MODELING THE PHASE STEP RESPONSE OF BANG-BANG DIGITAL PLLS

Size: px
Start display at page:

Download "MODELING THE PHASE STEP RESPONSE OF BANG-BANG DIGITAL PLLS"

Transcription

1 MODELING THE PHASE STEP RESPONSE OF BANG-BANG DIGITAL PLLS Moataz Abdelfattah Supervised by: AUC Prof. Yehea Ismail Dr. Maged Ghoniema Intel Dr. Mohamed Abdel-moneum (Industry Mentor)

2 Outline Introduction Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

3 Outline Introduction What is BB-PLLs Motivation Scope of work & Methodology Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

4 What is a PLL? A circuit responsible for generating clock signal for electronic devices Crystal Oscillator PLL Clock A Clock B Very slow - Low phase noise Very fast - Low phase noise

5 PLL Operation Reference Phase Detector Loop Filter Controlled Oscillator Output Clock Frequency Divider Negative feedback system Compares reference to a divided version of output clock Guarantees purity through ve FB

6 PLL Types Trend: Past Analog Design Future Digital Design Analog Digital Features: Analog: High Accuracy Digital: Scalable Challenges: Technology scales down Analog design difficult!!

7 Digital PLLs Digital PLL: Bang-Bang Non linear, low performance, low power TDC - linear, good performance, high power Phase Detector Output BB Loop Filter Controlled Oscillator Phase Error Frequency Divider Nonlinear PD TDC Loop Filter Controlled Oscillator Phase Detector Output Phase Error Frequency Divider Linear PD

8 BB-PLL Pros Cons Applications Pros Low Power Simple Implementation (simple phase detector) Cons Non-linear loop dynamics (due to non-linear phase detector): No well defined design methodology Unreliable response Apps Traditionally: CDR Recently: Microprocessors, Wireless Transceivers, SoCs

9 Outline Introduction What is BB-PLLs Motivation Scope of work & Methodology Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

10 Thesis Motivation Recent interest in low power designs: Interest in BB-PLLs use in high performance apps (microprocessors and wireless applications) Non-linearity of BB-PLLs prevent their use in high performance Apps.: Need to solve problems caused due to non-linearity Not much work in the literature on solving BB-PLLs problems

11 Problems Due to Nonlinearity 1. System Modeling 2. Unreliable Response

12 Problem 1 - Modeling Nonlinear no TF analysis PLL System Response Linear PLL Design Methodology BB-PLL Design Parameters Desired Response

13 Problem 2 Nonlinear Response BW Phase error magnitude CPPLL BBPLL 1 1 Independent of input phase error Depending on input phase error

14 Problem 2 Nonlinear Response CPPLL BBPLL ref ref FB FB Ph Err Ph Err Control Control Control Voltage proportional to input error Control Word not proportional to input error

15 Phase Error Mag. Phase Error Mag. Problem 2 Nonlinear Response BW Phase error magnitude CPPLL BBPLL Control (Ip) Control (digital word)

16 Literature On problem 1 (Modeling): Only one model is proposed by Razavi in 2003 [1] Model valid only for small Phase Error Magnitudes (PEMs) Model is specific for error patterns at CDR applications On Problem 2 (Nonlinear Response): Different solutions proposed Circuit techniques to regulate the BW through digital algorithms Literature shortage in Modeling Thesis focus on Modeling

17 Outline Introduction What is BB-PLLs Motivation Scope of work & Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

18 Scope of Work Modeling Finding a solution mainly for problem 1 Goal: Well Defined Design Methodology Insights Nonlinear Response Techniques enhance response

19 Methodology Mathematical Representation of the time domain phase step response Predict BW, Stability For different PEMs Verify Model through comparison with circuit implementation Propose Techniques to enhance linearity (problem 2)

20 Outline Introduction Proposed Modeling Methodology Model Parameters Model Derivation BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

21 Modeling (objective? How?) Objective? Predicting BW Predicting Stability Estep 0.1 Phase Error How? Phase Step Response Settling Stability Settling time BW Clock Cycles

22 Modeling (How to predict stability?) Phase Err. Phase Error (ns) Feedback Period (ns) Frequency Err. Maximum Frequency Error Minimum Frequency Error Reference Cycles Number of Cycles (i)

23 Phase Error Mag. Phase Error Mag. Modeling (predicting BW what is BW?) BW: How fast PLL can track jitter CPPLL BBPLL Constant BW Variable BW

24 Phase Error (ns) Modeling (How to predict BW?) m1 m Reference Cycles

25 Modeling (predicting BW & Stability) Input phase error (E) Objective System of Equations

26 Outline Introduction Proposed Modeling Methodology Model Parameters Model Derivation BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

27 Phase Error (ns) Modeling Methodology 0.12 Phase step error loop acts to compensate Phase at zero crossings equals zero Phase due to step err. = phase due to loop action Mathematical Representation of both phase components (step & loop action) Reference Cycles Equate at zero crossings

28 Modeling (BB-ADPLL Operation) Proportional Coeff. Conventional PI DLF Frequency Control digital Word BB-PD + FCW DCO Feedback Frequency Divider Integral Coeff.

29 Modeling (DLF Operation) BB-PD BB_Out + FCW DCO BB_Out Polarity Change -1-1 Proportional Contribution Per BB decision FCW Integral Contribution Per BB decision

30 Modeling Methodology Conventional PI DLF Phase due to loop action: BB-PD + DCO Proportional path Feedback Frequency Divider DCO phase change due to one change in the FCW (DCO resolution) 0.1 Integral Path FCW = x

31 Phase Error (ns) Modeling Methodology m Reference Cycles

32 Modeling Methodology FCW = x

33 Modeling Methodology

34 Modeling (outcome) CPPLL Design Methodology BBPLL Desired Response Desired Response for suitable range of PEM TF Eqns Set Design Parameters Set Design Parameters

35 Outline Introduction Proposed Modeling Methodology BB-ADPLL System System Architecture & Performance Model Verification Proposed Techniques for Enhanced System Response Conclusion & Future Work

36 BB-ADPLL Pin Diagram REF_clk reset N BB-ADPLL DCO_clk

37 BB-ADPLL FC Slow/Fast BSA reset Pipeline 5 Register 5 (D1) Thermometer Decoder (5x21) Coarse 21 Frequency Acquisition Loop REF_clk BB ± 1 DLF1 6 reset D C O DCO_clk Buffer out_clk M U X Pipeline Register (D2) FCW 6 Thermometer Decoder (6x35) Fine 35 1/D Update_Clock DLF2 6 Phase Acquisition Loop Feedback Signal 1/N Custom Design RTL

38 BB-ADPLL (DCO) FCW[76:66] FCW[65:55] FCW[54:44] FCW[43:33] FCW[32:22] FCW[21:11] FCW[10:0] M0p M0n M1n M2n M3n Fine Coarse

39 Frequency (GHz) DCO Frequency Range Frequency Resolution 6 5 Frequency Coarse Fine Step 4 (GHz) Step (MHz) (MHz) Coarse Code 1.5 (Min) (Max) Average

40 PLL Results Locked at 3 GHz Re-lock Time Phase step introduced here

41 PLL Results Frequency Lock Time (us) RMS Jitter (ps) Peak-to-Peak Jitter (ps) 2 GHz GHz GHz COMPARISON This Work ISSCC 2012 [2] Measurement Frequency 3 GHz 3 GHz Supply 1.05 V V. RMS Jitter 0.88 ps 0.8 ps Silicon No Yes

42 Outline Introduction Proposed Modeling Methodology BB-ADPLL System System Architecture & Performance Model Verification Proposed Techniques for Enhanced System Response Conclusion & Future Work

43 Model Verification model sim model sim Update Cycles Update Cycles PEM = 600ps PEM = 1200ps

44 Model Verification 6 5 model sim model sim Update Cycles Update Cycles PEM = 2400ps PEM = 5000ps

45 Model Verification PEM (ps) Accuracy % ns 360 ns 75% ns 880 ns 88.6% ns 1120 ns 87.5% ns 2190 ns 94.3%

46 Model Accuracy

47 Outline Introduction Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Technique 1 Technique 2 Conclusion & Future Work

48 Proposed Technique 1 PI Digital Loop Filter BB-PD Non-linear Gain + DCO Counter Gain Linearization Frequency Divider

49 Proposed Technique 1 Phase Error Magnitude Phase Error Magnitude time time FCW time time (a) (b)

50 Proposed Technique 1 New DLF Architecture In FCW......

51 Phase Error (ns) Phase Error (ns) Proposed Technique 1 New DLF Operation FCW FCW Conventional DLF Reference Cycles Reference Cycles Reference Cycles t1 Reference Cycles

52 Technique 1 verification t1 (ns) Conventional Proposed Ideal (linear) PEM (ns)

53 Outline Introduction Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Technique 1 Technique 2 Conclusion & Future Work

54 Phase Error (ns) Proposed Technique 2 At first zero crossing: Phase Error = 0 Freq. Error = Ef1 Add circuitry to estimate Ef1 : Ef1 = (α m1 + β) FCW = x Reference Cycles At first zero crossing: Subtract Ef1 from FCW At first zero crossing: Phase Error = 0 Freq. Error 0 Relock Time Reduced

55 Technique 2 verification PEM (ps) Percentage Reduction ns 215 ns 55.2 % ns 406 ns 53.8 % ns 457 ns 59.1 %

56 Outline Introduction Proposed Modeling Methodology BB-ADPLL System Proposed Techniques for Enhanced System Response Conclusion & Future Work

57 Conclusion BB-PLL: low power nonlinearity Nonlinearity: modeling problem Model predict system response in terms of design parameters provides design methodology Model insights proposed techniques to enhance system linearity (SL enhanced by 35%, Re-lock time enhanced by 55%)

58 Future Work Physical Design (further verification of model) Enhance accuracy (Re-develop model with less assumptions)

59 References [1] J. Lee, K. S. Kundert, and B. Razavi, Analysis and modeling of bangbang clock and data recovery circuits, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp , Sep [2] N. August, H. Lee, M. Vandepas, R. Parker, A TDC-less ADPLL with 200-to-3200MHz range and 3mW power dissipation for mobile SoC clocking in 22nm CMOS, ISSCC Dig. Tech. Papers, pp , Feb., 2012.

60 Publications From This Work Accepted Abdelfattah M., Lotfy A., Abdel-moneum M., Kurd N., Ghoneima M., Taylor G., Ismail Y. Modeling the Response of Bang-Bang Digital PLLs to Phase Error Perturbations, IEEE in proceedings of CICC Abdelfattah M., Lotfy A., Abdelsalam M., Abdel-moneum M., Kurd N., Ghoneima M., Taylor G., Ismail Y. A Novel DLF Architecture for Digital Bang-Bang PLLs IEEE in proceedings of SOCC Under Preparation A Novel Technique to Reduce the Lock Time of BB-DPLLs (Conference) Abdelfattah M., Lotfy A., Abdel-moneum M., Kurd N., Ghoneima M., Taylor G., Ismail Y. Modeling the Phase Step Response of Bang-Bang Digital PLLs to Phase Error Perturbations, submitted to TCAS I.

61 QUESTIONS

A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range

A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range Nasser Erfani Majd, Mojtaba Lotfizad Abstract In this paper, an ultra low power and low jitter 12bit CMOS digitally

More information

Distributed clock generator for synchronous SoC using ADPLL network

Distributed clock generator for synchronous SoC using ADPLL network Distributed clock generator for synchronous SoC using ADPLL network Eldar Zianbetov, Dimitri Galayko, François Anceau, Mohammad Javidan, Chuan Shan, Olivier Billoint, Anton Korniienko, Eric Colinet, Gérard

More information

Case5:08-cv PSG Document Filed09/17/13 Page1 of 11 EXHIBIT

Case5:08-cv PSG Document Filed09/17/13 Page1 of 11 EXHIBIT Case5:08-cv-00877-PSG Document578-15 Filed09/17/13 Page1 of 11 EXHIBIT N ISSCC 2004 Case5:08-cv-00877-PSG / SESSION 26 / OPTICAL AND Document578-15 FAST I/O / 26.10 Filed09/17/13 Page2 of 11 26.10 A PVT

More information

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI 7- A Wide Tuning Range ( GHz-to-5 GHz) Fractional-N All-Digital PLL in 45nm SOI Alexander Rylyakov, Jose Tierno, George English 2, Michael Sperling 2, Daniel Friedman IBM T. J. Watson Research Center Yorktown

More information

Dedication. To Mum and Dad

Dedication. To Mum and Dad Dedication To Mum and Dad Acknowledgment Table of Contents List of Tables List of Figures A B A B 0 1 B A List of Abbreviations Abstract Chapter1 1 Introduction 1.1. Motivation Figure 1. 1 The relative

More information

A fast lock-in all-digital phase-locked loop in 40-nm CMOS technology

A fast lock-in all-digital phase-locked loop in 40-nm CMOS technology LETTER IEICE Electronics Express, Vol.13, No.17, 1 10 A fast lock-in all-digital phase-locked loop in 40-nm CMOS technology Ching-Che Chung a) and Chi-Kuang Lo Department of Computer Science & Information

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

PHASE-LOCKED loops (PLLs) are widely used in many

PHASE-LOCKED loops (PLLs) are widely used in many IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 3, MARCH 2011 149 Built-in Self-Calibration Circuit for Monotonic Digitally Controlled Oscillator Design in 65-nm CMOS Technology

More information

A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor

A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor José Tierno 1, A. Rylyakov 1, D. Friedman 1, A. Chen 2, A. Ciesla 2, T. Diemoz 2, G. English 2, D. Hui 2,

More information

A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS

A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS A Modular All Digital PLL Architecture Enabling Both 1-to-2 GHz and 24-to 32-GHz Operation in 65nm CMOS A. V. Rylyakov 1, J. A. Tierno 1, D. Z. Turker 2, J.-O. Plouchart 1 H. A. Ainspan 1, D. J. Friedman

More information

Phase Locked Loop Design for Fast Phase and Frequency Acquisition

Phase Locked Loop Design for Fast Phase and Frequency Acquisition Phase Locked Loop Design for Fast Phase and Frequency Acquisition S.Anjaneyulu 1,J.Sreepavani 2,K.Pramidapadma 3,N.Varalakshmi 4,S.Triven 5 Lecturer,Dept.of ECE,SKU College of Engg. & Tech.,Ananthapuramu

More information

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection

A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection A 0.2-to-1.45GHz Subsampling Fractional-N All-Digital MDLL with Zero-Offset Aperture PD-Based Spur Cancellation and In-Situ Timing Mismatch Detection Somnath Kundu 1, Bongjin Kim 1,2, Chris H. Kim 1 1

More information

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS Diary R. Sulaiman e-mail: diariy@gmail.com Salahaddin University, Engineering College, Electrical Engineering Department Erbil, Iraq Key

More information

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 75 A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage Mohamed A. Ahmed, Heba A. Shawkey, Hamed A. Elsemary,

More information

RECENT advances in integrated circuit (IC) technology

RECENT advances in integrated circuit (IC) technology IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 3, MARCH 2007 247 A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy Volodymyr

More information

A Frequency Synthesis of All Digital Phase Locked Loop

A Frequency Synthesis of All Digital Phase Locked Loop A Frequency Synthesis of All Digital Phase Locked Loop S.Saravanakumar 1, N.Kirthika 2 M.E.VLSI DESIGN Sri Ramakrishna Engineering College Coimbatore, Tamilnadu 1 s.saravanakumar21@gmail.com, 2 kirthi.com@gmail.com

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 16: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project descriptions are posted on the website Preliminary

More information

Sudatta Mohanty, Madhusmita Panda, Dr Ashis kumar Mal

Sudatta Mohanty, Madhusmita Panda, Dr Ashis kumar Mal International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 45 Design and Performance Analysis of a Phase Locked Loop using Differential Voltage Controlled Oscillator Sudatta

More information

Noise Analysis of Phase Locked Loops

Noise Analysis of Phase Locked Loops Noise Analysis of Phase Locked Loops MUHAMMED A. IBRAHIM JALIL A. HAMADAMIN Electrical Engineering Department Engineering College Salahaddin University -Hawler ERBIL - IRAQ Abstract: - This paper analyzes

More information

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc.

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc. A Compact, Low-Power Low- Jitter Digital PLL Amr Fahim Qualcomm, Inc. 1 Outline Introduction & Motivation Digital PLL Architectures Proposed DPLL Architecture Analysis of DPLL DPLL Adaptive Algorithm DPLL

More information

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Nitin Kumar #1, Manoj Kumar *2 # Ganga Institute of Technology & Management 1 nitinkumarvlsi@gmail.com * Guru Jambheshwar University of Science

More information

Research Article A Low-Power Digitally Controlled Oscillator for All Digital Phase-Locked Loops

Research Article A Low-Power Digitally Controlled Oscillator for All Digital Phase-Locked Loops VLSI Design Volume 200, Article ID 94670, pages doi:0.55/200/94670 Research Article A Low-Power Digitally Controlled Oscillator for All Digital Phase-Locked Loops Jun Zhao and Yong-Bin Kim Department of

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN720: High-Speed Links Circuits and Systems Spring 2017 Lecture 12: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project Preliminary Report #2 due Apr. 20 Expand

More information

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global an effective design and verification methodology for digital PLL This Paper depicts an effective simulation methodology to overcome the spice simulation time overhead of digital dominant, low frequency

More information

A Monotonic and Low-Power Digitally Controlled Oscillator Using Standard Cells for SoC Applications

A Monotonic and Low-Power Digitally Controlled Oscillator Using Standard Cells for SoC Applications A Monotonic and Low-Power Digitally Controlled Oscillator Using Standard Cells for SoC Applications Duo Sheng, Ching-Che Chung, and Jhih-Ci Lan Department of Electrical Engineering, Fu Jen Catholic University,

More information

Fast-lock all-digital DLL and digitally-controlled phase shifter for DDR controller applications

Fast-lock all-digital DLL and digitally-controlled phase shifter for DDR controller applications Fast-lock all-digital DLL and digitally-controlled phase shifter for DDR controller applications Duo Sheng 1a), Ching-Che Chung 2,andChen-YiLee 1 1 Department of Electronics Engineering & Institute of

More information

ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS

ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS ROBERT BOGDAN STASZEWSKI Texas Instruments PORAS T. BALSARA University of Texas at Dallas WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control Sooho Cha, Chunseok Jeong, and Changsik Yoo A phase-locked loop (PLL) is described which is operable from 0.4 GHz to 1.2

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications

A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications LETTER IEICE Electronics Express, Vol.10, No.10, 1 7 A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications June-Hee Lee 1, 2, Sang-Hoon Kim

More information

15.3 A 9.9G-10.8Gb/s Rate-Adaptive Clock and Data-Recovery with No External Reference Clock for WDM Optical Fiber Transmission.

15.3 A 9.9G-10.8Gb/s Rate-Adaptive Clock and Data-Recovery with No External Reference Clock for WDM Optical Fiber Transmission. 15.3 A 9.9G-10.8Gb/s Rate-Adaptive Clock and Data-Recovery with No External Reference Clock for WDM Optical Fiber Transmission. H. Noguchi, T. Tateyama, M. Okamoto, H. Uchida, M. Kimura, K. Takahashi Fiber

More information

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 4, Ver. I (Jul.-Aug. 2018), PP 26-30 www.iosrjournals.org VCO Based Injection-Locked

More information

IN RECENT years, the phase-locked loop (PLL) has been a

IN RECENT years, the phase-locked loop (PLL) has been a 430 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 6, JUNE 2010 A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm Chia-Tsun Wu, Wen-Chung Shen,

More information

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976

More information

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI LETTER IEICE Electronics Express, Vol.1, No.15, 1 11 A fully synthesizable injection-locked PLL with feedback current output DAC in 8 nm FDSOI Dongsheng Yang a), Wei Deng, Aravind Tharayil Narayanan, Rui

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Design of Voltage Controlled Oscillator using Cadence tool Sudhir D. Surwase

More information

A Reset-Free Anti-Harmonic Programmable MDLL- Based Frequency Multiplier

A Reset-Free Anti-Harmonic Programmable MDLL- Based Frequency Multiplier JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, OL.13, NO.5, OCTOBER, 2013 http://dx.doi.org/10.5573/jsts.2013.13.5.459 A Reset-Free Anti-Harmonic Programmable MDLL- Based Frequency Multiplier Geontae

More information

EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces. Announcements

EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces. Announcements EE290C - Spring 04 Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture 11 Components Phase-Locked Loops Viterbi Decoder Borivoje Nikolic March 2, 04. Announcements Homework #2 due

More information

A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology

A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology Somnath Kundu and Chris H. Kim University of Minnesota Dept. of ECE 1 Presentation Outline Analog vs. digital Low DropOut

More information

All-Digital PLL Frequency and Phase Noise Degradation Measurements Using Simple On-Chip Monitoring Circuits

All-Digital PLL Frequency and Phase Noise Degradation Measurements Using Simple On-Chip Monitoring Circuits All-Digital PLL Frequency and Noise Degradation Measurements Using Simple On-Chip Monitoring Circuits Gyusung Park, Minsu Kim and Chris H. Kim Department of Electrical and Computer Engineering University

More information

Lecture 23: PLLs. Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class

Lecture 23: PLLs. Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 23: PLLs Announcements Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class Open book open notes Project

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 20: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Exam 2 is on Friday Nov. 9 One double-sided 8.5x11

More information

High Performance Digital Fractional-N Frequency Synthesizers

High Performance Digital Fractional-N Frequency Synthesizers High Performance Digital Fractional-N Frequency Synthesizers Michael Perrott October 16, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Why Are Digital Phase-Locked Loops Interesting? PLLs

More information

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology Ching-Che Chung 1a), Duo Sheng 2, and Sung-En Shen 1 1 Department of Computer Science & Information

More information

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS Nilesh D. Patel 1, Gunjankumar R. Modi 2, Priyesh P. Gandhi 3, Amisha P. Naik 4 1 Research Scholar, Institute of Technology, Nirma University,

More information

Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops

Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops ISSC 2011, Trinity College Dublin, June 23 24 Fast Digital Calibration of Static Phase Offset in Charge-Pump Phase-Locked Loops Diarmuid Collins, Aidan Keady, Grzegorz Szczepkowski & Ronan Farrell Institute

More information

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014 Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters Jefferson A. Hora, Vincent Alan Heramiz,

More information

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 1 PG student, Department of ECE, Vivekanandha College of Engineering for Women. 2 Assistant

More information

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos LETTER IEICE Electronics Express, Vol.10, No.6, 1 6 Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos Ching-Che Chung 1a), Duo Sheng 2, and Wei-Da Ho 1 1 Department

More information

A Fast-Locking All-Digital Phase-Locked Loop with a Novel Counter-Based Mode Switching Controller

A Fast-Locking All-Digital Phase-Locked Loop with a Novel Counter-Based Mode Switching Controller A Fast-Locking All-Digital Phase-Locked Loop with a Novel Counter-Based Mode Switching Controller Guangming Yu, Yu Wang, Huazhong Yang and Hui Wang Department of Electrical Engineering Tsinghua National

More information

ISSN:

ISSN: 507 CMOS Digital-Phase-Locked-Loop for 1 Gbit/s Clock Recovery Circuit KULDEEP THINGBAIJAM 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenaskhi Institute of Technology, Yelahanka, Bangalore-560064,

More information

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators

Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 141 Single-Ended to Differential Converter for Multiple-Stage Single-Ended Ring Oscillators Yuping Toh, Member, IEEE, and John A. McNeill,

More information

Supply-Adaptive Performance Monitoring/Control Employing ILRO Frequency Tuning for Highly Efficient Multicore Processors

Supply-Adaptive Performance Monitoring/Control Employing ILRO Frequency Tuning for Highly Efficient Multicore Processors EE 241 Project Final Report 2013 1 Supply-Adaptive Performance Monitoring/Control Employing ILRO Frequency Tuning for Highly Efficient Multicore Processors Jaeduk Han, Student Member, IEEE, Angie Wang,

More information

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002 637 A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability Liming Xiu, Member, IEEE,

More information

Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator

Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator Journal of the Korean Physical Society, Vol. 37, No. 6, December 2000, pp. 803 807 Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator Yeon Kug Moon Korea Advanced

More information

ALL-DIGITAL phase-locked loop (ADPLL) frequency

ALL-DIGITAL phase-locked loop (ADPLL) frequency 578 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 3, MARCH 2010 A 7.1 mw, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology Song-Yu

More information

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase

More information

Low Power Phase Locked Loop Design with Minimum Jitter

Low Power Phase Locked Loop Design with Minimum Jitter Low Power Phase Locked Loop Design with Minimum Jitter Krishna B. Makwana, Prof. Naresh Patel PG Student (VLSI Technology), Dept. of ECE, Vishwakarma Engineering College, Chandkheda, Gujarat, India Assistant

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design VI. Phase-Locked Loops VI-1 Outline Introduction Basic Feedback Loop Theory Circuit Implementation VI-2 What is a PLL? A PLL is a negative feedback system where an oscillatorgenerated signal is phase and

More information

Digitally Assisted Radio Evolution DARE

Digitally Assisted Radio Evolution DARE Digitally Assisted Radio Evolution DARE Pietro Andreani Department of Electrical and Information Technology Lund University, Sweden The DARE Concept Focus on 4G radio receiver and frequency generation

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

Dual-Rate Fibre Channel Repeaters

Dual-Rate Fibre Channel Repeaters 9-292; Rev ; 7/04 Dual-Rate Fibre Channel Repeaters General Description The are dual-rate (.0625Gbps and 2.25Gbps) fibre channel repeaters. They are optimized for use in fibre channel arbitrated loop applications

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

A Cyclic Vernier TDC for ADPLLs Synthesized From a Standard Cell Library Youngmin Park, Student Member, IEEE, and David D. Wentzloff, Member, IEEE

A Cyclic Vernier TDC for ADPLLs Synthesized From a Standard Cell Library Youngmin Park, Student Member, IEEE, and David D. Wentzloff, Member, IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 58, NO. 7, JULY 2011 1511 A Cyclic Vernier TDC for ADPLLs Synthesized From a Standard Cell Library Youngmin Park, Student Member, IEEE,

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

All-Digital RF Phase-Locked Loops Exploiting Phase Prediction

All-Digital RF Phase-Locked Loops Exploiting Phase Prediction [DOI: 10.2197/ipsjtsldm.7.2] Invited Paper All-Digital RF Phase-Locked Loops Exploiting Phase Prediction Jingcheng Zhuang 1,a) Robert Bogdan Staszewski 2,b) Received: July 30, 2013, Released: February

More information

A 0.449psec RMS Jitter All Digital Phase-Locked Loop

A 0.449psec RMS Jitter All Digital Phase-Locked Loop A 0.449psec RMS Jitter All Digital Phase-Locked Loop By Ayman Nabil Mohamed Basma Mourad Mohamed Ehab Mahmoud Helmy Hany Mohamed Amin Ingy Abdelhamid Mohamed Under the Supervision of Dr. Hassan Mostafa

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Shaik. Yezazul Nishath School Of Electronics Engineering (SENSE) VIT University Chennai, India Abstract This paper outlines

More information

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider Hamid Rategh, Hirad Samavati, Thomas Lee OUTLINE motivation introduction synthesizer architecture synthesizer building

More information

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda 1 Department of Electronics and Communication Engineering, School of Electrical

More information

Design and Implementation of Digital Phase Lock Loop: A Review

Design and Implementation of Digital Phase Lock Loop: A Review Design and Implementation of Digital Phase Lock Loop: A Review Usha Kumari, Rekha Yadav Department of Electronics and Communication Deenbandhu Chhotu Ram University of Science & Technology Murthal, Sonipat,

More information

INF4420 Phase locked loops

INF4420 Phase locked loops INF4420 Phase locked loops Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline "Linear" PLLs Linear analysis (phase domain) Charge pump PLLs Delay locked loops (DLLs) Applications Introduction

More information

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 http://dx.doi.org/10.5573/jsts.2014.14.3.331 A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

More information

An All-digital Delay-locked Loop using a Lock-in Pre-search Algorithm for High-speed DRAMs

An All-digital Delay-locked Loop using a Lock-in Pre-search Algorithm for High-speed DRAMs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.6, DECEMBER, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.6.825 ISSN(Online) 2233-4866 An All-digital Delay-locked Loop using

More information

WITH the explosive growth of the wireless communications

WITH the explosive growth of the wireless communications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 3, MARCH 2005 159 Phase-Domain All-Digital Phase-Locked Loop Robert Bogdan Staszewski and Poras T. Balsara Abstract A fully digital

More information

A Clock and Data Recovery Circuit With Programmable Multi-Level Phase Detector Characteristics and a Built-in Jitter Monitor

A Clock and Data Recovery Circuit With Programmable Multi-Level Phase Detector Characteristics and a Built-in Jitter Monitor 1472 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 62, NO. 6, JUNE 2015 A Clock and Data Recovery Circuit With Programmable Multi-Level Phase Detector Characteristics and a Built-in

More information

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter 1 T.M.

More information

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

Low Power CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4

Low Power CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4 Low CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4 # Department of Electronics & Communication Engineering Guru Jambheshwar University of Science

More information

ICS PLL BUILDING BLOCK

ICS PLL BUILDING BLOCK Description The ICS673-01 is a low cost, high performance Phase Locked Loop (PLL) designed for clock synthesis and synchronization. Included on the chip are the phase detector, charge pump, Voltage Controlled

More information

A Low Power Digitally Controlled Oscillator Using 0.18um Technology

A Low Power Digitally Controlled Oscillator Using 0.18um Technology A Low Power Digitally Controlled Oscillator Using 0.18um Technology R. C. Gurjar 1, Rupali Jarwal 2, Ulka Khire 3 1, 2,3 Microelectronics and VLSI Design, Electronics & Instrumentation Engineering department,

More information

Design and Analysis of a Portable High-Speed Clock Generator

Design and Analysis of a Portable High-Speed Clock Generator IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001 367 Design and Analysis of a Portable High-Speed Clock Generator Terng-Yin Hsu, Chung-Cheng

More information

Optimization of Digitally Controlled Oscillator with Low Power

Optimization of Digitally Controlled Oscillator with Low Power IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 52-57 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Optimization of Digitally Controlled

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

CHAPTER 2 LITERATURE SURVEY

CHAPTER 2 LITERATURE SURVEY 10 CHAPTER 2 LITERATURE SURVEY 2.1 INTRODUCTION Semiconductor technology provides a powerful means for implementation of analog, digital and mixed signal circuits for high speed systems. The high speed

More information

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.3, JUNE, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.3.287 ISSN(Online) 2233-4866 A 10-Gb/s Multiphase Clock and Data Recovery

More information

An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop

An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop Abstract: With increased levels of integration in modern system-on-chips, the coupling of supply noise in a phase locked

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

Phase-Locked Loop Engineering Handbook for Integrated Circuits

Phase-Locked Loop Engineering Handbook for Integrated Circuits Phase-Locked Loop Engineering Handbook for Integrated Circuits Stanley Goldman ARTECH H O U S E BOSTON LONDON artechhouse.com Preface Acknowledgments xiii xxi CHAPTER 1 Cetting Started with PLLs 1 1.1

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

High-speed Serial Interface

High-speed Serial Interface High-speed Serial Interface Lect. 9 PLL (Introduction) 1 Block diagram Where are we today? Serializer Tx Driver Channel Rx Equalizer Sampler Deserializer PLL Clock Recovery Tx Rx 2 Clock Clock: Timing

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

AN ABSTRACT OF THE DISSERTATION OF. Volodymyr Kratyuk for the degree of Doctor of Philosophy in

AN ABSTRACT OF THE DISSERTATION OF. Volodymyr Kratyuk for the degree of Doctor of Philosophy in AN ABSTRACT OF THE DISSERTATION OF Volodymyr Kratyuk for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on December 12, 2006. Title: Digital Phase-Locked Loops for

More information

All Digital Phase-Locked Loops, its Advantages and Performance Limitations

All Digital Phase-Locked Loops, its Advantages and Performance Limitations All Digital Phase-Locked Loops, its Advantages and Perormance Limitations Win Chaivipas, Philips Oh, and Akira Matsuawa Matsuawa Laboratory, Department o Physical Electronics, Tokyo Institute o Technology

More information

High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS

High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2011 High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS Prashanth Muppala Wright State

More information