Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar

Size: px
Start display at page:

Download "Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar"

Transcription

1 Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar Muhammad Zeeshan Mumtaz, Ali Hanif, Ali Javed Hashmi National University of Sciences and Technology (NUST), Islamabad, Pakistan Abstract Continuous Wave (CW) and Frequency Modulated Continuous Wave (FMCW) radars are used for target detection by the use of Radio Frequency (RF) waves. CW radars are used for Doppler velocity estimation whereas FMCW radars are used for range estimation. This paper is focused on real-time DSP algorithm for target differentiation from noise in Simulink implemented as block model and two additional post-processing DSP algorithms for Doppler velocity and range estimation implemented as MATLAB script codes for CW and FMCW radars respectively [1]. First, Static clutter rejection technique has been implemented on range estimation algorithm for spotting only moving targets, which formulates the basis of Moving Target Indicator (MTI) mode of the FMCW radar. Second, Accelerating Target Indicator (ATI) mode has also been developed for Doppler velocity algorithm for CW radar. The above mentioned DSP algorithms have been successfully developed and tested on a small portable CW/FMCW radar. This radar is an improved version of the portable radar developed in MIT IAP [1] [2] Radar Course with some hardware modifications and major software up-gradations. Only software up-gradations have been addressed in this paper. This portable radar comprises of an RF Front End (both for Transmission and Reception portions) and analog circuitry. The final output of the portable radar has been provided to the Data Acquisition device for further processing in computer. I. INTRODUCTION FMCW/CW radars are preferred on pulsed radars due to the fact that their maximum range is relatively independent of the maximum power but it depends upon number of FFT samples and bandwidth of the portable radar, which will be discussed in detail in the subsequent paragraphs. These factors permit low transmission power which results in low probability of interception (LPI). CW radars are used for velocity estimation using the concept of Doppler frequency shift. Doppler frequency shift is the change in the frequency observed by the radar receiver as compared to the transmission frequency, when an object is moving relative to the radar. The transmission frequency is always constant while received frequency is continuously compared with it as shown in Figure 1. Frequency Figure 1 : Frequency versus Time graph for CW Radar Doppler frequency shift (f d ) is obtained after comparison of transmission and reception waves and object velocity is estimated by the following equation [3] : In symbolic form: Time f t + f d Velocity resolution is the minimum velocity that can be observed by the radar. It depends upon two factors: minimum detectable Doppler shift which further subject to the minimum sampling frequency and radar wavelength. Minimum sampling frequency is usually constrained by the Data Acquisition device used for capturing real-time data for signal processing. Maximum velocity can easily be determined by multiplying velocity resolution with f t f t - f d

2 number of Nyquist samples. By Nyquist information theorem [4], for complete collection of information, FFT sampling rate must be twice the analog signal frequency. Therefore, targets is equal to frequency chirp rate because if beat frequency is less than frequency chirp rate, the difference between transmission and reception frequencies cannot be noticed. So range resolution is obtained after substituting. ( ) ( ) FMCW radars are used for range estimation using the concept of Beat Frequency. The most common type of frequency modulation is linear frequency modulation (LFM). In LFMCW operation, the transmission frequency is linearly increasing and decreasing with time. The received frequency is also increasing and decreasing in similar fashion. But there is a time delay between both signals which would induce a frequency difference called Beat frequency. The concept of beat frequency is illustrated in Figure 2. Frequency Frequency Sweep Time (1/f) Bandwidth (BW) Beat Frequency (f b ) Transmission Wave Reception Wave Maximum range can be easily calculated by multiplying range resolution with number of Nyquist samples. II. ( ) PORTABLE RADAR OPERATION CW/FMCW portable radar was developed and tested thoroughly as shown in Figure 3. This radar constitutes of five main parts: i. RF Front End ii. RF Antennae iii. Analog Circuitry iv. Data Acquisition device v. Radar Data Processor CW/FMCW Radar Circuitry Time Figure 2 : Frequency versus Time graph for LFMCW Radar Beat frequency (f b ) is acquired after comparison of transmission and reception waves and range is calculated by the following equation [5] : Transmission Antenna Reception Antenna Figure 3 : Developed Portable Radar In symbolic form: Range resolution is the minimum distance or space between two targets so that they can be differentiated as two separate targets. For range resolution, the minimum beat frequency for differentiating two RF Front End is further sub-divided into two portions: Transmission Front End and Reception Front End. Transmission Front End constitutes of RF Voltage Controlled Oscillator (VCO), RF Amplifier and RF Splitter, while Reception Front End contains RF Low Noise Amplifier (LNA) and RF Mixer. RF signals are transmitted and received by two parabolic antennae. In Transmission Front End, RF VCO generates a voltage dependent frequency signal which is tuned by

3 function dependent analog signal. For long range transmission in the air, the signal is strengthened by RF Amplifier. RF Splitter divides the signal into two parts: a. Transmission signal to the transmission antenna b. Reference signal to the RF Mixer in the Reception Front End The transmission signal after striking the target scatters in all directions. Some portion of the scattering radiations reaches back to the receiving antenna as target echo. This echo contains Doppler frequency shift or beat frequency along with the base transmission frequency. In Reception RF Front End, target echo received at reception antenna is amplified by RF LNA and sent to the RF Mixer for separating Doppler shift or beat frequency. Analog circuit is infact waveform generator used for ramp wave output as tunning voltage for RF VCO for effective LFM operation while determining the target range. Data Acquisition device is a device that converts analog signals into digital samples for further processing in computing machines. Data Acquisition device used for this radar is Integrated audio soundcard used with computers. Analog signal from RF Mixer is fed to the sound card which after sampling provides the data to the Radar Data Processor. Radar Data Processor is categorized in two types of algorithms: a. Real-time DSP Algorithm b. Post-processing DSP Algorithms Both types of DSP algorithms will be discussed in detail in the subsequent sections. III. REAL-TIME DSP ALGORITHM Before discussing Real-time DSP algorithm, the input of the algorithm, which is the output of RF Mixer, will be overviewed in mathematical domain. The output of the RF Mixer is an analog signal that contains sum and difference frequency signals of the transmitted and received frequencies. As the Local Oscillator (LO) (reference signal from transmitter) and RF port (signal from reception antenna) input signals of the RF mixer are ( ) and ( ( ) ), the RF mixer output (Φ) is: [ ( ( ) ) ( )] i. Digital Sampling of the output of RF Mixer (Φ) with FFT points. ii. Low Pass filtering at cut-off frequency of KHz (Analog frequency = No. of FFT points/2). The operational frequency of testing CW/FMCW radar is GHz. The sum frequency signal is in range of GHz which is rejected by the audio soundcard while the difference frequency signal which has frequency equal to Doppler shift or beat frequency is sampled at a rate of 44.1 KHz. The sampled data is to be processed and displayed in such a way that velocity and range of the target can be visually interpreted. For this purpose, the Real-time DSP algorithm is formulated in form of block model in Simulink as shown in Figure 4. Figure 4: Real-time DSP block model in Simulink Real-time DSP algorithm shown in above figure performs four basic tasks: 1. Data reception from Data Acquisition device 2. Real-time Target Display 3. Real-time Frequency Shift Display 4. Data transfer to Post-Processing DSP algorithms For Data reception from audio soundcard, a Simulink block From Audio Device has been utilized. This block collects the data from audio soundcard and defines the sampling rate, sampling channels, output data type and frame size as Figure 5 shows its block parameters. The Data Acquisition device (Integrated audio soundcard) performs two tasks:

4 Targets Figure 7: Real-time Frequency Shift Display Figure 5: Block Parameters of "From Audio Device" After Real-time Target Display and Real-time Frequency Shift Display, data is transferred to the MATLAB workspace for post-processing DSP algorithms. Signal To Workspace block has been used for this purpose with block parameters shown in Figure 8. There is a magnitude difference between target echo and idle reflections (i-e no target) while continuously plotting the output of RF Mixer (Φ) with respect to time. Therefore, for Real-time Target display, Time Scope block has been used as shown in Figure 6. There is a noise level in the scope (due to idle reflections) but targets are easily differentiable from it in form of peaks. The magnitude of peaks depends upon radar cross section area (RCS) and velocity/range of the targets. Targets Figure 8: Block Parameters of "Signal To Workspace" Figure 6: Real-time Target Display As Doppler frequency shift or beat frequency is involved in the target echo, so for better understanding of radar concepts and as secondary scope for target identification, Spectrum Analyzer block with magnitude-frequency plot has been used as illustrated in Figure 7. The magnitude of peak depends upon RCS of the target. IV. POST-PROCESSING ALGORITHMS After Real-time DSP, the signal is sent to MATLAB Workspace as mentioned in the previous section. Two Post-processing DSP algorithms are applied on the signal in workspace: a. Doppler velocity estimation b. Range estimation These algorithms are modified version of the MATLAB codes applied on portable radar developed in MIT IAP Radar Course [1] [2]. The modifications are: 1. Three- Dimensional (3-D) Doppler velocity plotting 2. Accelerating Target Indicator (ATI) (Doppler velocity estimation)

5 3. Static Clutter Rejection (SCR) technique (Range estimation) Three Dimensional (3-D) Doppler velocity plotting Doppler velocity is the radial vector component (with respect to radar position) of the true velocity of the target. The concept of Doppler velocity is illustrated in the following diagram: display. The following two plots highlight the difference in Doppler velocity estimation without engaging ATI mode and after engaging the ATI mode. True velocity of target (v) Ɵ Doppler velocity of target (v cos(ɵ)) Radar Figure 9: Pictorial explanation of Doppler velocity concept Figure 11: Doppler velocity estimation without ATI mode In 3-D Doppler velocity plotting, velocities of the targets indicated in Real-time Target Display are calculated and displayed in Doppler velocity versus time plot with relative signal amplitude as third dimension, as depicted in the following plot: Targets Figure 12: Doppler velocity estimation with ATI mode Static Clutter Rejection (SCR) technique In Range estimation, ranges of targets detected in Real-time Target Display are calculated and displayed. Range versus time plot with color, the third dimension assigned to the relative signal amplitude is shown below: Figure 10: 3-D Doppler velocity plot The target moving in front of the radar was aluminum plate of a physical area of 0.1m 2, moved at specific time instants. The relative signal amplitude is again taken as fourth dimension shown as color of the plot for ease in target visualization in the display. Accelerating Target Indicator (ATI) mode In ATI mode, all the targets that are either at rest or moving with constant velocity are rejected. Only the velocities of the accelerating targets are visible on the Ranging of a humanbeing (Without clutter rejection) Figure 13: Range estimation without clutter rejection

6 The moving target in front of radar is a humanbeing, whose movement is depicted by the help of arrows. But its movements cannot be comprehended well because of the presence of static targets around the radar. To counter this problem, SCR technique is applied by the help of single delay line canceller or 2-pulse clutter rejection. The concept of single delay line canceller can be conceived by following diagram: Received Signal x(t) Time Delay x (t)= x(t)-x(t-1) x(t) + x(t-1) The relative signal amplitudes of the static targets remain constant over time. So, x (t) for static targets is zero. While moving targets have continuously varying relative signal amplitudes, so they are still detected even after delay line canceller. After applying SCR technique, the range plot more clearly display the moving targets as shown below: Σ Output Signal - x (t) Figure 14: Block diagram of single delay line canceller have also been conversed in detail for their application in better target comprehension. REFERENCES [1] Skolnik, M.I., Introduction to Radar Systems, 3 rd Edition. [2] Ian Moir and Allan Seabridge, Military Avionics Systems, Aerospace Series, Wiley Publications, [3] A. Jalil, H. Yousaf, F. Fahim and Z. Rasool, "FMCW Radar Signal Processing Scheme, Proceedings of International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, January, [4] Eugin Hyun, and Jong-Hun Lee, Method to Improve Range and Velocity Error Using De-interleaving and Frequency Interpolation for Automative FMCW Radars, International Journal of Signal Processing, Image Processing and Pattern Recognition, Volume. 2, No. 2, June [5] Stove, A.G., Linear FMCW radar techniques, Radar and Signal Processing, IEEE Proceedings, Part F. Vol. 139, Issue 5, October [6] Xu Xiaoping. Liu Jianxin, Han Yu, and Ding Qingsheng, Simulation of Digital Signal Processor on FMCW Radar, Vol. 2, No. 2, June [7] Cukrov, Moving Target Indication, Elecronics in Marine, Proceedings Elmar 2004, 46 th International Symposium. [8] Mahafza, Radar Systems, Analysis and Design using MATLAB, Chapman & Hall/CRC. Figure 15: Range estimation with clutter rejection V. CONCLUSION Real-time and post-processing algorithms for FMCW/CW radars in MATLAB and Simulink have been precisely focused in this paper. Real-time data has been first collected from radar hardware and processed for real-time target display in Simulink and then sent to the post-processing algorithms for Doppler velocity and range estimations. The concepts of 3-D Doppler velocity plotting, Accelerating Target Indicator (ATI) and Static Clutter Rejection (SCR) with delay line canceller

Signal Processing and Display of LFMCW Radar on a Chip

Signal Processing and Display of LFMCW Radar on a Chip Signal Processing and Display of LFMCW Radar on a Chip Abstract The tremendous progress in embedded systems helped in the design and implementation of complex compact equipment. This progress may help

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

This article reports on

This article reports on Millimeter-Wave FMCW Radar Transceiver/Antenna for Automotive Applications A summary of the design and performance of a 77 GHz radar unit David D. Li, Sam C. Luo and Robert M. Knox Epsilon Lambda Electronics

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor A. Nasser, Fathy M. Ahmed, K. H. Moustafa, Ayman Elshabrawy Military Technical Collage Cairo, Egypt Abstract Radio altimeter

More information

A Novel Range Detection Method for 60GHz LFMCW Radar

A Novel Range Detection Method for 60GHz LFMCW Radar A ovel Range Detection Method for 6GHz LFMCW Radar Yizhong Wu,YingBao, Zhiguo Shi, Jiming Chen and Youxian Sun Department of Control Science and Engineering, Zhejiang University Email:{yzwu, jmchen, yxsun}@iipc.zju.edu.cn

More information

Scanning Digital Radar Receiver Project Proposal. Ryan Hamor. Project Advisor: Dr. Brian Huggins

Scanning Digital Radar Receiver Project Proposal. Ryan Hamor. Project Advisor: Dr. Brian Huggins Scanning Digital Radar Receiver Project Proposal by Ryan Hamor Project Advisor: Dr. Brian Huggins Bradley University Department of Electrical and Computer Engineering December 8, 2005 Table of Contents

More information

DESIGN AND DEVELOPMENT OF SIGNAL

DESIGN AND DEVELOPMENT OF SIGNAL DESIGN AND DEVELOPMENT OF SIGNAL PROCESSING ALGORITHMS FOR GROUND BASED ACTIVE PHASED ARRAY RADAR. Kapil A. Bohara Student : Dept of electronics and communication, R.V. College of engineering Bangalore-59,

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

Continuous Wave Radar

Continuous Wave Radar Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1:

More information

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d 1. Explain how Doppler direction is identified with FMCW radar. A block diagram illustrating the principle of the FM-CW radar is shown in Fig. 4.1.1 A portion of the transmitter signal acts as the reference

More information

IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM

IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM Irfan R. Pramudita, Puji Handayani, Devy Kuswidiastuti and Gamantyo Hendrantoro Department of Electrical Engineering, Institut Teknologi

More information

EITN90 Radar and Remote Sensing Lab 2

EITN90 Radar and Remote Sensing Lab 2 EITN90 Radar and Remote Sensing Lab 2 February 8, 2018 1 Learning outcomes This lab demonstrates the basic operation of a frequency modulated continuous wave (FMCW) radar, capable of range and velocity

More information

S-Band 2.4GHz FMCW Radar

S-Band 2.4GHz FMCW Radar S-Band 2.4GHz FMCW Radar Iulian Rosu, YO3DAC / VA3IUL, Filip Rosu, YO3JMK, http://qsl.net/va3iul A Radar detects the presence of objects and locates their position in space by transmitting electromagnetic

More information

Techniques for Extending Real-Time Oscilloscope Bandwidth

Techniques for Extending Real-Time Oscilloscope Bandwidth Techniques for Extending Real-Time Oscilloscope Bandwidth Over the past decade, data communication rates have increased by a factor well over 10x. Data rates that were once 1 Gb/sec and below are now routinely

More information

ECE 480: Electrical and Computer Engineering Capstone Design. An Interactive Radar Demonstrator for Children. Team 5. Andrew Renton.

ECE 480: Electrical and Computer Engineering Capstone Design. An Interactive Radar Demonstrator for Children. Team 5. Andrew Renton. ECE 480: Electrical and Computer Engineering Capstone Design An Interactive Radar Demonstrator for Children Team 5 Andrew Renton Stephen Hughey Andrew Myrick Nur Syuhada Zakaria Facilitator: Prof. Hayder

More information

Short-term stay in UC Davis Technical report

Short-term stay in UC Davis Technical report Short-term stay in UC Davis Technical report Introduction The purpose of this document is reporting the activities conducted during the short-term stay in UC Davis by José Enrique Almanza Medina during

More information

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar Simulation the Hybrid Combinations of 4GHz and 77GHz Automotive Radar Yahya S. H. Khraisat Electrical and Electronics Department Al-Huson University College/ Al-Balqa' AppliedUniversity P.O. Box 5, 5,

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

Project Report. Laptop Based Radar

Project Report. Laptop Based Radar Project Report Laptop Based Radar Selected Topics in Microelectronics I (EE 680) (Spring Semester 2013) Submitted by: 1. Mirmehdi seyedesfahlan 2. Mohammad hossein Nemati 3. Efe Ozturk 4. Haq Nawaz 5.

More information

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems Addressing Phase Noise Challenges in Radar and Communication Systems Phase noise is rapidly becoming the most critical factor addressed in sophisticated radar and communication systems. This is because

More information

Design and Implementation of Frequency Modulation Continuous Wave Radar for Adaptive Cruise Control Interfaces with PIC Microcontroller

Design and Implementation of Frequency Modulation Continuous Wave Radar for Adaptive Cruise Control Interfaces with PIC Microcontroller Dr. Manal H. Jassim 1 and Tamara Z. Fadhil 2 1 Department of Electrical Engineering, University of Technology Baghdad 2 Department of Network Engineering, University of Iraqia Baghdad e-mail: manaljassim@ymail.com,

More information

APPLICATION NOTE II. Detection and ranging of moving and stationary objects by using the FMCW radar principle.

APPLICATION NOTE II. Detection and ranging of moving and stationary objects by using the FMCW radar principle. APPLICATION NOTE II Detection and ranging of moving and stationary objects by using the FMCW radar principle www.innosent.de Editorial InnoSenT GmbH want provide to beginners and first-time users an easy

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

A Survey Paper on FMCW Radar Implementation Using FPGA

A Survey Paper on FMCW Radar Implementation Using FPGA A Survey Paper on FMCW Radar Implementation Using FPGA Priyanka Bhise 1, Dr.N.B.Chopade 2 PG Student, Department of E&TC, Pimpri Chinchwad College of Engineering, Savitribai Phule University of Pune, Maharashtra,

More information

Addressing the Challenges of Wideband Radar Signal Generation and Analysis. Marco Vivarelli Digital Sales Specialist

Addressing the Challenges of Wideband Radar Signal Generation and Analysis. Marco Vivarelli Digital Sales Specialist Addressing the Challenges of Wideband Radar Signal Generation and Analysis Marco Vivarelli Digital Sales Specialist Agenda Challenges of Wideband Signal Generation Challenges of Wideband Signal Analysis

More information

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements 9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements In consumer wireless, military communications, or radar, you face an ongoing bandwidth crunch in a spectrum that

More information

Active Cancellation Algorithm for Radar Cross Section Reduction

Active Cancellation Algorithm for Radar Cross Section Reduction International Journal of Computational Engineering Research Vol, 3 Issue, 7 Active Cancellation Algorithm for Radar Cross Section Reduction Isam Abdelnabi Osman, Mustafa Osman Ali Abdelrasoul Jabar Alzebaidi

More information

Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band

Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band Ashish Kr. Roy 2, Bakul Bapat 1, C. Bhattacharya 1 and S.A.Gangal 2 1 Electronics Engineering Dept, DIAT, Pune - 411025, India 2 Department

More information

Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform

Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform Addressing the Challenges of Radar and EW System Design and Test using a Model-Based Platform By Dingqing Lu, Agilent Technologies Radar systems have come a long way since their introduction in the Today

More information

AMTI FILTER DESIGN FOR RADAR WITH VARIABLE PULSE REPETITION PERIOD

AMTI FILTER DESIGN FOR RADAR WITH VARIABLE PULSE REPETITION PERIOD Journal of ELECTRICAL ENGINEERING, VOL 67 (216), NO2, 131 136 AMTI FILTER DESIGN FOR RADAR WITH VARIABLE PULSE REPETITION PERIOD Michal Řezníček Pavel Bezoušek Tomáš Zálabský This paper presents a design

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

A Low-Power, High Sensitivity, X-Band Rail SAR Imaging System

A Low-Power, High Sensitivity, X-Band Rail SAR Imaging System A Low-Power, High Sensitivity, X-Band Rail SAR Imaging System Gregory L. Charvat 1,, Leo C. Kempel 1, and Chris Coleman 2 1 Department of Electrical and Computer Engineering Michigan State University,

More information

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 The ability of a radar receiver to detect a weak echo signal is limited by the noise energy that occupies the same portion of the frequency spectrum as does

More information

An Interactive Radar Demonstration for Children

An Interactive Radar Demonstration for Children An Interactive Radar Demonstration for Children Team 5: Nur Syuhada Zakaria Andy Myrick Steve Hughey Andrew Renton Sponsor: MIT Lincoln Laboratory Facilitator: Dr. Radha Outline Introduction and goals

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang. General Outline

6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang. General Outline 6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang General Outline We will build a superheterodyne AM Radio Receiver circuit that will have a bandwidth of the entire AM spectrum, and whose

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

Definitions. Spectrum Analyzer

Definitions. Spectrum Analyzer SIGNAL ANALYZERS Spectrum Analyzer Definitions A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure

More information

The Challenge: Increasing Accuracy and Decreasing Cost

The Challenge: Increasing Accuracy and Decreasing Cost Solving Mobile Radar Measurement Challenges By Dingqing Lu, Keysight Technologies, Inc. Modern radar systems are exceptionally complex, encompassing intricate constructions with advanced technology from

More information

Automated Measurements of 77 GHz FMCW Radar Signals

Automated Measurements of 77 GHz FMCW Radar Signals Application Note Dr. Steffen Heuel 4.2014-1EF88_0e Automated Measurements of 77 GHz FMCW Radar Signals Application Note Products: R&S FSW R&S FS-Z90 Frequency Modulated Continuous Wave (FMCW) radar signals

More information

Lab course Analog Part of a State-of-the-Art Mobile Radio Receiver

Lab course Analog Part of a State-of-the-Art Mobile Radio Receiver Communication Technology Laboratory Wireless Communications Group Prof. Dr. A. Wittneben ETH Zurich, ETF, Sternwartstrasse 7, 8092 Zurich Tel 41 44 632 36 11 Fax 41 44 632 12 09 Lab course Analog Part

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with Prof. Dr. Eng. Klaus Solbach Department of High Frequency Techniques University of Duisburg-Essen, Germany Presented by Muhammad Ali Ashraf Muhammad Ali Ashraf 2226956 Outline 1. Motivation 2. Phase Shifters

More information

Radar Receiver Calibration Toolkit

Radar Receiver Calibration Toolkit Radar Receiver Calibration Toolkit GUI Application for Computing Radar Health Metrics MIT Lincoln Laboratory, Group 108 Major Qualifying Project Submitted by: Samuel Petersen Ryan Cantalupo Submitted to:

More information

Boost Your Skills with On-Site Courses Tailored to Your Needs

Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

Techniques for Extending Real-Time Oscilloscope Bandwidth

Techniques for Extending Real-Time Oscilloscope Bandwidth Techniques for Extending Real-Time Oscilloscope Bandwidth Over the past decade, data communication rates have increased by a factor well over 10x. Data rates that were once 1 Gb/sec and below are now routinely

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications FTF-AUT-F0086 Patrick Morgan Director, Safety Systems Business Unit Ralf Reuter Manager, Radar Applications and Systems

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

TEPZZ 9 77Z6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G01S 7/35 ( )

TEPZZ 9 77Z6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G01S 7/35 ( ) (19) TEPZZ 9 77Z6A_T (11) EP 2 927 706 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07..1 Bulletin 1/41 (1) Int Cl.: G01S 7/3 (06.01) (21) Application number: 11901.4 (22) Date of filing:

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS Experimental Goals A good technician needs to make accurate measurements, keep good records and know the proper usage and limitations of the instruments

More information

Developing a Generic Software-Defined Radar Transmitter using GNU Radio

Developing a Generic Software-Defined Radar Transmitter using GNU Radio Developing a Generic Software-Defined Radar Transmitter using GNU Radio A thesis submitted in partial fulfilment of the requirements for the degree of Master of Sciences (Defence Signal Information Processing)

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

Design Analysis of Analog Data Reception Using GNU Radio Companion (GRC)

Design Analysis of Analog Data Reception Using GNU Radio Companion (GRC) World Applied Sciences Journal 17 (1): 29-35, 2012 ISSN 1818-4952 IDOSI Publications, 2012 Design Analysis of Analog Data Reception Using GNU Radio Companion (GRC) Waqar Aziz, Ghulam Abbas, Ebtisam Ahmed,

More information

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS Diaa ElRahman Mahmoud, Abou-Bakr M. Youssef and Yasser M. Kadah Biomedical Engineering Department, Cairo University, Giza,

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

The Sampling Theorem:

The Sampling Theorem: The Sampling Theorem: Aim: Experimental verification of the sampling theorem; sampling and message reconstruction (interpolation). Experimental Procedure: Taking Samples: In the first part of the experiment

More information

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Christina Knill, Jonathan Bechter, and Christian Waldschmidt 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must

More information

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed SPECTRUM ANALYZER Introduction A spectrum analyzer measures the amplitude of an input signal versus frequency within the full frequency range of the instrument The spectrum analyzer is to the frequency

More information

1 Introduction: frequency stability and accuracy

1 Introduction: frequency stability and accuracy Content 1 Introduction: frequency stability and accuracy... Measurement methods... 4 Beat Frequency method... 4 Advantages... 4 Restrictions... 4 Spectrum analyzer method... 5 Advantages... 5 Restrictions...

More information

Understanding RF and Microwave Analysis Basics

Understanding RF and Microwave Analysis Basics Understanding RF and Microwave Analysis Basics Kimberly Cassacia Product Line Brand Manager Keysight Technologies Agenda µw Analysis Basics Page 2 RF Signal Analyzer Overview & Basic Settings Overview

More information

1. General Outline Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang

1. General Outline Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang 1. General Outline 6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang The invention and mass application of radio broadcast was triggered in the first decade of the nineteenth century by

More information

Translational Doppler detection using direct-detect chirped, amplitude-modulated laser radar

Translational Doppler detection using direct-detect chirped, amplitude-modulated laser radar Translational Doppler detection using direct-detect chirped, amplitude-modulated laser radar William Ruff, Keith Aliberti, Mark Giza, William Potter, Brian Redman, Barry Stann US Army Research Laboratory

More information

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where Q: How does the radar get velocity information on the particles? DOPPLER RADAR Doppler Velocities - The Doppler shift Simple Example: Measures a Doppler shift - change in frequency of radiation due to

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

Description of the AM Superheterodyne Radio Receiver

Description of the AM Superheterodyne Radio Receiver Superheterodyne AM Radio Receiver Since the inception of the AM radio, it spread widely due to its ease of use and more importantly, it low cost. The low cost of most AM radios sold in the market is due

More information

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO)

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Learn about VCO and how

More information

Radarbook Graphical User Interface (RBK-GUI User Manual)

Radarbook Graphical User Interface (RBK-GUI User Manual) Radarbook Graphical User Interface (RBK-GUI User Manual) Inras GmbH Altenbergerstraße 69 4040 Linz, Austria Email: office@inras.at Phone: +43 732 2468 6384 Linz, July 2015 Contents 1 Document Version 2

More information

Initial ARGUS Measurement Results

Initial ARGUS Measurement Results Initial ARGUS Measurement Results Grant Hampson October 8, Introduction This report illustrates some initial measurement results from the new ARGUS system []. Its main focus is on simple measurements of

More information

Analysis of Processing Parameters of GPS Signal Acquisition Scheme

Analysis of Processing Parameters of GPS Signal Acquisition Scheme Analysis of Processing Parameters of GPS Signal Acquisition Scheme Prof. Vrushali Bhatt, Nithin Krishnan Department of Electronics and Telecommunication Thakur College of Engineering and Technology Mumbai-400101,

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection

Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection Wireless Bio- medical Sensor Network for Heartbeat and Respiration Detection Mrs. Mohsina Anjum 1 1 (Electronics And Telecommunication, Anjuman College Of Engineering And Technology, India) ABSTRACT: A

More information

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications"

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications 11: FM cw Radar 9. FM cw Radar 9.1 Principles 9.2 Radar equation 9.3 Equivalence to pulse compression 9.4 Moving targets 9.5 Practical considerations 9.6 Digital generation of wideband chirp signals FM

More information

Approach of Pulse Parameters Measurement Using Digital IQ Method

Approach of Pulse Parameters Measurement Using Digital IQ Method International Journal of Information and Electronics Engineering, Vol. 4, o., January 4 Approach of Pulse Parameters Measurement Using Digital IQ Method R. K. iranjan and B. Rajendra aik Abstract Electronic

More information

RF SENIOR DESIGN PROJECT REPORT

RF SENIOR DESIGN PROJECT REPORT EEC 134 Project Report 1 RF SENIOR DESIGN PROJECT REPORT EEC 134 Professor Xiaoquang Liu Team DMK Team members: Duyen Tran Khoa Huynh Michelle Lee Date: 5/25/2016 EEC 134 Project Report 2 RF SENIOR DESIGN

More information

Subsystems of Radar and Signal Processing and ST Radar

Subsystems of Radar and Signal Processing and ST Radar Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 531-538 Research India Publications http://www.ripublication.com/aeee.htm Subsystems of Radar and Signal Processing

More information

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield?

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? By Sefa Tanis Share on As automotive radars become more widespread, the heavily occupied RF spectrum will resemble

More information

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR 1991 Antenna Measurement Techniques Association Conference D. Slater Nearfield Systems Inc. 1330 E. 223 rd Street Bldg. 524 Carson, CA 90745 310-518-4277

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN Modern Radar Signal Processor International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 12 Modern Radar Signal Processor Dr. K K Sharma Assoc Prof, Department of Electronics & Communication, Lingaya

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Fabian Roos, Nils Appenrodt, Jürgen Dickmann, and Christian Waldschmidt c 218 IEEE. Personal use of this material

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

Design and Simulation of Transmitter and Receiver sections for C-band FMCW Radar

Design and Simulation of Transmitter and Receiver sections for C-band FMCW Radar Design and Simulation of Transmitter and Receiver sections for C-band FMCW Radar 1 M.Krishnaveni, 2 R.Hemalatha, 3 K.Balajyothi 1 Student, 2 Associate Professor, 3 Scientist E 1,2 Department of ECE, 1,2

More information

Analysis of LFM and NLFM Radar Waveforms and their Performance Analysis

Analysis of LFM and NLFM Radar Waveforms and their Performance Analysis Analysis of LFM and NLFM Radar Waveforms and their Performance Analysis Shruti Parwana 1, Dr. Sanjay Kumar 2 1 Post Graduate Student, Department of ECE,Thapar University Patiala, Punjab, India 2 Assistant

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging) Fundamentals of Radar Prof. N.V.S.N. Sarma Outline 1. Definition and Principles of radar 2. Radar Frequencies 3. Radar Types and Applications 4. Radar Operation 5. Radar modes What What is is Radar? Radar?

More information

Radar Waveform Generation and Optimization based on Rossler Chaotic System

Radar Waveform Generation and Optimization based on Rossler Chaotic System Radar Waveform Generation and Optimization based on Rossler Chaotic System Abstract Joseph Obadha 1* Stephen Musyoki 2 George Nyakoe 3 1. Department of Telecommunication and Information Engineering, Jomo

More information

David Fisher EEC 134 Application Note

David Fisher EEC 134 Application Note David Fisher EEC 134 Application Note RF System Design and Component Selection for a FMCW Radar System Introduction Since their initial development in the first half of the twentieth century, radar systems

More information

Doppler Simulator for 10 GHz Doppler Radar

Doppler Simulator for 10 GHz Doppler Radar Doppler Simulator for 10 GHz Doppler Radar Presented by Ngeok Kuan Wai 2252462 Supervised by Prof. Dr.-Ing. K. Solbach Outline Motivation Doppler Radar and Doppler Simulator Phase shifter Other Electronic

More information