

9 Fluence Measurement 1.) Measurement by Ni-foil activation behind sensors: Calibration at 26 MeV Scaling with cross section to higher energies Fluence in [p/cm2] Hardness factor κ(e) scales to neutron equivalent 2.) I leak measurement: Temperature scaling to 20 C I(20 C)=I(T)*R(T); R(T)=(293K/T) 2 e (-E/k(1/293K-1/T)) ; E=1.4eV I/V=α*Φ α(t=20 C)=4e-17 A/cm Fluence in [n(1mev)/cm 2 ] 9

10 Karlsruhe probing equipment stencil/template Bias Measurements take ~1.5-2 hours Changing of sensor ~ 5 min Environment: 10 C, RH~1% 10

11 IV-Curve before/after Irrad. 2m 2m Sensor HPK Sensor ST Sensor HPK irradiated (1.8e14 p/cm 2 ) Sensor ST irradiated (0.5e14 p/cm 2 ) Current [A] 1m 500µ 10µ 8µ 6µ 4µ 2µ Voltage [V] 11

12 Power Consumption 400.0µ 350.0µ I / V [A/cm 3 ] 300.0µ 250.0µ 200.0µ 150.0µ 100.0µ 50.0µ 0.0 Data (500µm sensors, ~5kΩcm) Linear Fit Extrapolated value for 500µm sensor at r=60cm α(t=-10 C) = A/cm P ~ U FD I ~ d 2 d ~d x x x x x x10 14 eq. Fluence [n/cm 2 ] 60µA/cm 3 => I leak (-10 C)=270µA (W6b) => P(500V, -10 C)=135mW/sensor Actual designed cooling power 400mW for each module (at least). 12

13 CV-Curve Curve before/after Irrad. 3,5x ,0x ,5x10 17 Capacitance -2 [F -2 ] 2,0x ,5x ,0x ,0x ,0 Sensor HPK Sensor ST Sensor HPK irradiated (1.8e14 p/cm 2 ) Sensor ST irradiated (0.5e14 p/cm 2 ) U FD ~ d 2 => U FD (320µm) = 410V Voltage [V] ST and HPK sensors are stable up to V bias =1000V after irradiation! Even strip tests were done at V bias = 1000V! 13

14 Hamburg Model g a τ a (20 C) c g c 2.5x10 12 U FD (N eff )~d 2 g Y τ Y (20 C) 2.0x10 12 N [cm -3 ] 1.5x x x Beneficial Annealing Stable Damage Reverse Annealing PhD Thesis M. Moll: g a =(1.81±0.14)e-2 cm -1 τ a (20 C) =55h g c =(1.49±0.04)e-2 cm -1 c=(10.9±0.8)e-2 cm -1 /N eff g Y =(5.16±0.09)e-2 cm -1 τ Y (20 C)=475d Beneficial annealing Stable Damage Reverse Annealing Time at RT [days] 14

15 Developement of U FD Full Depletion Voltage [V] Data (FS sensors) Hamburg Model ST Hamamatsu 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 eq. Fluence [10 14 n(1mev)/cm 2 ] Data is fully compatible with the Hamburg model fit! Predictions for different annealing scenarios possible! 15

16 Full depletion as function of annealing time and fluence Fluence given at once, then annealing. 16

17 Annealing scenario: 14 days at RT each year 600 Full Depletion Voltage [V] µm, 4.4kΩ, 5e13n/cm 2 " Fluence at once 320µm, 2.2kΩ, 16e13n/cm Annealing Time at RT [days] Iterative calculation of full depletion voltage 17

18 Depletion voltages for diode minisensor and full sensor 3,0x10 20 ~600V 2,5x10 20 Capacitance -2 [F -2 ] 2,0x ,5x ,0x ,0x10 19 Diode 2.6e14 n/cm 2 Full sensor 3e14 n/cm 2 Mini sensor 2.6e14 n/cm 2 ~600V 0, ~1000V values shifted in y for comparison to compensate for different sizes Voltage [V] Future: diode measurements as reference! 18

19 Strip Leakage Current Leakage 400V [na] Minisensor 41 Before Irradiation After Irradiation and Annealing (Measurement at -10 C) Strip number As expected: Increase in leakage current! 19

20 Bias Resistance Poly Resistance [MΩ] 2,3 2,2 2,1 2,0 1,9 1, Strip number Minisensor H41 Before Irradiation Raw Data: After Irradiation and Annealing (Measurement at -10 C) Corrected values due to high I leak Measurement: Apply U=2V Measure I Calculate R=U/I Correction: Measure I leak (high after irrad Correct R c =U/(U/R+I leak ) No change in bias resistances! 20

21 Coupling Capacitance Coupling Capacitance [pf] Strip number Minisensor H39 Before Irradiation After Irradiation and Annealing (Measurement at -10 C) No change in coupling capacitances! 21

22 Interstrip capacitance of HPK full sensor (1 neighbour) Wedgeshaped sensor: Longer strips on the sides but less neighbours! structure 100 ff 20 ff <Cint>=3.2 pf 22

23 Interstrip Capacitance Interstrip Capacitance [pf] Non irradiated: 1 MHz 100 khz Irradiated: 1 MHz 100 khz Bias Voltage [V] Interstrip Capacitance [F] (2 neighbours) 1,7p 1,7p 1,6p 1,6p 1,5p 1,5p Before Irradiation After Irradiation 1,4p Strip No. No change in interstrip capacitance before/after irrad.@ 1MH Homogeneous interstrip distribution before/after irrad. 23

24 Future CMS dedicated teststand at the Cyclotron Scan area: 20 x 50 [cm] Scan speed: 1.25x 2.5 [cm/s] Maximum load: 20kg (New dedicated beamline line) 24

25 Future: irradiation of a full module TEC outer, TEC inner,tob,tib Longterm with high voltage, current, power Test of S/N, CCE, (pedestal,noise,shape) Test of components: sensor, electronics, mechanics. First IEKP TEC module 25

26 Conclusion 1. Both: ST and HPK comply with the specification of irradiation hardness 2. Data fits Hamburg model well and shows a decent behavior after 10 years of LHC operation 3. No changes in the strip parameters observed 4. Future dedicated teststand promise easy access to the cyclotron 5. Further plans: 300µm sensors and full modules will be irradiated! 26

27 NEW: Ingot pre-qualification (june 2001) Hamamatsu proposed to produce a couple of additional sensors out of each new ingot for irradiation pre-qualification Special procedure in addition to the standard task. All measurements on diode and minisensor Save large sensors as spares! INGOT: IV & CV on diode To determine Vdepletion, fluence estimation and α-factor PROCESS: Cint, Rint, leakage current, Rpoly vs. Vbias upto Vdepletion + 50V (for ~10 strips) 27

ATLAS Upgrade SSD. ATLAS Upgrade SSD. Specifications of Electrical Measurements on SSD. Specifications of Electrical Measurements on SSD

ATLAS Upgrade SSD. ATLAS Upgrade SSD. Specifications of Electrical Measurements on SSD. Specifications of Electrical Measurements on SSD ATLAS Upgrade SSD Specifications of Electrical Measurements on SSD ATLAS Project Document No: Institute Document No. Created: 17/11/2006 Page: 1 of 7 DRAFT 2.0 Modified: Rev. No.: 2 ATLAS Upgrade SSD Specifications

More information

Silicon Sensor Developments for the CMS Tracker Upgrade

Silicon Sensor Developments for the CMS Tracker Upgrade Silicon Sensor Developments for the CMS Tracker Upgrade on behalf of the CMS tracker collaboration University of Hamburg, Germany E-mail: Joachim.Erfle@desy.de CMS started a campaign to identify the future

More information

SSD Development for the ATLAS Upgrade Tracker

SSD Development for the ATLAS Upgrade Tracker SSD Development for the ATLAS Upgrade Tracker Meeting Mo., Feb. 26, 2007. 2-6 pm; CERN Rm. 13-3-005 ATL-P-MN-0006 v.1 Development of non-inverting Silicon strip detectors for the ATLAS ID Upgrade 1) DC

More information

Frank.Hartmann@CERN.CH 03.02.2012 Content & Disclaimer Different Strategies FLUKA Leakage currents Depletion Voltage Each experiment is following the same goal but with slightly different strategies An

More information

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell Institut für Experimentelle Kernphysik KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

More information

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors G.Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik Jožef Stefan Institute Ljubljana,

More information

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration CMS Tracker Upgrade for HL-LHC Sensors R&D Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration Outline HL-LHC Tracker Upgrade: Motivations and requirements Silicon strip R&D: * Materials with Multi-Geometric

More information

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Esteban Currás1,2, Marcos Fernández2, Christian Gallrapp1, Marcello Mannelli1, Michael

More information

Signal-to. to-noise with SiGe. 7 th RD50 Workshop CERN. Hartmut F.-W. Sadrozinski. SCIPP UC Santa Cruz. Signal-to-Noise, SiGe 1

Signal-to. to-noise with SiGe. 7 th RD50 Workshop CERN. Hartmut F.-W. Sadrozinski. SCIPP UC Santa Cruz. Signal-to-Noise, SiGe 1 Signal-to to-noise with SiGe 7 th RD50 Workshop CERN SCIPP UC Santa Cruz Signal-to-Noise, SiGe 1 Technical (Practical) Issues The ATLAS-ID upgrade will put large constraints on power. Can we meet power

More information

Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure

Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure Santa Cruz Institute for Particle Physics Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure, D.E. Dorfan, A. A. Grillo, M Rogers, H. F.-W. Sadrozinski,

More information

Leakage Current Prediction for GLAST Silicon Detectors

Leakage Current Prediction for GLAST Silicon Detectors SCIPP 97/16 Leakage Current Prediction for GLAST Silicon Detectors T. Dubbs, H.F.-W Sadrozinski, S. Kashigan, W. Kroeger, S. Jaggar, R.Johnson, W. Rowe, A. Webster SCIPP, University of California Santa

More information

Status of ITC-irst activities in RD50

Status of ITC-irst activities in RD50 Status of ITC-irst activities in RD50 M. Boscardin ITC-irst, Microsystem Division Trento, Italy Outline Materials/Pad Detctors Pre-irradiated silicon INFN Padova and Institute for Nuclear Research of NASU,

More information

irst: process development, characterization and first irradiation studies

irst: process development, characterization and first irradiation studies 3D D detectors at ITC-irst irst: process development, characterization and first irradiation studies S. Ronchin a, M. Boscardin a, L. Bosisio b, V. Cindro c, G.-F. Dalla Betta d, C. Piemonte a, A. Pozza

More information

Studies of silicon strip sensors for the ATLAS ITK project. Miguel Arratia Cavendish Laboratory, University of Cambridge

Studies of silicon strip sensors for the ATLAS ITK project. Miguel Arratia Cavendish Laboratory, University of Cambridge Studies of silicon strip sensors for the ATLAS ITK project Miguel Arratia Cavendish Laboratory, University of Cambridge 1 ITK project and radiation damage Unprecedented large fluences expected for the

More information

Quality Assurance for the ATLAS Pixel Sensor

Quality Assurance for the ATLAS Pixel Sensor Quality Assurance for the ATLAS Pixel Sensor 1st Workshop on Quality Assurance Issues in Silicon Detectors J. M. Klaiber-Lodewigs (Univ. Dortmund) for the ATLAS pixel collaboration Contents: - role of

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions

Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions SNIC Symposium, Stanford, California -- 3-6 April 26 Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions T. Bergauer Institute for High Energy Physics of the Austrian

More information

Measurement of charge collec1on in irradiated miniature sensors for the upgrade of ATLAS Phase-II Strip tracker

Measurement of charge collec1on in irradiated miniature sensors for the upgrade of ATLAS Phase-II Strip tracker Measurement of charge collec1on in irradiated miniature sensors for the upgrade of ATLAS Phase-II Strip tracker Vladimir Cindro Jožef Stefan Institute, Ljubljana, Slovenia S.H. Abidi, A.A. Affolder, M.

More information

Testing Silicon Detectors in the Lab

Testing Silicon Detectors in the Lab Testing Silicon Detectors in the Lab Thomas Bergauer (HEPHY Vienna) 2 nd IPM-HEPHY detector school 15 June 2012 Schedule of my talk during 1 st detector school Semiconductor Basics (45 ) Detector concepts:

More information

The LHCb Silicon Tracker

The LHCb Silicon Tracker Journal of Instrumentation OPEN ACCESS The LHCb Silicon Tracker To cite this article: C Elsasser 214 JINST 9 C9 View the article online for updates and enhancements. Related content - Heavy-flavour production

More information

1. Reasons for using p-type SSD

1. Reasons for using p-type SSD SCIPP 05/09 Operation of Short-Strip Silicon Detectors based on p-type Wafers in the ATLAS Upgrade ID Hartmut F.-W. Sadrozinski, Abraham Seiden SCIPP, UC Santa Cruz, CA 95064 Mara Bruzzi INFN Firenze -

More information

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U) Development of Double-sided Silcon microstrip Detector D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U), KNU) 2005 APPI dhkah@belle.knu.ac.kr 1 1. Motivation 2. Introduction Contents 1.

More information

UNIVERSITY of CALIFORNIA SANTA CRUZ

UNIVERSITY of CALIFORNIA SANTA CRUZ UNIVERSITY of CALIFORNIA SANTA CRUZ CHARACTERIZATION OF THE IRST PROTOTYPE P-TYPE SILICON STRIP SENSOR A thesis submitted in partial satisfaction of the requirements for the degree of BACHELOR OF SCIENCE

More information

Thin Silicon R&D for LC applications

Thin Silicon R&D for LC applications Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC Next Linear Collider:Physic requirements Vertexing 10 µ mgev σ r φ,z(ip ) 5µ m 3 / 2 p sin

More information

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Università degli Studi di Firenze and INFN Sezione di Firenze E-mail: candi@fi.infn.it CMS has started a campaign to identify the future

More information

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Different pitch layouts are considered for the pixel detector being designed for the ATLAS upgraded tracking system which will be operating

More information

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure 1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure J. Metcalfe, D. E. Dorfan, A. A. Grillo, A. Jones, F. Martinez-McKinney,

More information

Update of CMS Process Quality Control

Update of CMS Process Quality Control Update of CMS Process Quality Control Florence Anna Macchiolo Carlo Civinini Mirko Brianzi Strasbourg Jean-Charles Fontaine Jean-Laurent Agram Vienna Thomas Bergauer Margit Oberegger Sensor Meeting, CMS

More information

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Natascha Savić L. Bergbreiter, J. Breuer, A. Macchiolo, R. Nisius, S. Terzo IMPRS, Munich # 29.5.215 Franz Dinkelacker

More information

ATLAS Upgrade SSD Project:

ATLAS Upgrade SSD Project: ATLAS Upgrade SSD: Specifications of the ATLAS Upgrade SSD ATLAS Project Document No: Institute Document No. Created: 30/10/2006 Page: 1 of 7 DRAFT 1.0 Modified: ATLAS Upgrade SSD Project: Specifications

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Milestone Report

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Milestone Report AIDA-2020-MS15 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Milestone Report Design specifications of test stations for irradiated silicon sensors and LHC oriented front-end

More information

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes Simulation of new P-Type strip detectors RESMDD 10, Florence 12-15.October.2010 1/15 Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

More information

TCAD simulations of silicon strip and pixel sensor optimization

TCAD simulations of silicon strip and pixel sensor optimization sensor optimization a, S. Mitsui a, S. Terada a, Y. Ikegami a, Y. Takubo a, K. Hara b, Y. Takahashi b, O. Jinnouchi c, T. Kishida c, R. Nagai c, S. Kamada d, and K. Yamamura d a KEK, Tsukuba b University

More information

Measurements With Irradiated 3D Silicon Strip Detectors

Measurements With Irradiated 3D Silicon Strip Detectors Measurements With Irradiated 3D Silicon Strip Detectors Michael Köhler, Michael Breindl, Karls Jakobs, Ulrich Parzefall, Liv Wiik University of Freiburg Celeste Fleta, Manuel Lozano, Giulio Pellegrini

More information

Frequency Response Properties of the Silicon Vertex Detector for BaBar

Frequency Response Properties of the Silicon Vertex Detector for BaBar Frequency Response Properties of the Silicon Vertex Detector for BaBar Lawrence Lin Jeff Richman Sam Burke UCSB Summer 2001 Contents 1 Introduction 2 2 p-side of the Detector 3 3 n-side of the Detector

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic Outline Short history of MAPS development at IPHC Results from TowerJazz CIS test sensor Ultra-thin

More information

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller BCM2 8diamonds BCM1 8diamonds each BCM2 8diamonds Beam Condition Monitoring at LHC BCM at LHC is done by about 3700

More information

Study of the radiation-hardness of VCSEL and PIN

Study of the radiation-hardness of VCSEL and PIN Study of the radiation-hardness of VCSEL and PIN 1, W. Fernando, H.P. Kagan, R.D. Kass, H. Merritt, J.R. Moore, A. Nagarkara, D.S. Smith, M. Strang Department of Physics, The Ohio State University 191

More information

arxiv: v3 [physics.ins-det] 9 Jan 2017

arxiv: v3 [physics.ins-det] 9 Jan 2017 Prepared for submission to JINST Topical Workshop on Electronics for Particle Physics 26-3 September 216 Karlsrhue, Germany Studies of irradiated AMS H35 CMOS detectors for the ATLAS tracker upgrade arxiv:1611.497v3

More information

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration Silicon Detectors for the slhc - an Overview of Recent RD50 Results 1 Centro Nacional de Microelectronica CNM- IMB-CSIC, Barcelona Spain E-mail: giulio.pellegrini@imb-cnm.csic.es On behalf of CERN RD50

More information

Radiation-hard/high-speed data transmission using optical links

Radiation-hard/high-speed data transmission using optical links Radiation-hard/high-speed data transmission using optical links K.K. Gan a, B. Abi c, W. Fernando a, H.P. Kagan a, R.D. Kass a, M.R.M. Lebbai b, J.R. Moore a, F. Rizatdinova c, P.L. Skubic b, D.S. Smith

More information

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER B. Patel, R. Rusack, P. Vikas(email:Pratibha.Vikas@cern.ch) University of Minnesota, Minneapolis, U.S.A. Y. Musienko, S. Nicol, S.Reucroft,

More information

Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker

Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker LHCb Note 22-38 Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker F. Lehner, P. Sievers, O. Steinkamp, U. Straumann, A. Vollhardt, M. Ziegler Physik-Institut

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

The upgrade of the ATLAS silicon strip tracker

The upgrade of the ATLAS silicon strip tracker On behalf of the ATLAS Collaboration IFIC - Instituto de Fisica Corpuscular (University of Valencia and CSIC), Edificio Institutos de Investigacion, Apartado de Correos 22085, E-46071 Valencia, Spain E-mail:

More information

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system Detector concept description and first beam test results

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system Detector concept description and first beam test results A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system Detector concept description and first beam test results 03/10/2017 ATL-LARG-SLIDE-2017-858 Didier Lacour On

More information

Review of Silicon Inner Tracker

Review of Silicon Inner Tracker Review of Silicon Inner Tracker H.J.Kim (KyungPook National U.) Talk Outline Configuration optimization of BIT and FIT Silicon Sensor R&D Electronics R&D Summary and Plan Detail study will be presented

More information

The CMS Silicon Strip Tracker and its Electronic Readout

The CMS Silicon Strip Tracker and its Electronic Readout The CMS Silicon Strip Tracker and its Electronic Readout Markus Friedl Dissertation May 2001 M. Friedl The CMS Silicon Strip Tracker and its Electronic Readout 2 Introduction LHC Large Hadron Collider:

More information

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group The LHCb VELO Upgrade Stefano de Capua on behalf of the LHCb VELO group Overview [J. Instrum. 3 (2008) S08005] LHCb / Current VELO / VELO Upgrade Posters M. Artuso: The Silicon Micro-strip Upstream Tracker

More information

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara Outline Requirements Detector Description Performance Radiation SVT Design Requirements and Constraints

More information

Geiger-mode APDs (2)

Geiger-mode APDs (2) (2) Masashi Yokoyama Department of Physics, University of Tokyo Nov.30-Dec.4, 2009, INFN/LNF Plan for today 1. Basic performance (cont.) Dark noise, cross-talk, afterpulsing 2. Radiation damage 2 Parameters

More information

UV/EUV CONTINUOUS POSITION SENSOR

UV/EUV CONTINUOUS POSITION SENSOR UV/EUV CONTINUOUS POSITION SENSOR ODD-SXUV-DLPSD FEATURES Submicron position resolution Stable response after exposure to UV/EUV 5 mm x 5 mm active area TO-8 windowless package RoHS ELECTRO-OPTICAL CHARACTERISTICS

More information

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Detector system

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Detector system A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Detector system C.Agapopoulou on behalf of the ATLAS Lar -HGTD group 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference

More information

FACTOR: first results on SiPM characterization

FACTOR: first results on SiPM characterization FACTOR: first results on SiPM characterization Valter Bonvicini INFN Trieste OUTLINE: 1. Motivations and program of the FACTOR project 2. Types of devices tested, measurements performed and set-up used

More information

OPTICAL LINK OF THE ATLAS PIXEL DETECTOR

OPTICAL LINK OF THE ATLAS PIXEL DETECTOR OPTICAL LINK OF THE ATLAS PIXEL DETECTOR K.K. Gan, W. Fernando, P.D. Jackson, M. Johnson, H. Kagan, A. Rahimi, R. Kass, S. Smith Department of Physics, The Ohio State University, Columbus, OH 43210, USA

More information

Department of Physics & Astronomy

Department of Physics & Astronomy Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 330 5881 GLAS-PPE/2005-14

More information

THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS

THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS F. MANOLESCU 1, A. MACCHIOLO 2, M. BRIANZI 2, A. MIHUL 3 1 Institute of Space Sciences, Magurele, Bucharest, Romania

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow Glasgow, G12 8QQ, Scotland Telephone: ++44 (0)141 339 8855 Fax: +44 (0)141 330 5881 GLAS-PPE/2002-20

More information

ATLAS strip detector upgrade for the HL-LHC

ATLAS strip detector upgrade for the HL-LHC ATL-INDET-PROC-2015-010 26 August 2015, On behalf of the ATLAS collaboration Santa Cruz Institute for Particle Physics, University of California, Santa Cruz E-mail: zhijun.liang@cern.ch Beginning in 2024,

More information

Sensor production readiness

Sensor production readiness Sensor production readiness G. Bolla, Purdue University for the USCMS FPIX group PMG review 02/25/2005 2/23/2005 1 Outline Sensor requirements Geometry Radiation hardness Development Guard Rings P stops

More information

Development of a large area silicon pad detector for the identification of cosmic ions

Development of a large area silicon pad detector for the identification of cosmic ions Development of a large area silicon pad detector for the identification of cosmic ions M.Y. Kim 1,2 P.S. Marrocchesi 1, C. Avanzini 2, M.G. Bagliesi 1, G. Bigongiari 1,A. Caldarone 1,R. Cecchi 1,, P. Maestro

More information

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol University of Bristol E-mail: sophie.richards@bristol.ac.uk The upgrade of the LHCb experiment is planned for beginning of 2019 unitl the end of 2020. It will transform the experiment to a trigger-less

More information

The HGTD: A SOI Power Diode for Timing Detection Applications

The HGTD: A SOI Power Diode for Timing Detection Applications The HGTD: A SOI Power Diode for Timing Detection Applications Work done in the framework of RD50 Collaboration (CERN) M. Carulla, D. Flores, S. Hidalgo, D. Quirion, G. Pellegrini IMB-CNM (CSIC), Spain

More information

Unless otherwise specified, assume room temperature (T = 300 K).

Unless otherwise specified, assume room temperature (T = 300 K). ECE 3040 Dr. Doolittle Homework 4 Unless otherwise specified, assume room temperature (T = 300 K). 1) Purpose: Understanding p-n junction band diagrams. Consider a p-n junction with N A = 5x10 14 cm -3

More information

Status of ATLAS & CMS Experiments

Status of ATLAS & CMS Experiments Status of ATLAS & CMS Experiments Atlas S.C. Magnet system Large Air-Core Toroids for µ Tracking 2Tesla Solenoid for inner Tracking (7*2.5m) ECAL & HCAL outside Solenoid Solenoid integrated in ECAL Barrel

More information

Sensor Concepts for Pixel Detectors in HEP

Sensor Concepts for Pixel Detectors in HEP Introduction "p in n" Sensors design, te, limits in radiation hardness "n in n" Sensors for LHC Experiments radiation hardness requirements n side isolation and design Other Experiments "Super LHC" TESLA

More information

Experiment 9 Bipolar Junction Transistor Characteristics

Experiment 9 Bipolar Junction Transistor Characteristics Experiment 9 Bipolar Junction Transistor Characteristics W.T. Yeung, W.Y. Leung, and R.T. Howe UC Berkeley EE 105 Fall 2005 1.0 Objective In this lab, you will determine the I C - V CE characteristics

More information

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Silicon Detector Specification

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Silicon Detector Specification GLAST LAT PROCUREMENT SPECIFICATION Document # Document Title GLAST LAT Silicon Detector Specification Date Effective Page 1 of 21 GE-00011-A 1rst Draft 8/20/00 Author(s) Supersedes H. Sadrozinski T. Ohsugi

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC On behalf of the CMS Collaboration INFN Florence (Italy) 11th 15th September 2017 Las Caldas, Asturias (Spain) High Luminosity

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Standard InGaAs Photodiodes IG17-Series

Standard InGaAs Photodiodes IG17-Series Description The IG17-series is a panchromatic PIN photodiode with a nominal wavelength cut-off at 1.7 µm. This series has been designed for demanding spectroscopic and radiometric applications. It offers

More information

CMS Tracker Upgrades. R&D Plans, Present Status and Perspectives. Benedikt Vormwald Hamburg University on behalf of the CMS collaboration

CMS Tracker Upgrades. R&D Plans, Present Status and Perspectives. Benedikt Vormwald Hamburg University on behalf of the CMS collaboration R&D Plans, Present Status and Perspectives Benedikt Vormwald Hamburg University on behalf of the CMS collaboration EPS-HEP 2015 Vienna, 22.-29.07.2015 CMS Tracker Upgrade Program LHC HL-LHC ECM[TeV] 7-8

More information

Prototype Performance and Design of the ATLAS Pixel Sensor

Prototype Performance and Design of the ATLAS Pixel Sensor Prototype Performance and Design of the ATLAS Pixel Sensor F. Hügging, for the ATLAS Pixel Collaboration Contents: - Introduction - Sensor Concept - Performance fi before and after irradiation - Conclusion

More information

Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration status report

Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration status report Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration status report Albert-Ludwigs-Universität Freiburg (DE) E-mail: susanne.kuehn@cern.ch The revised schedule for the Large Hadron Collider

More information

STUDY OF THE RADIATION HARDNESS OF VCSEL AND PIN ARRAYS

STUDY OF THE RADIATION HARDNESS OF VCSEL AND PIN ARRAYS STUDY OF THE RADIATION HARDNESS OF VCSEL AND PIN ARRAYS K.K. GAN, W. FERNANDO, H.P. KAGAN, R.D. KASS, A. LAW, A. RAU, D.S. SMITH Department of Physics, The Ohio State University, Columbus, OH 43210, USA

More information

VELO: the LHCb Vertex Detector

VELO: the LHCb Vertex Detector LHCb note 2002-026 VELO VELO: the LHCb Vertex Detector J. Libby on behalf of the LHCb collaboration CERN, Meyrin, Geneva 23, CH-1211, Switzerland Abstract The Vertex Locator (VELO) of the LHCb experiment

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2015/213 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 05 October 2015 (v2, 12 October 2015)

More information

Tracking Detectors for the LHC Upgrade

Tracking Detectors for the LHC Upgrade Tracking Detectors for the LHC Upgrade Layout Signal Noise Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz 1 slhc, the Machine Albert De Roeck CERN 626 Upgrade in 3 main Phases: Phase 0 maximum performance

More information

First Results with the Prototype Detectors of the Si/W ECAL

First Results with the Prototype Detectors of the Si/W ECAL First Results with the Prototype Detectors of the Si/W ECAL David Strom University of Oregon Physics Design Requirements Detector Concept Silicon Detectors - Capacitance and Trace Resistance Implications

More information

IV curves of different pixel cells

IV curves of different pixel cells IV curves of different pixel cells 6 5 100 µm pitch, 10µm gap 100 µm pitch, 50µm gap current [pa] 4 3 2 1 interface generation current volume generation current 0 0 50 100 150 200 250 bias voltage [V]

More information

Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL

Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL SNIC Symposium, Stanford, California -- 3-6 April 6 Development of Monolithic CMOS Pixel Sensors for the ILC at LBNL M. Battaglia, B. Hooberman, L. Tompkins Department of Physics, University of California,

More information

Initial Results from a Cryogenic Proton Irradiation of a p-channel CCD

Initial Results from a Cryogenic Proton Irradiation of a p-channel CCD Centre for Electronic Imaging Initial Results from a Cryogenic Proton Irradiation of a p-channel CCD Jason Gow Daniel Wood, David Hall, Ben Dryer, Simeon Barber, Andrew Holland and Neil Murray Jason P.

More information

Silicon Avalanche Photodiode SAR-/SARP-Series

Silicon Avalanche Photodiode SAR-/SARP-Series Silicon Avalanche Photodiode SAR-/SARP-Series DESCRIPTION The SAR500-Series is based on a reach-through structure for excellent quantum efficiency and high speed. The peak sensitivity in the NIR region

More information

Resolution studies on silicon strip sensors with fine pitch

Resolution studies on silicon strip sensors with fine pitch Resolution studies on silicon strip sensors with fine pitch Stephan Hänsel This work is performed within the SiLC R&D collaboration. LCWS 2008 Purpose of the Study Evaluate the best strip geometry of silicon

More information

HV BOARD. Claudio Arnaboldi Gianluigi Pessina INFN, Milano. Thierry Gys, Didier Piedigrossi CERN. LHCb, 15/12/2004 1

HV BOARD. Claudio Arnaboldi Gianluigi Pessina INFN, Milano. Thierry Gys, Didier Piedigrossi CERN. LHCb, 15/12/2004 1 HV BOARD Claudio Arnaboldi Gianluigi Pessina INFN, Milano Thierry Gys, Didier Piedigrossi CERN LHCb, 15/12/2004 1 HV distribution Half Column (8 HPDs) Half Column (8 HPDs) 20 KV Input HPD 2 HPD 1 FILTER

More information

A GSM Band Low-Power LNA 1. LNA Schematic

A GSM Band Low-Power LNA 1. LNA Schematic A GSM Band Low-Power LNA 1. LNA Schematic Fig1.1 Schematic of the Designed LNA 2. Design Summary Specification Required Simulation Results Peak S21 (Gain) > 10dB >11 db 3dB Bandwidth > 200MHz (

More information

Pin photodiode Quality Assurance Procedure

Pin photodiode Quality Assurance Procedure GENEVE, SUISSE GENEVA, SWITZERLAND ORGANISATION EUROPEENE POUR LA RECHERCHE NUCLEAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratoire Européen pour la Physique des Particules European Laboratory

More information

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades for High Luminosity LHC Upgrades R. Carney, K. Dunne, *, D. Gnani, T. Heim, V. Wallangen Lawrence Berkeley National Lab., Berkeley, USA e-mail: mgarcia-sciveres@lbl.gov A. Mekkaoui Fermilab, Batavia, USA

More information

CMS Silicon Strip Tracker: Operation and Performance

CMS Silicon Strip Tracker: Operation and Performance CMS Silicon Strip Tracker: Operation and Performance Laura Borrello Purdue University, Indiana, USA on behalf of the CMS Collaboration Outline The CMS Silicon Strip Tracker (SST) SST performance during

More information

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Ankush Mitra, University of Warwick, UK on behalf of the ATLAS ITk Collaboration PSD11 : The 11th International Conference

More information

First Sensor Evaluation Board Data Sheet Part Description MOD Order #

First Sensor Evaluation Board Data Sheet Part Description MOD Order # FOTO Input + 5 DC voltage Optical input (optional C-mount for lens) Mechanical potentiometer for APD-bias setting Output 16 channels voltage signal of amplified APD (300 MHz bandwidth and additional gain

More information

Preparing for the Future: Upgrades of the CMS Pixel Detector

Preparing for the Future: Upgrades of the CMS Pixel Detector : KSETA Plenary Workshop, Durbach, KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Large Hadron Collider at CERN Since 2015: proton proton collisions @ 13 TeV Four experiments:

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Silicon Sensors for HL LHC Tracking Detectors

Silicon Sensors for HL LHC Tracking Detectors Silicon Sensors for HL LHC Tracking Detectors N25: Radiation Damage Effects 31. October 2012 Susanne Kuehn University of Freiburg, Germany On behalf of the RD50 Collaboration Outline Introduction Research

More information