The SKA - Challenges, Opportunities, and Industry Involvement. Phil Crosby SKA Program Development Office

Size: px
Start display at page:

Download "The SKA - Challenges, Opportunities, and Industry Involvement. Phil Crosby SKA Program Development Office"

Transcription

1 The SKA - Challenges, Opportunities, and Industry Involvement Phil Crosby SKA Program Development Office

2 The SKA will be the largest scientific instrument on the planet A next generation global radio astronomy facility To be built in either Southern Africa, or Australia Will operate between around 70 MHz to 25 GHz 50 times the sensitivity and 8000 times the survey speed of current instruments a collecting area of around 1 million square meters over a vast unpopulated area a combination of dishes and wide FoV antennas will employ beam forming technology on a scale not previously explored Needs data transport system and computing power beyond that available today Will address fundamental questions about the universe

3 SKA Key Science Questions When & how were the first stars and galaxies formed? What is the large scale structure of the universe? Dark Energy Dark Matter What is the origin and evolution of cosmic magnetic fields? Was Einstein right? Can we detect gravitational waves? Planet formation and the Cradle of Life Will we find ET? EXPLORATION OF THE UNKNOWN

4 Target construction SKA cost: Pathfinders for Phases 1+2Complete Reference Design selected Concept Des n Preliminary SKA specs The SKA timeline & estimated project costs Civil works External Engineering Antennas & RF systems Review of design Signal transmission Signal processing Software development & computing System hardware Design Establish SKA Organisation Site Select Phase 1 complete Phase 1 implementation low & mid freq SKA-mid+low Complete Design, integration, testing, and management Contingency 1.5 billion (2007) Concept & Tech Development for Phase 3 - SKA-hi Expected operating costs: Salaries ( staff) Power Materials & services Early Science SKA mid+low including dark fibre lease Renewal of instrumentation and Phase computing 2 construction mid + low freq (science centres additional) System design SKA-hi 150 million /year Phase 3 - Construction

5 The SKA Global Network Canada NRC Laval U McGill U Queens U U Calgary U Montreal U Toronto York U ACURA CASCA United States of America CIT / JPL Cornell U / NAIC Harvard U / Smithsonian Centre for Astrophysics MIT / Haystack Observatory NRAO Naval Research Lab SETI U Cal Berkley U Illinois U New Mexico U Winsconsin Virginia Tech Funding Agencies NRC NSERC Funding Agencies NASA NSF United Kingdom U Manches ter (JBO) Oxford U Cambrid ge U U Glasgow Leeds U Cardiff U Po rtu gal IS SpainT- Fundacio Ce n Alcala ntr Nat. a Astrono my Observat ory U Valencia France Paris Observat ory U d Orlean s Centre National de la Recherc he Scientifiq ue OMMIC Sweden Onsala Space Observat ory Chalmer s U of Tech Netherla nds Astron JIVE Kapteyn Astro Inst Leiden U U Gronega n Italy National Institute for Astrophy sics Poland Torun Centre for Astrono my Germany Max- Planck Institute for Radio Astrono my Russia Pushchin o Astro Space Centre Funding Agencies European Union National Government s via Research Councils RadioNet Over 100 Organisations 8 SKA Consortia Indian Consortium Raman Research Institute TATA Inst for Radio Astronomy Nat. Centre for Radio Astronomy China NAO, Chinese Academy of Sciences Funding Agencies Dept of Atomic Energy Dept of Science & Tech Korea Korean VLBI Network Funding Agencies Chinese Academy of Sciences MoST Dept Science & Tech Tsing hua U Japan Kagoshima U NAOJ SKA Program Development Office Based at University of Manchester, UK Group of domain specialists Mission to deliver a costed design by 2012 South Africa NRF U KwaZulu -Natal Funding Agencies Dept Science & Tech Dept Trade & Industry NRF Australia CSIRO- ATNF ICRAR Swinburne U U NSW U Melbourne U Sydney U Adelaide U Tasmania U WA New Zealand Auckland U of Tech Funding Agencies ARC DIISR CSIRO WA Gov

6 SKA Movie 3 minutes

7 The Challenges of Radio Astronomy The signals are extremely weak. We need huge antennas to capture them They need to be in special places Astronomers compete with noise From radio, TV, phones, machines, etc From the equipment itself, amplifiers etc Signals are buried in the noise Need smart techniques to resolve This means huge computing power Large amounts of data to handle Pushing boundaries in capacity, speed and storage

8 VLA (USA) E-MERLIN Array Telescopes Australia Telescope

9 But better instruments needed to answer the key science questions ALMA ELT LOFAR JWST SKA IXO

10

11 SKA System Diagram on a Page LNA Int. receivers AA Station Station DSP AA infrastructure Correlator AA Tiles.... AA-lo Intra-station data links AA-hi Analog links.. DSP DSP.. DSP DSP DSP 1 st Stage DSP Digital links O-E... O-E Station Beamform g Station Beamform g Station Beamform g Control Proc. 2.1.x SKA system design SKA computing & software spec To ~250 AA Stations 16 Tb/s Central Processing Facility - CPF Correlator AA & Dish Data management Mass Storage Post Processor Software engineering Calibration Science post processing Wide-band single pixel feeds Dishes LNA Phased array feeds Cryo systems Power Supplies DSP & Control 2.4.x Dish design DSP & Control Station DSP 80 Gb/s Phase transfer Green SKA To ~2400 Dishes... Time Standard Station-core data links Non-imaging processors Control Processors & User interface Monitor & control Computing hardware Data management User interface via Internet Diagram by Andrew Faulkner

12 SKA as e-science Antenna Array DSP ( correlator ) Pb/s Post-processing HPC ( imaging ) Tier 0 (SKA) Tb/s Europe USA Australia South Africa Tier 1 (National) E-science: Global collaboration in key areas of science, and the next generation of infrastructure that will enable it. More data, more computation, faster networks, more collaboration, exploration of data and models in silico discovery, floods of public data, GRID computing,.. Tier 3 (Institute) Tier 4 (Researcher) Gb/s Tier 2 (Regional)

13 Interferometry using arrays Each pair of antennas is called a baseline The more different baselines there are, the more detailed the astronomical image. Short baselines - antennas are close to each other - provide coarse structure. Long baselines provide the fine detail, the longer, the finer the detail. Correlator Data Processor

14 SKA is an aperture synthesis telescope - A large aperture telescope is synthesized by sampling the wave-front in the aperture plane 3 km

15 Possible Site Schematic Comms links Central Processing Facility Dishes spread along spiral Station Dishes Dense AA Sparse AA Max. Distance for Dense AAs Max. Distance for Central Power Dist n

16 Concise Picture of Technology Options Numbers of dishes ( ) depends on whether Phased Array Feeds and/or Aperture Arrays are used in the SKA. Each technology is characterized by a frequency range and field of view.

17 Aperture Array Technology Production Thinking ASTRON Prototype The Netherlands Electronic Sensor Courtesy ASTRON, OPAR

18 Phased Array Feed Prototype One of three prototypes under development.

19 from Dave Deboer Multi-pixel phased array feeds

20 Dishes+Single Pixel Feeds USA Allen Telescope Array 42x6m hydroformed dishes Canada prototype 10 m composite dish South Africa Prototype 15 m composite dish

21 Composite Dish Manufacturing (Canada) Final Mould Alignment rms error: 0.25 mm rms error: 0.25 mm Removing from Mould Mounted on Drive

22 Metal Dish Manufacturing Novel Sheet Metal Structure 12m antenna Patriot Systems stretch-formed panels

23 Base model SKA Allen Telescope Array Parkes Wide field-of-view

24 Correlators Ultimately Built in Industry

25 Electrical power not solved yet Solar potential is high on both sites. 24-hour coverage is needed. requires storage or alternative night-time power source. Cost likely to be an issue if not subsidized MW required for full SKA Role for small scale (~100 kw) systems if they exist.

26 Other Power Issues Systems must withstand occasional flooding. Priority power not needed for SKA but power-outage notice might be needed. Safety grounding issues in desert areas. Lightning protection required Equipment subject to unusually high temperatures and large diurnal swings. Power for redundant communication needed for emergency shut-down Staggered antenna slewing is standard practice for arrays. Some equipment will require local UPS systems that may need remote control.

27 The Pre-Cursor Projects

28 South Africa + 7 countries

29 Australia

30 Spectrum Measurements: 80 MHz 1.6 GHz Sydney Pop. 4 million Narrabri Pop. 6,000 Boolardy 100 MHz 200 MHz

31 Industry Opportunities Summary of Opportunities in the SKA Signal Path From P. Hall

32 The SKA will be the largest scientific collaboration on the planet To meet the SKA timelines, a very high level of industry involvement will be needed, especially R & D, and economical mass production and deployment. Benefits to industry include opportunities to: -Grow and hone the creative energies of the best professionals -Perfect leading-edge techniques and products in a very demanding application, - Generate and share information in a benign and commercially nonthreatening environment -Raise company profile/visibility by association with an innovative, high profile, international mega-science project - Gain early involvement and favourable positioning in a 1.5 billion (2007) project spanning a wide range of engineering and computing disciplines.

33 Industry Opportunities and the SKA Site works and Infrastructure Site studies, and infrastructure engineering Site works for design & construction of antennas, support buildings (offices, equipment, accommodation, etc), cable roll-out, and repeaters Electrical supply to chosen site, in order of 50 MW (with a proportion of green energy (TBD)) High-speed (Tb/s) digital fibre optic links for distance regimes extending from 100 m to 3000 km

34 SKA Project Support, Tools, Operations & Maintenance Outreach and public education Project management, site supervision (works management), and Systems engineering support Radio-frequency interference mitigation using coherent and incoherent techniques High dynamic range (>60 db) image formation using sparsely-sampled Fourier plane data SKA scheduling, operations and maintenance models

35 High volume production & deployment Low-cost manufacturing of small to medium diameter dishes Advanced mechatronic systems for feed positioning and antenna control Decade bandwidth feed antennas for dish flux concentrators Broadband, active, phased arrays for aperture and focal plane applications Low noise wideband RF amplifiers for both cryogenic and uncooled applications Low-noise, highly integrated, receivers for both cryogenic and uncooled applications Low-cost, high-speed (Gs/s) analog to digital converters

36 Low-medium volume production & deployment High-speed digital signal processing engines (correlator) at 24 peta-flops/sec Ultra-fast supercomputing at 200 peta-ops/sec High speed data transmission at 160 Gb/sec Software engineering for robust, intelligent, array control and data processing Master oscillator time standards, and distribution

37 Informatio 1High-spee 2ICT 3ICT 4ICT 5ICT 6ICT 7ICT 8Integrated 9Telecomm Building 12 Electrical Environme 15 Fibre 16 Infrastruct 17 Land 18 Remote 19 Site 20 Surveying Antenna 23 Image 24 Radio 25 Receiver RFI 28 Computer Networkin Advanced 34 Engineerin Schedulin Systems Other 42 Regional 43 Transport 44 device mitiga / softw datab distrib mana perfo acce optic goo pro c mi id f What kinds of firms should consider participating in the SKA? Information & Communication Technology (ICT) - hardware, software, digital fibre systems, data management, high-speed / high-volume data processing, control systems, modelling and simulation systems, networked enabled system deployment & management, integrated circuit design, fabrication, and test, telecoms systems. Engineering Construction & Maintenance (ECM) building construction, electrical and mechanical services, R & D services, environmental services, fibre optic, power, civil engineering, land access consultants, remote infrastructure operations and maintenance, site management & planning, surveying services. Advanced Aerospace & Radar Technology and Equipment antenna design and manufacture, image processing, radio astronomy, receiver feed systems, wideband phased arrays, RF devices, RFI mitigation. Advanced Materials and Manufacturing - advanced materials, composites, sheet metal fabrication. Systems Integration & Maintenance project design, execution, interface management, risk management, scheduling, operations and maintenance of complex distributed systems. Transport, Training, and Other Goods & Services regional support, recruitment and training, transport and logistics, community consultation and studies, regulatory monitoring.

38 Intellectual Property SKA has developed a Statement of Intent on IP. Signed by organizations participating in the SKA. Establishes ground rules on protection, licensing, and donation of foreground and background IP for the SKA project. An IP strategy will be developed, with registered ownership Negotiations in the spirit of scientific cooperation. Signed by legal entities, when that becomes possible. SKA must have access to IP developed in the national & regional projects: Some of this will be generated in industry. Where possible, IP licensed early for the SKA, so that it can be used in open bidding, rather than giving advantage to a particular supplier.

39 The SKA is an icon project a BIG leap. Answers to key science questions Global collaboration institutes & industry Challenges yet to be solved Potential for industry spin-off products & IP To Summarise

40 Thank You Phil Crosby SKA Program Development Office

May AA Communications. Portugal

May AA Communications. Portugal SKA Top-level description A large radio telescope for transformational science Up to 1 million m 2 collecting area Operating from 70 MHz to 10 GHz (4m-3cm) Two or more detector technologies Connected to

More information

Smart Antennas in Radio Astronomy

Smart Antennas in Radio Astronomy Smart Antennas in Radio Astronomy Wim van Cappellen cappellen@astron.nl Netherlands Institute for Radio Astronomy Our mission is to make radio-astronomical discoveries happen ASTRON is an institute for

More information

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009 Overview of the SKA P. Dewdney International SKA Project Engineer Nov 9, 2009 Outline* 1. SKA Science Drivers. 2. The SKA System. 3. SKA technologies. 4. Trade-off space. 5. Scaling. 6. Data Rates & Data

More information

March Phased Array Technology. Andrew Faulkner

March Phased Array Technology. Andrew Faulkner Aperture Arrays Michael Kramer Sparse Type of AA selection 1000 Sparse AA-low Sky Brightness Temperature (K) 100 10 T sky A eff Fully sampled AA-mid Becoming sparse Aeff / T sys (m 2 / K) Dense A eff /T

More information

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Professor Tony Brown School of Electrical and Electronic Engineering University of Manchester

More information

Square Kilometre Array where Science meets Industry

Square Kilometre Array where Science meets Industry Square Kilometre Array where Science meets Industry Nigel Rix, Director of Electronics; ESP KTN Technology Strategy Board The vision of the Technology Strategy Board: UK to be a global leader in innovation

More information

A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz. Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003

A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz. Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003 A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003 1. Background Various analyses, including the recent IEMT report [1], have noted that

More information

Towards SKA Multi-beam concepts and technology

Towards SKA Multi-beam concepts and technology Towards SKA Multi-beam concepts and technology SKA meeting Meudon Observatory, 16 June 2009 Philippe Picard Station de Radioastronomie de Nançay philippe.picard@obs-nancay.fr 1 Square Kilometre Array:

More information

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO)

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO) Radio Interferometers Around the World Amy J. Mioduszewski (NRAO) A somewhat biased view of current interferometers Limited to telescopes that exist or are in the process of being built (i.e., I am not

More information

SKA-low and the Aperture Array Verification System

SKA-low and the Aperture Array Verification System SKA-low and the Aperture Array Verification System Randall Wayth AADCC Project Scientist On behalf of the Aperture Array Design & Construction Consortium (AADCC) AADCC partners ASTRON (Netherlands) ICRAR/Curtin

More information

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Phased Array Feeds for the SKA WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Dish Array Hierarchy Dish Array L5 Elements PAF Dish Single Pixel Feeds L4 Sub systems

More information

November SKA Low Frequency Aperture Array. Andrew Faulkner

November SKA Low Frequency Aperture Array. Andrew Faulkner SKA Phase 1 Implementation Southern Africa Australia SKA 1 -mid 250 15m dia. Dishes 0.4-3GHz SKA 1 -low 256,000 antennas Aperture Array Stations 50 350/650MHz SKA 1 -survey 90 15m dia. Dishes 0.7-1.7GHz

More information

Technologies for Radio Astronomy

Technologies for Radio Astronomy Technologies for Radio Astronomy CSIRO Astronomy and Space Science Alex Dunning in lieu of Tasso Tzioumis Facilities Program Director Technologies June 2017 Directions for ATNF Engineering (Update since

More information

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities The Australian SKA Pathfinder Project ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities This paper describes the delivery of the digital signal processing

More information

NRC Herzberg Astronomy & Astrophysics

NRC Herzberg Astronomy & Astrophysics NRC Herzberg Astronomy & Astrophysics SKA Pre-Construction Update Séverin Gaudet, Canadian Astronomy Data Centre David Loop, Director Astronomy Technology June 2016 update SKA Pre-Construction NRC Involvement

More information

Technology Drivers, SKA Pathfinders P. Dewdney

Technology Drivers, SKA Pathfinders P. Dewdney Technology Drivers, SKA Pathfinders P. Dewdney Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council Canada National Research Council Canada Conseil national

More information

Focal Plane Arrays & SKA

Focal Plane Arrays & SKA Focal Plane Arrays & SKA Peter Hall SKA International Project Engineer www.skatelescope.org Dwingeloo, June 20 2005 Outline Today: SKA and antennas Phased arrays and SKA Hybrid SKA possibilities» A hybrid

More information

Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office

Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office mccool@skatelescope.org SKA A description Outline Specifications Long Baselines in the SKA Science drivers

More information

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science 1 st science Assessment WS, Jodrell Bank P. Dewdney Mar 27, 2013 Intent of the Baseline Design Basic architecture: 3-telescope, 2-system

More information

Status Report On US SKA Consortium. Jill Tarter SETI Institute August 4, 2000

Status Report On US SKA Consortium. Jill Tarter SETI Institute August 4, 2000 Status Report On US SKA Consortium Jill Tarter SETI Institute August 4, 2000 10 Member Institutions MIT/ Haystack UC Berkeley SETI Institute Cal Tech/JPL Harvard CfA Georgia Tech U. Minnesota NRAO/AUI

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

The SKA New Instrumentation: Aperture Arrays

The SKA New Instrumentation: Aperture Arrays The SKA New Instrumentation: Aperture Arrays A. van Ardenne, A.J. Faulkner, and J.G. bij de Vaate Abstract The radio frequency window of the Square Kilometre Array is planned to cover the wavelength regime

More information

Indian participation in the SKA

Indian participation in the SKA Indian participation in the SKA A summary of activity during 2009-2014 Yogesh Wadadekar March 2014 ASI Annual Meeting Outline The past: upto 2012 The present - 2013 2016 The future - 2017 SKA timeline

More information

Status of Design Planning for Construction

Status of Design Planning for Construction Status of Design Planning for Construction Alistair McPherson 18 May 2016 International Design Teams Project Management and System Engineering based at Jodrell Bank, Manchester, UK ~500 scientists & engineers

More information

ASKAP Industry technical briefing. Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder

ASKAP Industry technical briefing. Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder ! ASKAP Industry technical briefing Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder The Square Kilometre Array 2020 era radio telescope Very large collecting area

More information

The AAMID consortium: Mid Frequency Aperture Array

The AAMID consortium: Mid Frequency Aperture Array The consortium: Mid Frequency Aperture Array Wim van Cappellen, Consortium Lead Livingstone curves Brought to our attention by Ron Ekers Technological capability leads to discovery in astronomy A single

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array Vasily A. Khlebnikov, 44-0865-273302, w.khlebnikov@ieee.org, Kristian Zarb-Adami, 44-0865-273302, kza@astro.ox.ac.uk, Richard

More information

Future Arrays for Radio Astronomy and Space Communications. Sander Weinreb. Presentation to KNI/MDL Seminar, Aug 3, 2009

Future Arrays for Radio Astronomy and Space Communications. Sander Weinreb. Presentation to KNI/MDL Seminar, Aug 3, 2009 Future Arrays for Radio Astronomy and Space Communications Sander Weinreb Presentation to KNI/MDL Seminar, Aug 3, 2009 Square-Km Array Phased-Array Feeds Large format focal plane imaging IC development

More information

Memo 111. SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario)

Memo 111. SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario) Memo 111 SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario) R. Bolton G. Harris A. Faulkner T. Ikin P. Alexander M. Jones S. Torchinsky D. Kant A. van Ardenne D. Kettle P. Wilkinson

More information

The LOFAR Sensor Network. and New Scientific Use of Old Spectrum

The LOFAR Sensor Network. and New Scientific Use of Old Spectrum The LOFAR Sensor Network and New Scientific Use of Old Spectrum Willem A. Baan Netherlands Foundation for Research in Astronomy, ASTRON baan@astron.nl Drive towards higher sensitivity in RA Increase BW

More information

SKA technology: RF systems & signal processing. Mike Jones University of Oxford

SKA technology: RF systems & signal processing. Mike Jones University of Oxford SKA technology: RF systems & signal processing Mike Jones University of Oxford SKA RF processing Dish receivers Cryogenics RF electronics Fast sampling Antenna processing AA receivers RF gain chain Sampling/antenna

More information

New Zealand evlbi. Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi

New Zealand evlbi. Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi New Zealand evlbi Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi Institute for Radio Astronomy and Space Research, AUT University Auckland New Zealand November 2011 Johannesburg 1/80 Radio

More information

Practical Aspects of Focal Plane Array Testing

Practical Aspects of Focal Plane Array Testing Practical Aspects of Focal Plane Array Testing Lessons from an FPA Test-bed at CSIRO, Marsfield Douglas B. Hayman1-3, Trevor S. Bird2,3, Karu P. Esselle3 and Peter J. Hall4 1 2 3 CSIRO Astronomy and Space

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

SKA station cost comparison

SKA station cost comparison SKA station cost comparison John D. Bunton, CSIRO Telecommunications and Industrial Physics 4 August 2003 Introduction Current SKA white papers and updates present cost in a variety of ways which makes

More information

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA Dr. Dirk Baker (KAT FPA Sub-system Manager) Prof. Justin Jonas (SKA SA Project Scientist) Ms. Anita Loots (KAT Project Manager) Mr. David de

More information

Array noise temperature measurements at the Parkes PAF Test-bed Facility

Array noise temperature measurements at the Parkes PAF Test-bed Facility Array noise temperature measurements at the Parkes PAF Test-bed Facility Douglas B. Hayman, Aaron P. Chippendale, Robert D. Shaw and Stuart G. Hay MIDPREP 1 April 2014 COMPUTATIONAL INFORMATICS ASTRONOMY

More information

A report on KAT7 and MeerKAT status and plans

A report on KAT7 and MeerKAT status and plans A report on KAT7 and MeerKAT status and plans SKA SA, Cape Town Office 3rd Floor, The Park, Park Road, Pinelands, Cape Town, South Africa E mail: tony@hartrao.ac.za This is a short memo on the current

More information

Radio Frequency Monitoring for Radio Astronomy

Radio Frequency Monitoring for Radio Astronomy Radio Frequency Monitoring for Radio Astronomy Purpose, Methods and Formats Albert-Jan Boonstra IUCAF RFI-Mitigation Workshop Bonn, March 28-30, 2001 Contents Monitoring goals in radio astronomy Operational

More information

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt Instrument Requirements and Options for Meeting the Science Opportunities 300-3000 MHz P. Dewdney A. Gray, B. Veidt Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National

More information

SKA The Australian Perspective

SKA The Australian Perspective SKA The Australian Perspective Peter J Hall CSIRO SKA Program Leader http://www.atnf.csiro.au/ska Presentation Outline Background Australia and the SKA New seed research program» Philosophy, Working Principles,

More information

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? Darrel Emerson NRAO Tucson NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003. Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array

More information

ngvla Technical Overview

ngvla Technical Overview ngvla Technical Overview Mark McKinnon, Socorro, NM Outline ngvla Nominal Technical Parameters Technical Issues to Consider in Science Use Cases Programmatics Additional Information Pointed or Survey Telescope?

More information

Il progetto SKA: misure di campo elettromagnetico mediante UAV

Il progetto SKA: misure di campo elettromagnetico mediante UAV Applied Electromagnetics and Electronic Devices group Il progetto SKA: misure di campo elettromagnetico mediante UAV in collaboration with POLITECNICO DI TORINO Environment, Land and Infrastructures Department

More information

The Sardinia Radio Telescope conversion, distribution, and receiver control system

The Sardinia Radio Telescope conversion, distribution, and receiver control system Mem. S.A.It. Suppl. Vol. 10, 66 c SAIt 2006 Memorie della Supplementi The Sardinia Radio Telescope conversion, distribution, and receiver control system J. Monari, A. Orfei, A. Scalambra, S. Mariotti,

More information

Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory. 9 August

Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory. 9 August Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory 1 Outline What is the SRT? Why do we need a new one? Design of the new SRT Performance Interference Problems Software Documentation Astronomy

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility SKADS FP6 Meeting Chateau de Limelette 4-6 November, 2009 Talk overview Mid band SKA receiver challenges

More information

LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL

LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL LWA Station Design S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory URSI General Assembly Chicago Aug 11, 2008 JPL Long Wavelength Array (LWA) An LWA Station State of New Mexico, USA

More information

LOFAR: Special Issues

LOFAR: Special Issues Netherlands Institute for Radio Astronomy LOFAR: Special Issues John McKean (ASTRON) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Preamble http://www.astron.nl/~mckean/eris-2011-2.pdf

More information

Dense Aperture Array for SKA

Dense Aperture Array for SKA Dense Aperture Array for SKA Steve Torchinsky EMBRACE Why a Square Kilometre? Detection of HI in emission at cosmological distances R. Ekers, SKA Memo #4, 2001 P. Wilkinson, 1991 J. Heidmann, 1966! SKA

More information

The SKA LOW correlator design challenges

The SKA LOW correlator design challenges The SKA LOW correlator design challenges John Bunton CSP System Engineer C4SKA, Auckland, 9-10 February, 2017 CSIRO ASTRONOMY AND SPACE SCIENCE SKA1 Low antenna station (Australia) Station beamforming

More information

LOFAR: Lessons Learnt

LOFAR: Lessons Learnt LOFAR: Lessons Learnt Michiel van Haarlem van Weeren, Bonafede, Ferrari, Orrù, Pizzo, Shulevski, van der Tol, Macario Jason Hessels & Pulsar Team LOFAR 40 stations in NL and 8 stations throughout Europe

More information

REDUCTION OF ALMA DATA USING CASA SOFTWARE

REDUCTION OF ALMA DATA USING CASA SOFTWARE REDUCTION OF ALMA DATA USING CASA SOFTWARE Student: Nguyen Tran Hoang Supervisor: Pham Tuan Anh Hanoi, September - 2016 1 CONTENS Introduction Interferometry Scientific Target M100 Calibration Imaging

More information

Focal Plane Array Beamformer for the Expanded GMRT: Initial

Focal Plane Array Beamformer for the Expanded GMRT: Initial Focal Plane Array Beamformer for the Expanded GMRT: Initial Implementation on ROACH Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope, NCRA-TIFR, Pune, India kdbuch@gmrt.ncra.tifr.res.in

More information

(The basics of) VLBI Basics. Pedro Elosegui MIT Haystack Observatory. With big thanks to many of you, here and out there

(The basics of) VLBI Basics. Pedro Elosegui MIT Haystack Observatory. With big thanks to many of you, here and out there (The basics of) VLBI Basics Pedro Elosegui MIT Haystack Observatory With big thanks to many of you, here and out there Some of the Points Will Cover Today Geodetic radio telescopes VLBI vs GPS concept

More information

CMB Experiments in Chile. Adrian T. Lee U.C. Berkeley/LBNL 9/7/17

CMB Experiments in Chile. Adrian T. Lee U.C. Berkeley/LBNL 9/7/17 CMB Experiments in Chile Adrian T. Lee U.C. Berkeley/LBNL 9/7/17 1 Current Experiments Advanced ACT (AdvACT) 6000 bolometers, 1.4 arc-min at 150 GHz Bands: 25, 40, 90, 150, 220 GHz POLARBEAR à Simons Array

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

"Octave" Project: Application of Superwide-Band Technologies for the RATAN-600 Continuum radiometers

Octave Project: Application of Superwide-Band Technologies for the RATAN-600 Continuum radiometers : Application of Superwide-Band Technologies for the RATAN-600 Continuum radiometers E-mail: marat@sao.ru A.B.Berlin, Saint Petersburg Branch 196140,Saint Petersburg, Russia E-mail: abb_36@mail.ru N.A.Nizhel

More information

OECD s Innovation Strategy: Key Findings and Policy Messages

OECD s Innovation Strategy: Key Findings and Policy Messages OECD s Innovation Strategy: Key Findings and Policy Messages 2010 MIT Europe Conference, Brussels, 12 October Dirk Pilat, OECD dirk.pilat@oecd.org Outline 1. Why innovation matters today 2. Why policies

More information

EVLA Memo 105. Phase coherence of the EVLA radio telescope

EVLA Memo 105. Phase coherence of the EVLA radio telescope EVLA Memo 105 Phase coherence of the EVLA radio telescope Steven Durand, James Jackson, and Keith Morris National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM, USA 87801 ABSTRACT The

More information

Low-cost water vapour radiometry

Low-cost water vapour radiometry Low-cost water vapour radiometry Prospects and progress Tinus Stander, Pr.Eng, PhD, SMIEEE Hilo, 13 June 2017 Agenda Introduction to CEFIM mm-wave group Project Context An engineer s view of WVR Current

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

Detector Systems. Graeme Carrad

Detector Systems. Graeme Carrad Detector Systems Graeme Carrad November 2011 The Basic Structure of a typical Radio Telescope Antenna Receiver Conversion Digitiser Signal Processing / Correlator They are much the same CSIRO. Radiotelescope

More information

The North America Array

The North America Array The North America Array Technology Development and the Realization of the SKA-High Steven T. Myers & Jim Ulvestad NRAO 15 Oct 2009 USSKA Consortium Meeting Pasadena, CA The North America Array is... Technology

More information

Technology Development in Chinese VLBI Network

Technology Development in Chinese VLBI Network Technology Development in Chinese VLBI Network Xiuzhong ZHANG, Zhihan QIAN, Xiaoyu HONG, Zhiqiang SHEN and Team of CVN xzhang@shao.ac.cn Shanghai Astronomical Observatory, CAS 1st International VLBI Technology

More information

VLBI2010: In search of Sub-mm Accuracy

VLBI2010: In search of Sub-mm Accuracy VLBI2010: In search of Sub-mm Accuracy Bill Petrachenko, Nov 6, 2007, University of New Brunswick What is VLBI2010? VLBI2010 is an effort by the International VLBI Service for Geodesy and Astrometry (IVS)

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Analysis of the strut and feed blockage effects in radio telescopes with compact UWB feeds This document has been downloaded from Chalmers Publication Library (CPL). It is

More information

ALMA Interferometer and Band 7 Cartridge

ALMA Interferometer and Band 7 Cartridge ALMA Interferometer and Band 7 Cartridge B7 Cartridge designed, assembled and tested by: S. Mahieu, D. Maier (mixer team lead), B. Lazareff (now at IPAG) G. Celestin, J. Chalain, D. Geoffroy, F. Laslaz,

More information

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? Darrel Emerson NRAO Tucson Why Single Dish? What's the Alternative? Comparisons between Single-Dish, Phased Array & Interferometers Advantages and Disadvantages of Correlation Interferometer

More information

Assessment of RFI measurements for LOFAR

Assessment of RFI measurements for LOFAR Assessment of RFI measurements for LOFAR Mark Bentum, Albert-Jan Boonstra, Rob Millenaar ASTRON, The Netherlands Telecommunication Engineering, University of Twente, The Netherlands Content LOFAR RFI situation

More information

SKA-LOW: Status Update. André van Es SKA-LOW Project Manager

SKA-LOW: Status Update. André van Es SKA-LOW Project Manager SKA-LOW: Status Update André van Es SKA-LOW Project Manager SKA global community Australia (DoI&S) Canada (NRC-HIA) China (MOST) India (NCRA/DAE) Italy (INAF) Netherlands (NWO) New Zealand (MED) South

More information

Introduction to Radio Interferometry Sabrina Stierwalt Alison Peck, Jim Braatz, Ashley Bemis

Introduction to Radio Interferometry Sabrina Stierwalt Alison Peck, Jim Braatz, Ashley Bemis Introduction to Radio Interferometry Sabrina Stierwalt Alison Peck, Jim Braatz, Ashley Bemis Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

SKA: Economic & Social Benefits Simon Garrington, University of Manchester. Introduction

SKA: Economic & Social Benefits Simon Garrington, University of Manchester. Introduction SKA: Economic & Social Benefits Simon Garrington, University of Manchester Introduction Basic science is increasingly being considered in terms of its economic and societal benefits as well as the pursuit

More information

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 Receivers for VLBI2010 FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 There is no fundamental difference between the receivers for PRIME FOCUS & CASSEGRAIN Except for: the beamwidth

More information

ngvla The Next Generation Very Large Array

ngvla The Next Generation Very Large Array Perspective from the Technical Advisory Council Melissa Soriano, Jet Propulsion Laboratory, California Institute of Technology James Lamb, California Institute of Technology ngvla 2017 California Institute

More information

Phased Array Feeds A new technology for multi-beam radio astronomy

Phased Array Feeds A new technology for multi-beam radio astronomy Phased Array Feeds A new technology for multi-beam radio astronomy Aidan Hotan ASKAP Deputy Project Scientist 2 nd October 2015 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts.

More information

Casper Instrumentation at Green Bank

Casper Instrumentation at Green Bank Casper Instrumentation at Green Bank John Ford September 28, 2009 The NRAO is operated for the National Science Foundation (NSF) by Associated Universities, Inc. (AUI), under a cooperative agreement. GBT

More information

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification

Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Technical Considerations: Nuts and Bolts Project Planning and Technical Justification Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long

More information

Phased Array Feeds & Primary Beams

Phased Array Feeds & Primary Beams Phased Array Feeds & Primary Beams Aidan Hotan ASKAP Deputy Project Scientist 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of parabolic (dish) antennas. Focal plane response to a

More information

Low Frequency Radio Astronomy from the Lunar Surface

Low Frequency Radio Astronomy from the Lunar Surface Low Frequency Radio Astronomy from the Lunar Surface R. J. MacDowall (1), T. J. Lazio (2), J. Burns (3) (1) NASA/GSFC, Greenbelt, MD, USA (2) JPL/Caltech, Pasadena, CA, USA (3) U. Colorado, Boulder, CO,

More information

Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE

Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Current Projects CABB ATCA C/X Upgrade FAST Parkes

More information

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners EVN Observing Bands < 22GHz Today in the EVN separate receivers cover: 18 cm - L band 13 cm - S

More information

Canadian Radio Astronomy Issues

Canadian Radio Astronomy Issues Canadian Radio Astronomy Issues (Report to CORF, 2008) Ken Tapping HIA/NRC - Penticton ken.tapping@nrc-cnrc.gc.ca Main Issues - Activities New Technology Radio Telescope Antenna DRAO Protection Zone Redefinition

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

CSIRO ASTRONOMY AND SPACE SCIENCE

CSIRO ASTRONOMY AND SPACE SCIENCE The MRO, Australia s radio-quiet site: enabling world-class radioastronomy Kate Chow Carol Wilson, Lisa-Harvey Smith, Balt Indermuehle, and others (including MWA) CSIRO ASTRONOMY AND SPACE SCIENCE Outline

More information

Some Notes on Beamforming.

Some Notes on Beamforming. The Medicina IRA-SKA Engineering Group Some Notes on Beamforming. S. Montebugnoli, G. Bianchi, A. Cattani, F. Ghelfi, A. Maccaferri, F. Perini. IRA N. 353/04 1) Introduction: consideration on beamforming

More information

Keysight Technologies, Inc. UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer. Application Note

Keysight Technologies, Inc. UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer. Application Note Keysight Technologies, Inc. UWB Antenna Measurements with the 20 GHz E5071C ENA Network Analyzer Application Note Introduction Ultra-wideband (UWB) is a rapidly growing technology that is used to transmit

More information

Stagnation in Physical Layer Research an Industry Perspective

Stagnation in Physical Layer Research an Industry Perspective Stagnation in Physical Layer Research an Industry Perspective NAE-NATF Event, 23.11.2013, Chantilly, France Wireless Broadband Session Stephan ten Brink tenbrink@inue.uni-stuttgart.de University of Stuttgart

More information

RAPID A Portable and Reconfigurable Imaging Interferometer Array

RAPID A Portable and Reconfigurable Imaging Interferometer Array RAPID A Portable and Reconfigurable Imaging Interferometer Array Colin Lonsdale, Frank Lind and a team of ~10 MIT Haystack Observatory Cambridge University Team Led by Andy Faulkner JPL Team Led by Chris

More information

Very Long Baseline Interferometry. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Very Long Baseline Interferometry. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Very Long Baseline Interferometry Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Introduction Principles and Practice of VLBI High angular resolution of long baselines The geophysics

More information

SKA Phase 1: Costs of Computation. Duncan Hall CALIM 2010

SKA Phase 1: Costs of Computation. Duncan Hall CALIM 2010 SKA Phase 1: Costs of Computation Duncan Hall CALIM 2010 2010 August 24, 27 Outline Motivation Phase 1 in a nutshell Benchmark from 2001 [EVLA Memo 24] Some questions Amdahl s law overrides Moore s law!

More information

Radio Astronomy Transformed

Radio Astronomy Transformed Radio Astronomy Transformed - Aperture Arrays: Past, Present & Future Prof. Michael Garrett ASTRON, the Netherlands Institute for Radio Astronomy Leiden University. Mike Garrett / NAC 1 Early Antenna Arrays

More information

Advances in Wideband SETI

Advances in Wideband SETI Advances in Wideband SETI and Implications for Radio Telescope Design Dr Ian S. Morrison 24 October 2011 Resurgence in SETI New generation radio telescopes and anticipation of the SKA Emergence of wideband

More information

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging? Wide-Band Imaging 24-28 Sept 2012 Narrabri, NSW, Australia Outline : - What is wideband imaging? - Two Algorithms Urvashi Rau - Many Examples National Radio Astronomy Observatory Socorro, NM, USA 1/32

More information

Plan for Imaging Algorithm Research and Development

Plan for Imaging Algorithm Research and Development Plan for Imaging Algorithm Research and Development S. Bhatnagar July 05, 2009 Abstract Many scientific deliverables of the next generation radio telescopes require wide-field imaging or high dynamic range

More information

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array Journal of Computer and Communications, 2016, 4, 116-125 Published Online March 2016 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2016.43018 Time-Frequency System Builds and

More information

Specifications for the GBT spectrometer

Specifications for the GBT spectrometer GBT memo No. 292 Specifications for the GBT spectrometer Authors: D. Anish Roshi 1, Green Bank Scientific Staff, J. Richard Fisher 2, John Ford 1 Affiliation: 1 NRAO, Green Bank, WV 24944. 2 NRAO, Charlottesville,

More information

The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz

The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz Dorothea Samtleben, Max-Planck-Institut für Radioastronomie, Bonn Universe becomes transparent => Release of Cosmic

More information

The GMRT : a look at the Past, Present and Future

The GMRT : a look at the Past, Present and Future The GMRT : a look at the Past, Present and Future Yashwant Gupta & Govind Swarup National Centre for Radio Astrophysics Pune India URSI GASS Montreal 2017 The GMRT : a look at the Past, Present and Future

More information