ISSN (PRINT): ,(ONLINE): ,VOLUME-3,ISSUE-4,

Size: px
Start display at page:

Download "ISSN (PRINT): ,(ONLINE): ,VOLUME-3,ISSUE-4,"

Transcription

1 IIR FILTER IN ALL DIGITAL PHASE LOCKED LOOP Anupama.Patil 1, P.H Tandel 2 Pacific Academy of Higher Education and Research Udaipur,Rajasthan anubanad@gmail.com 1,phtandel@yahoo.com 2 Abstract An All Digital Phase locked loop (ADPLL) nowadays is gaining importance in communication systems.it is one of the key building blocks of modern electronic designs. This paper presentsa an ADPLL structure that utilizes a hilbert transformer as phase detector an IIR filter as its loop filter, and a NCO as DCO. The advantage of IIR filter has been highlighted in this paper as concerned to Phase Locked Loop otherwise FIR is normally chosen. This All-digital PLL (ADPLL) is found to achieve the desired performance and functionality with advantages that it does not include R and C components.it has been designed to meet the needs of Indian Navy applications of tracking the moving target. Its ease of implementation with required stability using digital CMOS process. This paper presents detailed descriptions of each block of this ADPLL. Index Terms: IIR filter Hilbert PD, Navy, ADPLL I. INTRODUCTION Order to have increased performance, speed, reliability, and and also reduction in size and cost of integrated circuits has resulted in research of the implementation of control and communication systems in the digital domain.a digital version of the phase-locked loop solves the problems associated with its analogue counterpart like sensitivity to DC drifts and component saturations, difficulties that one faces in building higher order loops.no necessity occurs for initial calibration and periodic adjustments. In real time processing on the signal samples, the DPLLs are more flexible and versatile. The earliest efforts on DPLLs concentrated on partially replacing the analogue PLL (APLL) components with digital ones. The first all DPLL was reported by Drogin [1] in Some other authors [2 4] have suggested many kinds of all digital phase-locked loops and have discussed various aspects of implementing them The first ADPLL consisting of digital components was reported in 1980 [8]. control and communication systems. However, due to the advances in integrated circuit (IC) fabrication and the growth in improving the overall system Digital PLL The important drawbacks of analog PLL are low operating speed, larger chip area, worse jitter performance and high power consumption [9][11]. These are overcome by Digital PLL where the analog phase detector is replaced by its digital counterpart. Digital PLL allows faster lock time to be achieved and generates a clock signal for high performance microprocessor [10]. All Digital PLL is a modified form of Digital PLL. It consists of only Digital blocks. All Digital PLL provides high performance, better Noise immunity and flexibility of operation, A Basic Architecture of an All-Digital PLL The architecture of an ADPLL is same as an analog PLL. The purpose of a PLL is same whether its digital or analog. A time to digital converter is introduced in place of the phase frequency detector and charge pump. The ADPLL is shown in Figure

2 The block diagram of Hilbert Phase detector used in this research paper is shown in figure 2.1. Figure 1.1 Basic architecture of ADPLL B Components of All Digital Phase Locked Loop ALL digital Phase detectors can be of the following type i. EXOR gate phase detector ii. JK Flip-flop phase detector iii. 3Digital phase frequency detector iv. NRPD Nyquist rate phase detector v. Hilbert transform phase detector Mostly used Loop Filters are of i. UP/Down counter loop filter ii. K counter loop filter iii. Digital Filters can be derived from transfer functions The following are types of digitally controlled oscillators i. Divide by N counters ii. Increment decrement type iii. Accumulator type dco The PD was the only component that was digitized long back. It s used in the Digital PLL. Similar idea can be extended to the ADPLL. The three common implementations of the digital PD are: 1. Exclusive-or (EXOR) Gate 2. Edge triggered JK Flip-Flop 3. Digital Phase-Frequency Detector FFigure 2.1 Block diagram of Hilbert transformer phase detector[12] 2.2 Digital Loop filter A digital filter is a basic building block in any digital system and also All Digital Phase Locked Loop. Benefit of replacing the bulky passive loop filter by a digital filter is its cost effectiveness and flexibility. The frequency response of the digital filter depends on the value of its coefficients [ 12]. The values of the coefficients are computed based on the desired frequency response. These values are typically floating point numbers and they are represented with a fairly high degree of precision[11]. While implementing a digital filter, the coefficients need to be represented with the smallest number of bits retaining an acceptable resolution for the numbers. The reason behind this is, representing a number with excess bits increases the size of the registers, buses, adders and multipliers. The bigger sizes of implemented circuits result into a chip with a larger size, which results in increased power consumption. Therefore, the bit precisions are important in the performance of desired digital filter. II Designed ADPLL for Navy application In our design we have utilized Hilbert transform phase detector,iir low pass filte rof second order and Numerically controlled oscillator(nco) 2.1 Hilbert Transform Phase detector: The Hilbert Transform based Phase Detector (HTPD).It uses quadrature signal processing method, estimates phase difference between input and output signals without using LP filter. A digital filter is categorized into two classes known as 1. A finite impulse response (FIR) filter An infinite impulse response (IIR) filter As the terminology suggests, these classifications refer to the filter s impulse response. By varying the weight of the coefficients and the number of filter taps. Virtually any frequency response characteristic can be realized with an FIR filter. It is seen that 24

3 FIR filters can achieve performance levels which are not possible with analog filter techniques (e.g, perfect linear phase response). Disadvantage is that high performance FIR filters require a large number of multiply-accumulates. IIR filters go on the lines of traditional analog filters and make use of feedback. The digital loop filter (LF) required as a block of Digital Phase Locked Loop is nothing but a PI- controller that operates in discrete time. The LF controls the Normalized Tuning Word (NTW) depending on the phase error ( Ф) is the phase difference between the reference phase and the output phase. A Properties of Infinite Impulse Response Filters Infinite Impulse Response Filters Uses Feedback (Recursion) Impulse Response has an Infinite Duration Potentially Unstable Non-Linear Phase More Efficient than FIR Filters No Computational Advantage when Decimating Output Usually Designed to Duplicate Analog Filter Response Usually Implemented as Cascaded Second-Order Sections (Biquads) These digital filters closely resemble the analog filters in characteristics and properties. IIR filters have a feedback and a feed forward path. Both the feedback and the feed forward path contribute to the output sample calculation. The feed forward part of the IIR's is like simple FIR filter. The feedback and feed forward paths should counterpoise each other. To generate an output sample the previous input is added to the new input. The previous output is then subtracted from this sum of inputs. Then this whole calculated sum is multiplied by the coefficients. An IIR filter of order N requires 2N+1 coefficients for its transfer function. From hardware perspective it requires 2N+1 multipliers and 2N adders. The coefficients are chosen based on the frequency specifications of the required filter. Some of the basic structures/realizations of the digital IIR filters are as discussed below: A Direct Form IIR Digital Filter In direct form IIR filters the transfer function of the filter has the same coefficients as the multipliers. The general form of the transfer function of a nth-order recursive filter (1) Example of the transfer function for the third order IIR filter is given as: H(z )= B(z) / A( z) =b 0+b 1.z 1 +b 2.z 2 +b 3.z 3 /(1+a 1 z 1 +a 2 z 2 +a 3 z 3 ) (2) Transfer function given in equation (1) can be implemented as in figure 2.2. Figure 2.2 IIR filter direct realisation B Transpose Form IIR Digital Filter Figure 2.3 IIR filter transpose realization In transpose realization delay elements are clubbed together to reduce the number of computations and hence increase the speed of operation. In the ADPLL we have designed in order to design third order ADPLL we make use of 25

4 second order IIR filter whose characteristics are shown in figure.the filter and other blocks are implemented in matlab and simulations are also presented. C Advantages of IIR filter 1. IIR is infinite and used for applications where linear characteristics are not of concern. 2. IIR is better for lower-order tapping, whereas the FIR filter is used for higher-order tapping. 3. IIR filters are recursive and used as an alternate, whereas FIR filters have become too long and cause problems in various applications. 2.3 Digitally controlled Oscillator The DCO is the heart of the ADPLL, as it converts the tuning word into the output frequency.it is also known as numerically controlled oscillator(nco). NCOs can be used to generate a wide variety of periodic output waveforms, but for the purposes of this paper a cosine output function is assumed. y(n)=cos(ϕ(n)) (3) For a fixed output frequency of f0 cycles per sample, and a fixed output phase of θ0 radian, ϕ (n) = 2πf0(n) + θ0 giving y(n)=cos(2πf0(n)+θ0) (4) If the frequency and phase are changing with n, the instantaneous frequency fi(n) provides the increment for ϕ (n) which must be accumulated over time, while the instantaneous phase offset ϕ i(n) provides an offset value to be applied only to the nth sample. ϕ i(n) = ϕ i(n-1) + 2πfi(n) ϕ (n) = ϕ 1(n) + θi (n) (5) An NCO consists of two fundamental blocks: a digital phase accumulator to perform the calculation of (5), and a phase-to-amplitude converter which converts the values of ϕ (n) to create the output sample values given by (1). The NCO structure is illustrated in Figure 2.4 Figure 2.4 Structure of Numerically controlled oscillator 3.Implementation of ADPLL using IIR Filter in Matlab IIR Filter is designed with cutoff of around 1.1 Mhz.Centre frequency of ADPLL is 250 Mhz.The matlab simulink model of filter and complete ADPLL realization figures are as shown in figures below. Figure 3.1 ADPLL realization using matlab simulink The Low pass filter used has the transfer function z (6) z z The bode plot is as in f igure 3.2 Figure 3.2 Frequency response of IIR filter utilized in the ADPLL. It has been found to track the signal after connecting with Hilbert transform Phase detector and the NCO as shown in the matlab simulink model perfectly. The phase locking response as found by the designed ADPLL is as given in figure

5 commanders battle space awareness. Modern battle has transformed into network centric with unified battlefields spread across multi theatres of operation. With the advent of microelectronics, radio frequency (RF) management and unprecedented growth in processing power and computation, radar has transformed into a complex, advanced and intelligent sensor. Indian military, aspiring to be a global player, has been integrating emerging technologies to fine tune its strategies and tactics to integrate with global Armed Forces[.3] Figure 3.4 ADPLL response phase has been locked with very long locking range. So we have achieved the locking successfully with practically infinite locking range using the seconder order IIR filter and thus realized the third order ADPLL 4. Application of the designed ADPLL. I propose to used the ADPLL with centr frequency of 250 Mhz and Low pass filter cut off of approximately Mhz for the movin target tracking in Indian navy where UHF range is usually used for the tracking. Naval communication systems vary in complexity depending upon their role, compatibility, and flexibility. Due to scarcity of space on board a ship, the communication equipment is spread across the ship s compartments; however, it is ensured that the sets are capable of operating separately as well as concurrently. Complex interconnections provide the ability of selectively switching different configurations. Radiofrequency bands commonly used for naval communication include, very high frequency and above, high frequencies, medium frequency, low frequency, very low frequency, and extremely low frequency. Very High Frequency and above (30 MHZ 300 MHZ) are only used for line of sight communication as ground range is very less. Radar is an electromagnetic (EM) sensor system used for detection,location tracking, imaging and classification of targets such as man-made objects like aircraft, ships, ground moving vehicles and natural environment including ground features and moving men. It is an important sensor for the 4. Conclusion It has been found that inspite of feed back paths IIR filters still have advantage which has been verified uding the ADPLL design for 250 Mhz.It has been seen to track faster than its counterparts with EXOR or JK flip,flop Phase detectors.also further attempts and sincere efforts are being made to employ this in Indian Navy for tracking the accelerating moving targets.the main purpose of using the third order PLL is to track both horizontally and vertically the accelerating target which is quite a normal occurrence and difficult practically in Navy. 5.References [I] DROGININ, F.M.: Steering on course to safer air travel. Electronics.November pp [2] LINDSEY. W.C., and CHIE. CM.. A survey of digitalphase-locked Ioops.Proc.IEEE, I98I,69,(41.pp.4l043I [3] ISSN Bulletin of Defense Research and Development Organisation vol 21 No 2 April 2013 [4] GARODNICK. i. GRECO. 3.. and SCHILLING. DL.: Response of an all digital phase locked loop, IEEETrans , COM-Z2,pp [5] GARDNER, F.M. Phase lock techniques (John Wiley & Sons, NewYork, 1966) [6] RABINER. LR., and GOLD. B :Theory and application of digital signal processing (Bell Telephone Labs., New York. 1975). Chap. 5 [7] C. C. Chung and C. Y. Lee, An all-digital phase locked loop for high-speed clock generation, IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp ,

6 [8] D. Jovcic, Phase locked loop system for FACTS, IEEE Trans. Power Syst., vol. 18, no. 3, pp , Aug [9] Guan-chyunHsieh, Senior member IEEE and James C. Hungellow IEEE Phase Locked Loop techniques a survey. [10] Anitha Babu, BhavyaDaya, Banu Nagasundaram, Niveditha Veluchamy University of Florida, Gainesville, FL, 32608, US All digital phase locked loop design and implementation. [11] Varsha prasad, Dr. chirag sharma, Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, A Review of phase locked Loop International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 6, 2012 [12] Dr Roland E Best 'Phase-Locked Loops Design, Simulation nd Applications' Sixth Edition Mc Graw Hill Publication. 28

A Low Power VLSI Design of an All Digital Phase Locked Loop

A Low Power VLSI Design of an All Digital Phase Locked Loop A Low Power VLSI Design of an All Digital Phase Locked Loop Nakkina Vydehi 1, A. S. Srinivasa Rao 2 1 M. Tech, VLSI Design, Department of ECE, 2 M.Tech, Ph.D, Professor, Department of ECE, 1,2 Aditya Institute

More information

A Survey on ADPLL Components and their effects upon Power, Frequency and Resolution

A Survey on ADPLL Components and their effects upon Power, Frequency and Resolution A Survey on ADPLL Components and their effects upon Power, Frequency and Resolution R. Dinesh, Research Scholar, Sathyabama University, Solinganallur, Chennai, Tamil Nadu, India. Dr. Ramalatha Marimuthu,

More information

VLSI Implementation of Digital Down Converter (DDC)

VLSI Implementation of Digital Down Converter (DDC) Volume-7, Issue-1, January-February 2017 International Journal of Engineering and Management Research Page Number: 218-222 VLSI Implementation of Digital Down Converter (DDC) Shaik Afrojanasima 1, K Vijaya

More information

An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop

An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop An All-Digital Approach to Supply Noise Cancellation in Digital Phase-Locked Loop Abstract: With increased levels of integration in modern system-on-chips, the coupling of supply noise in a phase locked

More information

Analysis of ADPLL Design parameters using Tanner Tool

Analysis of ADPLL Design parameters using Tanner Tool Analysis of ADPLL Design parameters using Tanner Tool *Anbarasu, **Durai Samy *M.E.Applied Electronics, Sri Venkateswara college of Engineering, Chennai. **Assistant Professor, Sri Venkateswara college

More information

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda 1 Department of Electronics and Communication Engineering, School of Electrical

More information

T.J.Moir AUT University Auckland. The Ph ase Lock ed Loop.

T.J.Moir AUT University Auckland. The Ph ase Lock ed Loop. T.J.Moir AUT University Auckland The Ph ase Lock ed Loop. 1.Introduction The Phase-Locked Loop (PLL) is one of the most commonly used integrated circuits (ICs) in use in modern communications systems.

More information

Phase-Locked Loops. Roland E. Best. Me Graw Hill. Sixth Edition. Design, Simulation, and Applications

Phase-Locked Loops. Roland E. Best. Me Graw Hill. Sixth Edition. Design, Simulation, and Applications Phase-Locked Loops Design, Simulation, and Applications Roland E. Best Sixth Edition Me Graw Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Phase Locked Loop Design for Fast Phase and Frequency Acquisition

Phase Locked Loop Design for Fast Phase and Frequency Acquisition Phase Locked Loop Design for Fast Phase and Frequency Acquisition S.Anjaneyulu 1,J.Sreepavani 2,K.Pramidapadma 3,N.Varalakshmi 4,S.Triven 5 Lecturer,Dept.of ECE,SKU College of Engg. & Tech.,Ananthapuramu

More information

Software Design of Digital Receiver using FPGA

Software Design of Digital Receiver using FPGA Software Design of Digital Receiver using FPGA G.C.Kudale 1, Dr.B.G.Patil 2, K. Aurobindo 3 1PG Student, Department of Electronics Engineering, Walchand College of Engineering, Sangli, Maharashtra, 2Associate

More information

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC.

PHASELOCK TECHNIQUES INTERSCIENCE. Third Edition. FLOYD M. GARDNER Consulting Engineer Palo Alto, California A JOHN WILEY & SONS, INC. PHASELOCK TECHNIQUES Third Edition FLOYD M. GARDNER Consulting Engineer Palo Alto, California INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE NOTATION xvii xix 1 INTRODUCTION 1 1.1

More information

Performance Analysis of FIR Digital Filter Design Technique and Implementation

Performance Analysis of FIR Digital Filter Design Technique and Implementation Performance Analysis of FIR Digital Filter Design Technique and Implementation. ohd. Sayeeduddin Habeeb and Zeeshan Ahmad Department of Electrical Engineering, King Khalid University, Abha, Kingdom of

More information

MULTIRATE IIR LINEAR DIGITAL FILTER DESIGN FOR POWER SYSTEM SUBSTATION

MULTIRATE IIR LINEAR DIGITAL FILTER DESIGN FOR POWER SYSTEM SUBSTATION MULTIRATE IIR LINEAR DIGITAL FILTER DESIGN FOR POWER SYSTEM SUBSTATION Riyaz Khan 1, Mohammed Zakir Hussain 2 1 Department of Electronics and Communication Engineering, AHTCE, Hyderabad (India) 2 Department

More information

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase

More information

A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication.

A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication. A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication. PG student, M.E. (VLSI and Embedded system) G.H.Raisoni College of Engineering and Management, A nagar Abstract: The

More information

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop Shaik. Yezazul Nishath School Of Electronics Engineering (SENSE) VIT University Chennai, India Abstract This paper outlines

More information

WITH the explosive growth of the wireless communications

WITH the explosive growth of the wireless communications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 3, MARCH 2005 159 Phase-Domain All-Digital Phase-Locked Loop Robert Bogdan Staszewski and Poras T. Balsara Abstract A fully digital

More information

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 3 Review of Signals and Systems: Part 2 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002 637 A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability Liming Xiu, Member, IEEE,

More information

Implementation of Decimation Filter for Hearing Aid Application

Implementation of Decimation Filter for Hearing Aid Application Implementation of Decimation Filter for Hearing Aid Application Prof. Suraj R. Gaikwad, Er. Shruti S. Kshirsagar and Dr. Sagar R. Gaikwad Electronics Engineering Department, D.M.I.E.T.R. Wardha email:

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

International Journal of Advance Engineering and Research Development (IJAERD) Volume 2,Issue 5, May -2015, e-issn: , print-issn:

International Journal of Advance Engineering and Research Development (IJAERD) Volume 2,Issue 5, May -2015, e-issn: , print-issn: Scientific Journal of Impact Factor(SJIF): 3.134 I. International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 DESIGN &

More information

ISSN:

ISSN: 507 CMOS Digital-Phase-Locked-Loop for 1 Gbit/s Clock Recovery Circuit KULDEEP THINGBAIJAM 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenaskhi Institute of Technology, Yelahanka, Bangalore-560064,

More information

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Gowridevi.B 1, Swamynathan.S.M 2, Gangadevi.B 3 1,2 Department of ECE, Kathir College of Engineering 3 Department of ECE,

More information

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 1 PG student, Department of ECE, Vivekanandha College of Engineering for Women. 2 Assistant

More information

Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet

Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet Pedro Moreira University College London London, United Kingdom pmoreira@ee.ucl.ac.uk Pablo Alvarez pablo.alvarez@cern.ch

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

Phase-Locked Loop Engineering Handbook for Integrated Circuits

Phase-Locked Loop Engineering Handbook for Integrated Circuits Phase-Locked Loop Engineering Handbook for Integrated Circuits Stanley Goldman ARTECH H O U S E BOSTON LONDON artechhouse.com Preface Acknowledgments xiii xxi CHAPTER 1 Cetting Started with PLLs 1 1.1

More information

PHASE-LOCKED loops (PLLs) are widely used in many

PHASE-LOCKED loops (PLLs) are widely used in many IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 3, MARCH 2011 149 Built-in Self-Calibration Circuit for Monotonic Digitally Controlled Oscillator Design in 65-nm CMOS Technology

More information

LOW DATA RATE BPSK DEMODULATION IN PRESENCE OF DOPPLER

LOW DATA RATE BPSK DEMODULATION IN PRESENCE OF DOPPLER LOW DATA RATE BPSK DEMODULATION IN PRESENCE OF DOPPLER Aghanash Karthik 1 Ashwin.R 2, Dr.Sambasiva Rao.V 3, Prof. V. Mahadevan 4 1,2,3 Dept. of ECE, PESIT, Bangalore, 4 Dept. of TCE, PESIT, Bangalore Abstract

More information

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM International Journal of Advanced Research Foundation Website: www.ijarf.com, Volume 2, Issue 7, July 2015) Design and Implementation of Phase Locked Loop using Starved Voltage Controlled Oscillator in

More information

Design of a Frequency Synthesizer for WiMAX Applications

Design of a Frequency Synthesizer for WiMAX Applications Design of a Frequency Synthesizer for WiMAX Applications Samarth S. Pai Department of Telecommunication R. V. College of Engineering Bangalore, India Abstract Implementation of frequency synthesizers based

More information

Channelization and Frequency Tuning using FPGA for UMTS Baseband Application

Channelization and Frequency Tuning using FPGA for UMTS Baseband Application Channelization and Frequency Tuning using FPGA for UMTS Baseband Application Prof. Mahesh M.Gadag Communication Engineering, S. D. M. College of Engineering & Technology, Dharwad, Karnataka, India Mr.

More information

arxiv: v1 [physics.acc-ph] 23 Mar 2018

arxiv: v1 [physics.acc-ph] 23 Mar 2018 LLRF SYSTEM FOR THE FERMILAB MUON G-2 AND MU2E PROJECTS P. Varghese, B. Chase Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA arxiv:1803.08968v1 [physics.acc-ph] 23 Mar 2018 Abstract

More information

Implementation of Low Power All Digital Phase Locked Loop

Implementation of Low Power All Digital Phase Locked Loop Implementation of Low Power All Digital Phase Locked Loop Rajani Kanta Sutar 1, M.Jasmin 2 and S. Beulah Hemalatha 3 PG Scholar, Bharath University, Tamilnadu, India 1 Assistant Professor, Department of

More information

LabMaster Series TECHNOLOGIES. Unistep LabMaster Series PLL LOOP MODULE USER MANUAL. Copyright Unistep Technologies

LabMaster Series TECHNOLOGIES. Unistep LabMaster Series PLL LOOP MODULE USER MANUAL. Copyright Unistep Technologies TECHNOLOGIES LabMaster Series Unistep LabMaster Series PLL PHASE-LOCK LOOP MODULE USER MANUAL Copyright 2010 - Unistep Technologies User Manual PLL Phase-Lock Loop Module 2 PLL ~~~ PHASE--LLOCK LLOOP MODULLE

More information

Performance Analysis of FIR Filter Design Using Reconfigurable Mac Unit

Performance Analysis of FIR Filter Design Using Reconfigurable Mac Unit Volume 4 Issue 4 December 2016 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org Performance Analysis of FIR Filter Design Using Reconfigurable

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos LETTER IEICE Electronics Express, Vol.10, No.6, 1 6 Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos Ching-Che Chung 1a), Duo Sheng 2, and Wei-Da Ho 1 1 Department

More information

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER 3 A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER Milan STORK University of West Bohemia UWB, P.O. Box 314, 30614 Plzen, Czech Republic stork@kae.zcu.cz Keywords: Coincidence, Frequency mixer,

More information

PLL FM Demodulator Performance Under Gaussian Modulation

PLL FM Demodulator Performance Under Gaussian Modulation PLL FM Demodulator Performance Under Gaussian Modulation Pavel Hasan * Lehrstuhl für Nachrichtentechnik, Universität Erlangen-Nürnberg Cauerstr. 7, D-91058 Erlangen, Germany E-mail: hasan@nt.e-technik.uni-erlangen.de

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International ournal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Implementation of FPGA based Design for Digital Signal Processing

Implementation of FPGA based Design for Digital Signal Processing e-issn 2455 1392 Volume 2 Issue 8, August 2016 pp. 150 156 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Implementation of FPGA based Design for Digital Signal Processing Neeraj Soni 1,

More information

Low Power CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4

Low Power CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4 Low CMOS Digitally Controlled Oscillator Manoj Kumar #1, Sandeep K. Arya #2, Sujata Pandey* 3 and Timsi #4 # Department of Electronics & Communication Engineering Guru Jambheshwar University of Science

More information

VLSI Broadband Communication Circuits

VLSI Broadband Communication Circuits Miscellaneous topics Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 16 Nov. 2007 Outline Optimal equalizers LMS adaptation Validity of PLL linear model

More information

Tirupur, Tamilnadu, India 1 2

Tirupur, Tamilnadu, India 1 2 986 Efficient Truncated Multiplier Design for FIR Filter S.PRIYADHARSHINI 1, L.RAJA 2 1,2 Departmentof Electronics and Communication Engineering, Angel College of Engineering and Technology, Tirupur, Tamilnadu,

More information

During most of the race, each car is on its own and free to pass the other and lap the other. This is analogous to the PLL in an unlocked state.

During most of the race, each car is on its own and free to pass the other and lap the other. This is analogous to the PLL in an unlocked state. PHASE-LOCKED LOOP A phase-locked loop or phase lock loop abbreviated as PLL is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several

More information

INF4420 Phase locked loops

INF4420 Phase locked loops INF4420 Phase locked loops Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline "Linear" PLLs Linear analysis (phase domain) Charge pump PLLs Delay locked loops (DLLs) Applications Introduction

More information

Design and Performance of a Phase Angle Control Method Based on Digital Phase-locked Loop

Design and Performance of a Phase Angle Control Method Based on Digital Phase-locked Loop 2016 2 nd International Conference on Energy, Materials and Manufacturing Engineering (EMME 2016) ISBN: 978-1-60595-441-7 Design and Performance of a Phase Angle Control Method Based on Digital Phase-locked

More information

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014 Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters Jefferson A. Hora, Vincent Alan Heramiz,

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Abhishek Mishra Department of electronics &communication, suresh gyan vihar university Mahal jagatpura, jaipur (raj.), india Abstract-There

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

RECENT advances in integrated circuit (IC) technology

RECENT advances in integrated circuit (IC) technology IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 3, MARCH 2007 247 A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy Volodymyr

More information

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976

More information

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs The gun RF control at FLASH (and PITZ) Elmar Vogel in collaboration with Waldemar Koprek and Piotr Pucyk th FLASH Seminar at December 19 2006 FLASH rf gun beam generated within the (1.3 GHz) RF gun by

More information

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS Diary R. Sulaiman e-mail: diariy@gmail.com Salahaddin University, Engineering College, Electrical Engineering Department Erbil, Iraq Key

More information

Realization of Programmable BPSK Demodulator-Bit Synchronizer using Multirate Processing

Realization of Programmable BPSK Demodulator-Bit Synchronizer using Multirate Processing International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 3, June 2014, pp. 433~440 ISSN: 2088-8708 433 Realization of Programmable BPSK Demodulator-Bit Synchronizer using Multirate

More information

Design of Cost Effective Custom Filter

Design of Cost Effective Custom Filter International Journal of Engineering Research and Development e-issn : 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 2, Issue 6 (August 2012), PP. 78-84 Design of Cost Effective Custom Filter Ankita

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information

High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS

High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2011 High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS Prashanth Muppala Wright State

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

Dedication. To Mum and Dad

Dedication. To Mum and Dad Dedication To Mum and Dad Acknowledgment Table of Contents List of Tables List of Figures A B A B 0 1 B A List of Abbreviations Abstract Chapter1 1 Introduction 1.1. Motivation Figure 1. 1 The relative

More information

Design and Analysis of a Second Order Phase Locked Loops (PLLs)

Design and Analysis of a Second Order Phase Locked Loops (PLLs) Design and Analysis of a Second Order Phase Locked Loops (PLLs) DIARY R. SULAIMAN Engineering College - Electrical Engineering Department Salahaddin University-Hawler Zanco Street IRAQ Abstract: - This

More information

Available online at ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013

Available online at  ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 64 ( 2013 ) 377 384 International Conference On DESIGN AND MANUFACTURING, IConDM 2013 A Novel Phase Frequency Detector for a

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS Diaa ElRahman Mahmoud, Abou-Bakr M. Youssef and Yasser M. Kadah Biomedical Engineering Department, Cairo University, Giza,

More information

Design of a Decimator Filter for Novel Sigma-Delta Modulator

Design of a Decimator Filter for Novel Sigma-Delta Modulator IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 2, Issue 1 (Mar. Apr. 2013), PP 31-37 e-issn: 2319 4200, p-issn No. : 2319 4197 Design of a Decimator Filter for Novel Sigma-Delta Modulator

More information

Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC

Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC Research Manuscript Title Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC K.K.Sree Janani, M.Balasubramani P.G. Scholar, VLSI Design, Assistant professor, Department of ECE,

More information

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 75 A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage Mohamed A. Ahmed, Heba A. Shawkey, Hamed A. Elsemary,

More information

NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter

NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter Krishna Kant Singh 1, Akansha Mehrotra 2 Associate Professor, Electronics & Computer Engineering, Dronacharya College of Engineering, Gurgaon,

More information

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc.

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc. A Compact, Low-Power Low- Jitter Digital PLL Amr Fahim Qualcomm, Inc. 1 Outline Introduction & Motivation Digital PLL Architectures Proposed DPLL Architecture Analysis of DPLL DPLL Adaptive Algorithm DPLL

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor

A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor A DPLL-based per Core Variable Frequency Clock Generator for an Eight-Core POWER7 Microprocessor José Tierno 1, A. Rylyakov 1, D. Friedman 1, A. Chen 2, A. Ciesla 2, T. Diemoz 2, G. English 2, D. Hui 2,

More information

Low Power Phase Locked Loop Design with Minimum Jitter

Low Power Phase Locked Loop Design with Minimum Jitter Low Power Phase Locked Loop Design with Minimum Jitter Krishna B. Makwana, Prof. Naresh Patel PG Student (VLSI Technology), Dept. of ECE, Vishwakarma Engineering College, Chandkheda, Gujarat, India Assistant

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

FPGA Based 70MHz Digital Receiver for RADAR Applications

FPGA Based 70MHz Digital Receiver for RADAR Applications Technology Volume 1, Issue 1, July-September, 2013, pp. 01-07, IASTER 2013 www.iaster.com, Online: 2347-6109, Print: 2348-0017 FPGA Based 70MHz Digital Receiver for RADAR Applications ABSTRACT Dr. M. Kamaraju

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

HARDWARE IMPLEMENTATION OF LOCK-IN AMPLIFIER FOR NOISY SIGNALS

HARDWARE IMPLEMENTATION OF LOCK-IN AMPLIFIER FOR NOISY SIGNALS Integrated Journal of Engineering Research and Technology HARDWARE IMPLEMENTATION OF LOCK-IN AMPLIFIER FOR NOISY SIGNALS Prachee P. Dhapte, Shriyash V. Gadve Department of Electronics and Telecommunication

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

Design and Implementation of an All Digital Phase Locked Loop using a Pulse Output Direct Digital Frequency Synthesizer

Design and Implementation of an All Digital Phase Locked Loop using a Pulse Output Direct Digital Frequency Synthesizer University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2004 Design and Implementation of an All Digital Phase Locked Loop using a Pulse Output

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

Keywords: CIC Filter, Field Programmable Gate Array (FPGA), Decimator, Interpolator, Modelsim and Chipscope.

Keywords: CIC Filter, Field Programmable Gate Array (FPGA), Decimator, Interpolator, Modelsim and Chipscope. www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.25 September-2014, Pages:5002-5008 VHDL Implementation of Optimized Cascaded Integrator Comb (CIC) Filters for Ultra High Speed Wideband Rate

More information

ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS

ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS ROBERT BOGDAN STASZEWSKI Texas Instruments PORAS T. BALSARA University of Texas at Dallas WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class CS545 Contents XIV Components of a Robotic System Power Supplies and Power Amplifiers Actuators Transmission Sensors Signal Processing Linear filtering Simple filtering Optimal filtering Reading Assignment

More information

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global an effective design and verification methodology for digital PLL This Paper depicts an effective simulation methodology to overcome the spice simulation time overhead of digital dominant, low frequency

More information

Periodic Wave Generation for Direct Digital Synthesization

Periodic Wave Generation for Direct Digital Synthesization International Journal on Intelligent Electronics Systems, Vol. 10 No.1 January 2016 22 Periodic Wave Generation for Direct Digital Synthesization Abstract Govindaswamy Indhumathi 1 Dr.R. Seshasayanan 2

More information

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS Nilesh D. Patel 1, Gunjankumar R. Modi 2, Priyesh P. Gandhi 3, Amisha P. Naik 4 1 Research Scholar, Institute of Technology, Nirma University,

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

Design and Performance Analysis of a Reconfigurable Fir Filter

Design and Performance Analysis of a Reconfigurable Fir Filter Design and Performance Analysis of a Reconfigurable Fir Filter S.karthick Department of ECE Bannari Amman Institute of Technology Sathyamangalam INDIA Dr.s.valarmathy Department of ECE Bannari Amman Institute

More information

A design method for digital phase-locked loop Ru Jiyuan1,a Liu Yujia2,b and Xue Wei 3,c

A design method for digital phase-locked loop Ru Jiyuan1,a Liu Yujia2,b and Xue Wei 3,c 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) A design method for digital phase-locked loop Ru Jiyuan1,a Liu Yujia2,b and Xue Wei 3,c 1 2 3 a 523032396@qq.com,

More information

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/57

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/57 Gábor C. Temes School of Electrical Engineering and Computer Science Oregon State University temes@ece.orst.edu 1/57 Switched-Capacitor Circuit Techniques ORIGIN : "SC" replacing "R"; 1873, James Clerk

More information

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Nitin Kumar #1, Manoj Kumar *2 # Ganga Institute of Technology & Management 1 nitinkumarvlsi@gmail.com * Guru Jambheshwar University of Science

More information

Yet, many signal processing systems require both digital and analog circuits. To enable

Yet, many signal processing systems require both digital and analog circuits. To enable Introduction Field-Programmable Gate Arrays (FPGAs) have been a superb solution for rapid and reliable prototyping of digital logic systems at low cost for more than twenty years. Yet, many signal processing

More information

Field Programmable Gate Array-Based Pulse-Width Modulation for Single Phase Active Power Filter

Field Programmable Gate Array-Based Pulse-Width Modulation for Single Phase Active Power Filter American Journal of Applied Sciences 6 (9): 1742-1747, 2009 ISSN 1546-9239 2009 Science Publications Field Programmable Gate Array-Based Pulse-Width Modulation for Single Phase Active Power Filter N.A.

More information

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 4, Ver. I (Jul.-Aug. 2018), PP 26-30 www.iosrjournals.org VCO Based Injection-Locked

More information

Simulation of Acquisition behavior of Second-order Analog Phase-locked Loop using Phase Error Process

Simulation of Acquisition behavior of Second-order Analog Phase-locked Loop using Phase Error Process International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 2 (2014), pp. 93-106 International Research Publication House http://www.irphouse.com Simulation of Acquisition

More information

AS THE DATA rate demanded by multimedia system

AS THE DATA rate demanded by multimedia system 424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 59, NO. 7, JULY 2012 An All-Digital Large-N Audio Frequency Synthesizer for HDMI Applications Ching-Che Chung, Member, IEEE, Duo Sheng,

More information