Smart Antennas in Radio Astronomy

Size: px
Start display at page:

Download "Smart Antennas in Radio Astronomy"

Transcription

1 Smart Antennas in Radio Astronomy Wim van Cappellen

2 Netherlands Institute for Radio Astronomy Our mission is to make radio-astronomical discoveries happen ASTRON is an institute for applied research Strategic collaborations with universities/institutes

3 Overview Context: Square Kilometre Array (SKA) Array concepts and system overview Technology challenges Demonstrator results

4 The Square Kilometre Array 4 Prime characteristics 1. Very large collecting area (km 2 ) sensitivity to detect and image hydrogen in the early universe sensitivity ~ 50 x EVLA, LOFAR 2. Very large field of view fast surveying capability over the whole sky survey speed, up to one million times faster than EVLA 3. Wide frequency range required for the key science projects: low : 70 MHz 450 MHz mid: 300 MHz 10 GHz high: 10 GHz 25+ GHz 4. Large physical extent (3000+ km) capability for detailed imaging of compact objects, and astrometry with thousandth arc second angular resolution from R. Schillizi

5 SKA Artist Impression Up to 1500 dishes (15m diameter) in the central 5 km plus another 1500 from 5 km to km + aperture arrays Radio camera All-sky monitor Connected to a data processor by an optical fibre network from R. Schillizi

6 SKA Structure GHz Wide FoV MHz Wide FoV Dense AA.... Sparse AA Digital Signal Processing Data Time Control To 250 AA Stations 16 Tb/s Central Processing Facility - CPF Correlator AA & Dish Mass Storage Post Processor GHz SPF DSP &/or GHz PAF 12-15m Dishes DSP 80 Gb/s &/or 640 Gb/s... Time Standard Control Processors & User interface Array Technology To 2400 Dishes User interface via Internet

7 SKA ASTRON Aperture arrays: LOFAR Science capable instrument, MHz EMBRACE Technology demonstrator, MHz 144 m WSRT + 80 m Nançay Focal Plane Arrays APERTIF FPA s on the WSRT, MHz

8 Principle of dense FPA s Aim is to provide adequate Field of View to enable large surveys with reflector telescopes Multiple feed horn systems have widely separated beams on the sky (depending on f/d) For a contiguous field-of-view, a dense array feed consisting of electrically small elements is required Multiple elements are combined into compound beams Elements are re-used for various beams FPA feed compound beam reflector compound beam

9 Station Architecture to correlator Optional RF beamformer between antenna and receiver (EMBRACE, LOFAR HBA)

10 Technical challenges Low noise T sys < 50 K (requires <30 K LNA (0.4 db)) LNA s operating at room temperature Mutual coupling variation of antenna impedance with scan angle Approach Design LNA to be insensitive to impedance variations (low r n ) Minimize antenna losses 0.1 db loss gives 7 K T sys contribution 14% of Tsys Avoid lossy materials (e.g. dielectrics)

11 Noise Matching Which optimum are we going to choose from? Selecting LNA device: low F min Low r n

12 Technical challenges Low-cost antenna Cheap manufacturing processes (=less accuracy) Cheap materials (=usually higher losses) Some examples: Laser-cut aluminum plates Antenna screen printed on foil and copper plated (RFID technology) Involve industrial partners at an early stage

13 Beamformer RF-ASIC Channel 2 Channel 1 Beam 1 Vcc B2 Channel 3 Vcc 2 Vcc 3 Vcc 1 Vcc 4 Channel mm OPAR V2 BFC: 1SIGe BiCMOS 0.25μm NXP foundry 4 diff inputs 2 diff outputs degr. 3 bits 0 5 db 3 bits Gain 18 db Z 0 50 Ohm Digital control Vdd Beam mm Vcc B1 Digital control

14 Technical challenges Calibration Requirement: beam should be temporal stable and smoothly varying with frequency Sidelobes and cross-pol can be accepted as long as they are stable (within limits) Important difference with traditional systems: the beam is not determined by mechanics only, but also by electronics. Online calibration is necessary Approach LOFAR: continuous station calibration on A-team sources in parallel to regular observations FPA: calibration source on dish surface

15 Technical challenges Massive amount of data Real-time processing required Costs of digital processing and data transport Power consumption Self-generated RFI Approach FPGA based processing boards (I/O limited!!)

16 From steel to software... Low Frequency Array

17 LOFAR 18 core stations, 18 remote stations 96 Low Band Antennas High Band Tiles per station Station diameter: m (LBA) m (HBA)

18 LOFAR Status First test stations operational Roll-out of central core and remote stations in progress

19 Station based processing ~ 460 Gbps in / ~ 2 Gbps out ~ 1.5 Tmul/s; 96 GByte storage

20 CEntral Processing Facility 10 Tbyte/day Tbyte/day 250 Tbyte/ day

21 LOFAR All-sky synthesis image Observing frequency: 58 MHz 508 s integration time

22 LOFAR as a passive radar All sky image at 55 MHz Duration: 60 sec Cas A Television transmitter DR1 in Fyn, Denmark Reflected on airplane Cygnus A

23 APERTIF prototype APERTIF prototype One dish fully dedicated to FPA Stand alone system (so far) 8 x 7 x 2 elements Vivaldi array Dual polarisation 60 Receiving chains Frequency range GHz 30 MHz bandwidth Element separation: 10 cm 1.5 GHz) Data recording backend (6.7 s) Output is full covariance matrix

24 Element patterns on the sky 6 deg High sidelobes Non-circular main beam Some symmetry in the array, but not perfect 6 deg

25 Beamformer weights Beamformer weights are determined on a strong point source (e.g. Cas A) Effects of antenna array and mutual coupling, blockage are included Airy ring structure is recognized in the weighting coefficients Magnitude of max SNR weights for on-axis 1421 MHz

26 Scanned compound beam

27 Image of M31 M31 with APERTIF prototype 1 telescope, 1 pointing, 121 beams, 6.7s integration time M31 with WSRT 14 telescopes, 163 pointings Single dish, single pointing image!!

28 Summarizing Smart Antennas are an enabling technology for the SKA Technology is demonstrated through SKA Pathfinders ASTRON is developing both Aperture Array and Focal Plane Array systems Wideband Low noise

Towards SKA Multi-beam concepts and technology

Towards SKA Multi-beam concepts and technology Towards SKA Multi-beam concepts and technology SKA meeting Meudon Observatory, 16 June 2009 Philippe Picard Station de Radioastronomie de Nançay philippe.picard@obs-nancay.fr 1 Square Kilometre Array:

More information

May AA Communications. Portugal

May AA Communications. Portugal SKA Top-level description A large radio telescope for transformational science Up to 1 million m 2 collecting area Operating from 70 MHz to 10 GHz (4m-3cm) Two or more detector technologies Connected to

More information

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Professor Tony Brown School of Electrical and Electronic Engineering University of Manchester

More information

March Phased Array Technology. Andrew Faulkner

March Phased Array Technology. Andrew Faulkner Aperture Arrays Michael Kramer Sparse Type of AA selection 1000 Sparse AA-low Sky Brightness Temperature (K) 100 10 T sky A eff Fully sampled AA-mid Becoming sparse Aeff / T sys (m 2 / K) Dense A eff /T

More information

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Phased Array Feeds for the SKA WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Dish Array Hierarchy Dish Array L5 Elements PAF Dish Single Pixel Feeds L4 Sub systems

More information

EMBRACE DS5 presentation

EMBRACE DS5 presentation EMBRACE presentation Paris 4 th September 2006 ASTRON, The Netherlands Acknowledgement The authors wish to acknowledge the enormous contribution of the whole EMBRACE team presently located at: ASTRON,

More information

Phased Array Feed Design. Stuart Hay 23 October 2009

Phased Array Feed Design. Stuart Hay 23 October 2009 Phased Array Feed Design Stuart Hay 23 October 29 Outline Why phased array feeds (PAFs) for radioastronomy? General features and issues of PAF approach Connected-array PAF approach in ASKAP Why PAFs? High

More information

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009 Overview of the SKA P. Dewdney International SKA Project Engineer Nov 9, 2009 Outline* 1. SKA Science Drivers. 2. The SKA System. 3. SKA technologies. 4. Trade-off space. 5. Scaling. 6. Data Rates & Data

More information

Phased Array Feeds for Parkes. Robert Braun Science with 50 Years Young

Phased Array Feeds for Parkes. Robert Braun Science with 50 Years Young Phased Array Feeds for Parkes Robert Braun Science with Parkes @ 50 Years Young Outline PAFs in the SKA context PAFSKA activities Apertif, BYU, NRAO, NAIC, DRAO, ASKAP ASKAP PAF MkI ASKAP PAF MkII Parkes:

More information

Dense Aperture Array for SKA

Dense Aperture Array for SKA Dense Aperture Array for SKA Steve Torchinsky EMBRACE Why a Square Kilometre? Detection of HI in emission at cosmological distances R. Ekers, SKA Memo #4, 2001 P. Wilkinson, 1991 J. Heidmann, 1966! SKA

More information

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA Dr. Dirk Baker (KAT FPA Sub-system Manager) Prof. Justin Jonas (SKA SA Project Scientist) Ms. Anita Loots (KAT Project Manager) Mr. David de

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems

Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems The Netherlands Institute for Radio Astronomy (ASTRON) Supported by part: - The Netherlands Organization for Scientific

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility SKADS FP6 Meeting Chateau de Limelette 4-6 November, 2009 Talk overview Mid band SKA receiver challenges

More information

Focal Plane Arrays & SKA

Focal Plane Arrays & SKA Focal Plane Arrays & SKA Peter Hall SKA International Project Engineer www.skatelescope.org Dwingeloo, June 20 2005 Outline Today: SKA and antennas Phased arrays and SKA Hybrid SKA possibilities» A hybrid

More information

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO)

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO) Radio Interferometers Around the World Amy J. Mioduszewski (NRAO) A somewhat biased view of current interferometers Limited to telescopes that exist or are in the process of being built (i.e., I am not

More information

Phased Array Feeds A new technology for multi-beam radio astronomy

Phased Array Feeds A new technology for multi-beam radio astronomy Phased Array Feeds A new technology for multi-beam radio astronomy Aidan Hotan ASKAP Deputy Project Scientist 2 nd October 2015 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts.

More information

Focal Plane Array Beamformer for the Expanded GMRT: Initial

Focal Plane Array Beamformer for the Expanded GMRT: Initial Focal Plane Array Beamformer for the Expanded GMRT: Initial Implementation on ROACH Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope, NCRA-TIFR, Pune, India kdbuch@gmrt.ncra.tifr.res.in

More information

A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz. Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003

A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz. Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003 A Multi-Fielding SKA Covering the Range 100 MHz 22 GHz Peter Hall and Aaron Chippendale, CSIRO ATNF 24 November 2003 1. Background Various analyses, including the recent IEMT report [1], have noted that

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

The AAMID consortium: Mid Frequency Aperture Array

The AAMID consortium: Mid Frequency Aperture Array The consortium: Mid Frequency Aperture Array Wim van Cappellen, Consortium Lead Livingstone curves Brought to our attention by Ron Ekers Technological capability leads to discovery in astronomy A single

More information

Technology Drivers, SKA Pathfinders P. Dewdney

Technology Drivers, SKA Pathfinders P. Dewdney Technology Drivers, SKA Pathfinders P. Dewdney Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council Canada National Research Council Canada Conseil national

More information

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array Vasily A. Khlebnikov, 44-0865-273302, w.khlebnikov@ieee.org, Kristian Zarb-Adami, 44-0865-273302, kza@astro.ox.ac.uk, Richard

More information

November SKA Low Frequency Aperture Array. Andrew Faulkner

November SKA Low Frequency Aperture Array. Andrew Faulkner SKA Phase 1 Implementation Southern Africa Australia SKA 1 -mid 250 15m dia. Dishes 0.4-3GHz SKA 1 -low 256,000 antennas Aperture Array Stations 50 350/650MHz SKA 1 -survey 90 15m dia. Dishes 0.7-1.7GHz

More information

SKA station cost comparison

SKA station cost comparison SKA station cost comparison John D. Bunton, CSIRO Telecommunications and Industrial Physics 4 August 2003 Introduction Current SKA white papers and updates present cost in a variety of ways which makes

More information

Practical Aspects of Focal Plane Array Testing

Practical Aspects of Focal Plane Array Testing Practical Aspects of Focal Plane Array Testing Lessons from an FPA Test-bed at CSIRO, Marsfield Douglas B. Hayman1-3, Trevor S. Bird2,3, Karu P. Esselle3 and Peter J. Hall4 1 2 3 CSIRO Astronomy and Space

More information

Phased Array Feeds & Primary Beams

Phased Array Feeds & Primary Beams Phased Array Feeds & Primary Beams Aidan Hotan ASKAP Deputy Project Scientist 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of parabolic (dish) antennas. Focal plane response to a

More information

ASKAP Industry technical briefing. Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder

ASKAP Industry technical briefing. Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder ! ASKAP Industry technical briefing Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder The Square Kilometre Array 2020 era radio telescope Very large collecting area

More information

The SKA New Instrumentation: Aperture Arrays

The SKA New Instrumentation: Aperture Arrays The SKA New Instrumentation: Aperture Arrays A. van Ardenne, A.J. Faulkner, and J.G. bij de Vaate Abstract The radio frequency window of the Square Kilometre Array is planned to cover the wavelength regime

More information

Phased Array Feeds A new technology for wide-field radio astronomy

Phased Array Feeds A new technology for wide-field radio astronomy Phased Array Feeds A new technology for wide-field radio astronomy Aidan Hotan ASKAP Project Scientist 29 th September 2017 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts

More information

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science 1 st science Assessment WS, Jodrell Bank P. Dewdney Mar 27, 2013 Intent of the Baseline Design Basic architecture: 3-telescope, 2-system

More information

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt Instrument Requirements and Options for Meeting the Science Opportunities 300-3000 MHz P. Dewdney A. Gray, B. Veidt Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National

More information

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities The Australian SKA Pathfinder Project ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities This paper describes the delivery of the digital signal processing

More information

LOFAR: Special Issues

LOFAR: Special Issues Netherlands Institute for Radio Astronomy LOFAR: Special Issues John McKean (ASTRON) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Preamble http://www.astron.nl/~mckean/eris-2011-2.pdf

More information

SKA technology: RF systems & signal processing. Mike Jones University of Oxford

SKA technology: RF systems & signal processing. Mike Jones University of Oxford SKA technology: RF systems & signal processing Mike Jones University of Oxford SKA RF processing Dish receivers Cryogenics RF electronics Fast sampling Antenna processing AA receivers RF gain chain Sampling/antenna

More information

2-PAD: An Introduction. The 2-PAD Team

2-PAD: An Introduction. The 2-PAD Team 2-PAD: An Introduction The 2-PAD Team Workshop, Jodrell Bank, 10 Presented th November 2009 by 2-PAD: Dr An Georgina Introduction Harris Georgina Harris for the 2-PAD Team 1 2-PAD Objectives Demonstrate

More information

The Future: Ultra Wide Band Feeds and Focal Plane Arrays

The Future: Ultra Wide Band Feeds and Focal Plane Arrays The Future: Ultra Wide Band Feeds and Focal Plane Arrays Germán Cortés-Medellín NAIC Cornell University 1-1 Overview Chalmers Feed Characterization of Chalmers Feed at Arecibo Focal Plane Arrays for Arecibo

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Analysis of the strut and feed blockage effects in radio telescopes with compact UWB feeds This document has been downloaded from Chalmers Publication Library (CPL). It is

More information

Focal Plane Array Related Activities at CSIRO

Focal Plane Array Related Activities at CSIRO ICT Centre /antennas Focal Plane Array Related Activities at CSIRO Trevor S. Bird (1), Douglas Hayman (1), Suzy Jackson (2) & Dick Ferris (2) (1) CSIRO ICT Centre (2) CSIRO Australia Telescope National

More information

Recent Developments in Measuring Signal and Noise in Phased Array Feeds at CSIRO

Recent Developments in Measuring Signal and Noise in Phased Array Feeds at CSIRO Recent Developments in Measuring Signal and Noise in Phased Array Feeds at CSIRO A. P. Chippendale, D. McConnell, K. Bannister, N. Nikolic, A. W. Hotan, K. W. Smart, R. D. Shaw, D. B. Hayman, S. G. Hay

More information

CryoPAF GHz cryogenic phased array feed receiver

CryoPAF GHz cryogenic phased array feed receiver CryoPAF 2.8 5.18 GHz cryogenic phased array feed receiver Lisa Locke 1, Dominic Garcia 1, Mark Halman 1, Doug Henke 1, Gary Hovey 2, Frank Jiang 1, Lewis Knee 1, Gordon Lacy 2, Vlad Reshtov 1, Michael

More information

Memo 111. SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario)

Memo 111. SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario) Memo 111 SKADS Benchmark Scenario Design and Costing 2 (The SKA Phase 2 AA Scenario) R. Bolton G. Harris A. Faulkner T. Ikin P. Alexander M. Jones S. Torchinsky D. Kant A. van Ardenne D. Kettle P. Wilkinson

More information

Future Arrays for Radio Astronomy and Space Communications. Sander Weinreb. Presentation to KNI/MDL Seminar, Aug 3, 2009

Future Arrays for Radio Astronomy and Space Communications. Sander Weinreb. Presentation to KNI/MDL Seminar, Aug 3, 2009 Future Arrays for Radio Astronomy and Space Communications Sander Weinreb Presentation to KNI/MDL Seminar, Aug 3, 2009 Square-Km Array Phased-Array Feeds Large format focal plane imaging IC development

More information

Array noise temperature measurements at the Parkes PAF Test-bed Facility

Array noise temperature measurements at the Parkes PAF Test-bed Facility Array noise temperature measurements at the Parkes PAF Test-bed Facility Douglas B. Hayman, Aaron P. Chippendale, Robert D. Shaw and Stuart G. Hay MIDPREP 1 April 2014 COMPUTATIONAL INFORMATICS ASTRONOMY

More information

SKA-low and the Aperture Array Verification System

SKA-low and the Aperture Array Verification System SKA-low and the Aperture Array Verification System Randall Wayth AADCC Project Scientist On behalf of the Aperture Array Design & Construction Consortium (AADCC) AADCC partners ASTRON (Netherlands) ICRAR/Curtin

More information

Reinventing Radio Astronomy PAF Technology. John O Sullivan, Centre for Astronomy and Space Science, CSIRO 2 April 2013

Reinventing Radio Astronomy PAF Technology. John O Sullivan, Centre for Astronomy and Space Science, CSIRO 2 April 2013 Reinventing Radio Astronomy PAF Technology John O Sullivan, Centre for Astronomy and Space Science, CSIRO 2 April 2013 The origins Beginning of time Optical and later infrared - power detectors/bolometers

More information

ATCA Antenna Beam Patterns and Aperture Illumination

ATCA Antenna Beam Patterns and Aperture Illumination 1 AT 39.3/116 ATCA Antenna Beam Patterns and Aperture Illumination Jared Cole and Ravi Subrahmanyan July 2002 Detailed here is a method and results from measurements of the beam characteristics of the

More information

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H OUTLINE Antenna optics Aberrations Diffraction Single feeds Types of feed Bandwidth Imaging feeds

More information

EVLA System Commissioning Results

EVLA System Commissioning Results EVLA System Commissioning Results EVLA Advisory Committee Meeting, March 19-20, 2009 Rick Perley EVLA Project Scientist t 1 Project Requirements EVLA Project Book, Chapter 2, contains the EVLA Project

More information

Green Bank Instrumentation circa 2030

Green Bank Instrumentation circa 2030 Green Bank Instrumentation circa 2030 Dan Werthimer and 800 CASPER Collaborators http://casper.berkeley.edu Upcoming Nobel Prizes with Radio Instrumentation Gravitational Wave Detection (pulsar timing)

More information

Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE

Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE Technologies for Radio Astronomy Mark Bowen Acting Theme Leader Technologies for Radio Astronomy October 2012 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Current Projects CABB ATCA C/X Upgrade FAST Parkes

More information

NRC Herzberg Astronomy & Astrophysics

NRC Herzberg Astronomy & Astrophysics NRC Herzberg Astronomy & Astrophysics SKA Pre-Construction Update Séverin Gaudet, Canadian Astronomy Data Centre David Loop, Director Astronomy Technology June 2016 update SKA Pre-Construction NRC Involvement

More information

Multi-Mode Antennas for Hemispherical Field-of-View Coverage

Multi-Mode Antennas for Hemispherical Field-of-View Coverage Multi-Mode Antennas for Hemispherical Field-of-View Coverage D.S. Prinsloo P. Meyer R. Maaskant M.V. Ivashina Dept. of Electrical and Electronic Engineering Dept. of Signals and Systems Stellenbosch, South

More information

Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array

Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array M. Yang, D. Zhang, L. Danoon and A. K. Brown, School of Electrical and Electronic Engineering The University

More information

Technologies for Radio Astronomy

Technologies for Radio Astronomy Technologies for Radio Astronomy CSIRO Astronomy and Space Science Alex Dunning in lieu of Tasso Tzioumis Facilities Program Director Technologies June 2017 Directions for ATNF Engineering (Update since

More information

FIDA3: A Novel Active Array for the Mid-SKA

FIDA3: A Novel Active Array for the Mid-SKA : A Novel Active Array for the Mid-SKA O. García-Pérez FG-IGN oscar.perez@oan.es J.A. López-Fernández, D. Segovia-Vargas, L.E. García-Muñoz, V. González-Posadas, J.L. Vázquez-Roy, J.M. Serna-Puente, E.

More information

Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office

Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office Roshene McCool Domain Specialist in Signal Transport and Networks SKA Program Development Office mccool@skatelescope.org SKA A description Outline Specifications Long Baselines in the SKA Science drivers

More information

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle Antennas 97 Aperture Antennas Reflectors, horns. High Gain Nearly real input impedance Huygens Principle Each point of a wave front is a secondary source of spherical waves. 97 Antennas 98 Equivalence

More information

LOFAR: Lessons Learnt

LOFAR: Lessons Learnt LOFAR: Lessons Learnt Michiel van Haarlem van Weeren, Bonafede, Ferrari, Orrù, Pizzo, Shulevski, van der Tol, Macario Jason Hessels & Pulsar Team LOFAR 40 stations in NL and 8 stations throughout Europe

More information

L-Band and X-Band Antenna Design and Development for NeXtRAD

L-Band and X-Band Antenna Design and Development for NeXtRAD L-Band and X-Band Antenna Design and Development for NeXtRAD S. T. Paine, P. Cheng, D. W. O Hagan, M. R. Inggs, H. D. Griffiths* Department of Electrical Engineering Radar Remote Sensing Group University

More information

Recent Results with the UAV-based Array Verification and Calibration System

Recent Results with the UAV-based Array Verification and Calibration System Recent Results with the UAV-based Array Verification and Calibration System Giuseppe Virone POLITECNICO DI TORINO DIATI Framework Research contract between INAF and CNR-IEIIT Title: Power Pattern Measurements

More information

Final Feed Selection Study For the Multi Beam Array System

Final Feed Selection Study For the Multi Beam Array System National Astronomy and Ionosphere Center Arecibo Observatory Focal Array Memo Series Final Feed Selection Study For the Multi Beam Array System By: Germán Cortés-Medellín CORNELL July/19/2002 U n i v e

More information

R&D AT NANÇAY FOR RADIO ASTRONOMY DETECTORS AND SYSTEMS

R&D AT NANÇAY FOR RADIO ASTRONOMY DETECTORS AND SYSTEMS The Title of this Volume Editors : will be set by the publisher EAS Publications Series, Vol.?, 2009 R&D AT NANÇAY FOR RADIO ASTRONOMY DETECTORS AND SYSTEMS Stéphane Bosse 1, Marie-Line Grima 1, Guy Kenfack

More information

SKA Phase 1: Costs of Computation. Duncan Hall CALIM 2010

SKA Phase 1: Costs of Computation. Duncan Hall CALIM 2010 SKA Phase 1: Costs of Computation Duncan Hall CALIM 2010 2010 August 24, 27 Outline Motivation Phase 1 in a nutshell Benchmark from 2001 [EVLA Memo 24] Some questions Amdahl s law overrides Moore s law!

More information

ngvla Technical Overview

ngvla Technical Overview ngvla Technical Overview Mark McKinnon, Socorro, NM Outline ngvla Nominal Technical Parameters Technical Issues to Consider in Science Use Cases Programmatics Additional Information Pointed or Survey Telescope?

More information

The LOFAR Sensor Network. and New Scientific Use of Old Spectrum

The LOFAR Sensor Network. and New Scientific Use of Old Spectrum The LOFAR Sensor Network and New Scientific Use of Old Spectrum Willem A. Baan Netherlands Foundation for Research in Astronomy, ASTRON baan@astron.nl Drive towards higher sensitivity in RA Increase BW

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Fourier Transforms Interferometer block diagram Antenna fundamentals Types of antennas Antenna performance

More information

Study towards cryogenic Phased Array Radar Systems

Study towards cryogenic Phased Array Radar Systems Study towards cryogenic Phased Array Radar Systems A. Froehlich, M. Tiesing and N. Ben Bekhti, F. Koenig, S. Putselyk, L. Naumann, F. Rahlf Fraunhofer Institute for High Frequency Physics and Radar Techniques

More information

ASTRON/LOFAR Reproduction in whole or in part is prohibited without written consent of the 1au

ASTRON/LOFAR Reproduction in whole or in part is prohibited without written consent of the 1au The Data Explosion in Radio-Astronomy Virtual Instruments and E-LOFAR Marco de Vos ASTRON Director of R&D (devos@astron.nl) Drenthe-light Early history and near future Start of radio-astronomy: Grote Reber,

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2011 Astronomy 423 at UNM Radio Astronomy Radio Window 2 spans a wide range of λ and ν from λ ~ 0.33 mm to ~ 20 m! (ν = 1300 GHz to 15 MHz ) Outline

More information

Joeri van Leeuwen The dynamic radio sky: Pulsars

Joeri van Leeuwen The dynamic radio sky: Pulsars Joeri van Leeuwen The dynamic radio sky: Pulsars Joeri van Leeuwen The dynamic radio sky: Pulsars Coenen, van Leeuwen et al. 2015 Joeri van Leeuwen The dynamic radio sky: Pulsars Joeri van Leeuwen The

More information

Calibratability and its impact on configuration design for the LOFAR and SKA phased array radio telescopes

Calibratability and its impact on configuration design for the LOFAR and SKA phased array radio telescopes RADIO SCIENCE, VOL. 46,, doi:10.1029/2011rs004733, 2011 Calibratability and its impact on configuration design for the LOFAR and SKA phased array radio telescopes S. J. Wijnholds, 1 J. D. Bregman, 1 and

More information

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013 Newsletter 4.4 July 2013 Antenna Magus version 4.4 released! We are pleased to announce the new release of Antenna Magus Version 4.4. This release sees the addition of 5 new antennas: Horn-fed truncated

More information

THE purpose of beamforming is to precisely align the

THE purpose of beamforming is to precisely align the 1 Beamforming Techniques for Large-N Aperture Arrays K. Zarb-Adami, A. Faulkner, J.G. Bij de Vaate, G.W. Kant and P.Picard arxiv:1008.4047v1 [astro-ph.im] 24 Aug 2010 Abstract Beamforming is central to

More information

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners EVN Observing Bands < 22GHz Today in the EVN separate receivers cover: 18 cm - L band 13 cm - S

More information

Status of LOFAR. Ronald Nijboer (ASTRON) On behalf of the LOFAR team

Status of LOFAR. Ronald Nijboer (ASTRON) On behalf of the LOFAR team Status of LOFAR Ronald Nijboer (ASTRON) On behalf of the LOFAR team ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) -1- LOFAR: LOw Frequency ARray LBA: 10/30 80 MHz; HBA: 120

More information

The SKA LOW correlator design challenges

The SKA LOW correlator design challenges The SKA LOW correlator design challenges John Bunton CSP System Engineer C4SKA, Auckland, 9-10 February, 2017 CSIRO ASTRONOMY AND SPACE SCIENCE SKA1 Low antenna station (Australia) Station beamforming

More information

BRAND EVN AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-b AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners digital VLBI-receiver: ~1.5-15.5 GHz for the EVN and other telescopes Prototype for

More information

Characteristics of Smooth-Walled Spline-Profile Horns for Tightly Packed Feed-Array of RATAN-600 Radio Telescope

Characteristics of Smooth-Walled Spline-Profile Horns for Tightly Packed Feed-Array of RATAN-600 Radio Telescope Characteristics of Smooth-Walled Spline-Profile Horns for Tightly Packed Feed-Array of RATAN-600 Radio Telescope N. POPENKO 1, R. CHERNOBROVKIN 1, I. IVANCHENKO 1, C. GRANET 3, V. KHAIKIN 2 1 Usikov Institute

More information

RF Shielded rooms. Controlled Electromagnetic Environments

RF Shielded rooms. Controlled Electromagnetic Environments RF Shielded rooms Controlled Electromagnetic Environments RF shielded rooms 03 Inner finishing 05 Tempest qualified rooms 05 Radio astronomy applications 06 MRI rooms 07 Controlled Electromagnetic Environments

More information

OLFAR Orbiting Low-Frequency Antennas for Radio Astronomy. Mark Bentum

OLFAR Orbiting Low-Frequency Antennas for Radio Astronomy. Mark Bentum Orbiting Low-Frequency Antennas for Radio Astronomy Mark Bentum JENAM, April 22, 2009 Outline Presentation of a new concept for low frequency radio astronomy in space Why low frequencies? Why in space?

More information

The Sardinia Radio Telescope conversion, distribution, and receiver control system

The Sardinia Radio Telescope conversion, distribution, and receiver control system Mem. S.A.It. Suppl. Vol. 10, 66 c SAIt 2006 Memorie della Supplementi The Sardinia Radio Telescope conversion, distribution, and receiver control system J. Monari, A. Orfei, A. Scalambra, S. Mariotti,

More information

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope kdbuch@gmrt.ncra.tifr.res.in Low frequency dipole array

More information

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners digital VLBI-receiver: ~1.5-15.5 GHz for the EVN and other telescopes Prototype for prime focus

More information

Radio Frequency Monitoring for Radio Astronomy

Radio Frequency Monitoring for Radio Astronomy Radio Frequency Monitoring for Radio Astronomy Purpose, Methods and Formats Albert-Jan Boonstra IUCAF RFI-Mitigation Workshop Bonn, March 28-30, 2001 Contents Monitoring goals in radio astronomy Operational

More information

ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics

ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics John Tuthill, Tim Bateman, Grant Hampson, John Bunton, Andrew Brown, Daniel George, Mia Baquiran August 2016 CASS

More information

Modification of Large Reflector Antennas for Low Frequency Operation. Mahmud Harun

Modification of Large Reflector Antennas for Low Frequency Operation. Mahmud Harun Modification of Large Reflector Antennas for Low Frequency Operation Mahmud Harun Dissertation Submitted to the Faculty of Virginia Polytechnic Institute and State University in Partial Fulfillment of

More information

Chapter 5. Array of Star Spirals

Chapter 5. Array of Star Spirals Chapter 5. Array of Star Spirals The star spiral was introduced in the previous chapter and it compared well with the circular Archimedean spiral. This chapter will examine the star spiral in an array

More information

VLBI2010: In search of Sub-mm Accuracy

VLBI2010: In search of Sub-mm Accuracy VLBI2010: In search of Sub-mm Accuracy Bill Petrachenko, Nov 6, 2007, University of New Brunswick What is VLBI2010? VLBI2010 is an effort by the International VLBI Service for Geodesy and Astrometry (IVS)

More information

Aperture Arrays for the SKA: the SKADS White Paper

Aperture Arrays for the SKA: the SKADS White Paper Design Study 8 Task 1 Deliverable 0.5 : DS White Paper Authors The SKADS Teams System Group: Andrew Faulkner (Chair) Steve Torchinsky Paul Alexander Steve Rawlings Dion Kant Stelio Montebugnoli Philippe

More information

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley Allen Telescope Array & Radio Frequency Interference Geoffrey C. Bower UC Berkeley Allen Telescope Array Large N design 350 x 6.1m antennas Sensitivity of the VLA Unprecedented imaging capabilities Continuous

More information

Memo 136. SKA PAF Beamformer. J.D. Bunton (CSIRO) August

Memo 136. SKA PAF Beamformer. J.D. Bunton (CSIRO) August Memo 136 SKA PAF J.D. Bunton (CSIRO) August 2011 www.skatelescope.org/publications SKA PAF 23 August 2011 Project: ASKAP Prepared by: CSIRO Approved by: Iain Collings John Bunton CSIRO, ICT Centre Enquiries

More information

Detection & Localization of L-Band Satellites using an Antenna Array

Detection & Localization of L-Band Satellites using an Antenna Array Detection & Localization of L-Band Satellites using an Antenna Array S.W. Ellingson Virginia Tech ellingson@vt.edu G.A. Hampson Ohio State / ESL June 2004 Introduction Traditional radio astronomy uses

More information

G. Serra.

G. Serra. G. Serra gserra@oa-cagliari.inaf.it on behalf of Metrology team* *T. Pisanu, S. Poppi, F.Buffa, P. Marongiu, R. Concu, G. Vargiu, P. Bolli, A. Saba, M.Pili, E.Urru Astronomical Observatory of Cagliari

More information

An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range

An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range Larry D'Addario 1, Nathan Clarke 2, Robert Navarro 1, and Joseph Trinh 1 1 Jet Propulsion Laboratory,

More information

Progress Towards Coherent Multibeam Arrays

Progress Towards Coherent Multibeam Arrays Progress Towards Coherent Multibeam Arrays Doug Henke NRC Herzberg Astronomy and Astrophysics, Victoria, Canada August 2016 ALMA Band 3 Receiver (84 116 GHz) Dual linear, 2SB Feed horn OMT (two linear

More information

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg Correlator Development at Haystack Roger Cappallo Haystack-NRAO Technical Mtg. 2006.10.26 History of Correlator Development at Haystack ~1973 Mk I 360 Kb/s x 2 stns. 1981 Mk III 112 Mb/s x 4 stns. 1986

More information

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Y. Pihlström, University of New Mexico August 4, 2008 1 Introduction The Long Wavelength Array (LWA) will optimally

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information