LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL

Size: px
Start display at page:

Download "LWA Station Design. S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory. URSI General Assembly Chicago Aug 11, 2008 JPL"

Transcription

1 LWA Station Design S. Ellingson, Virginia Tech N. Kassim, U.S. Naval Research Laboratory URSI General Assembly Chicago Aug 11, 2008 JPL

2 Long Wavelength Array (LWA) An LWA Station State of New Mexico, USA Technical Goals: MHz tuning range Baselines up to 400 km for resolution [20,80] MHz 52 stations ; (mjy-class sensitivity Each station is an array of dipole-like elements in ~100 m diameter aperture for FOV = [8,2] Access to Galactic Center (low gain antennas)

3 Astrophysics LWA Science Ionospheric Physics Cosmology High redshift radio galaxies, containing the earliest black holes Evolution of dark matter & dark energy by differentiating relaxed & merging clusters Acceleration, Propagation & Turbulence in the Interstellar Medium Origin, spectrum & distribution of Galactic cosmic rays Supernova remnants & Galactic evolution Pulsars Unprecedented continuous spatial & temporal imaging of the ionosphere Test and improve global ionospheric models Solar Science & Space Weather Radio heliography of solar bursts & coronal mass ejections Solar radar Exploration of the Transient Universe New coherent sources (More GCRT J s?) GRB Prompt Emission Magnetar Flares Extra-Solar Jupiters: Detect magnetic field; conditions for life? Poorly explored parameter space new sources

4 Dual Polarized Antennas ( Stands ) Per Station Conservative Reasonable Each station needs to contribute sufficient collecting area to ensure calibratibility. Estimates of # of dual-pol antenna elements (stands) required per station, extrapolating from VLA 74 MHz experience N a = 256 selected LWA Memo 94 Galactic center at maximum 74 MHz

5 Station Antenna Array Geometry 110 m (N-S) x 92 m (E-W) 4 m min. stand separation Every element is digitized to allow unconstrained pointing of beams (among other things) Cost N a, so prefer to minimize N a Using 256 stands results in spacings 3 x Nyquist at 80 MHz Therefore, array has to have irregular spacings to mitigate against aliasing LWA Memos 73, 139 Possible elliptical (extended N-S) geometry to reduce variation in beam shape for low-elevation transit beam pointing

6 Big Blade Active Antenna Front end noise temp required to achieve indicated level of G.N.D. Tied Fork Current front end noise temp (~250K) Goal front end noise temp (120K) Confirmed (approximately) In field measurements

7 Mutual Coupling Collecting Area Circular 100 m dia station, Irregular geometry, Min. 4 m between stands Simple dipoles, 38 MHz [m 2 ] [m 2 ] Single Dipole, Simple model Single Dipole, Rx-mode NEC2 Single Dipole, Tx-mode NEC2 Array, Rx-mode NEC2 (stand average) Aperture Efficiency LWA Memo 73 Effect of mutual coupling

8 Mutual Coupling Beam Shape Shown here: Magnitude and phase of current induced at each feedpoint (moment method) Collecting Area, Pointing Zenith Phase, Pointing Zenith Only a small effect on beam shape and sidelobe level for any given pointing Collecting Area, Pointing 45 o Phase, Pointing 45 o Bigger concern is rumbling of beam as a function of direction of arrival Rumbling doesn t stop even if you fix the beam! LWA Memo 67 Actual impact on imaging not yet clear

9 Station Electronics Architecture Stand 1 84 samples Coarse delay I/Q & Dec by 2 Delay (for BF), Dispersion, Polarization 78 MHz BW, 98 MSPS AB AB Active Baluns Long Coax ARX Gain & Filter A/D 196 MSPS 12 bits T&Z = Tune within passband, filter, and reduce sample rate ( tune & zoom ) FIFO T&Z 3 more beams T & Z 100 khz from passband FIFO 57 ms 98 MSPS FIR FIR Storage (continuous) (TBN) Storage (one-shot) (TBW) 2x2 Matrx Mult. Sum to Form Beam 1 Sum to Form Beam 2 Sum to Form Beam 3 Sum to Form Beam 4 Available to correlator: 4 completely independent beams 2 calibrated polarizations per beam 2 tunings per beam, MHz each, 4096 channels each Other products: Full bandwidth beams All dipoles, full bandwidth for 57 ms ( TBW ) All dipoles, 100 khz continuously ( TBN ) MHz from passband; 4096 channels T & Z T & Z

10 Analog Receiver (ARX) Gain & selectivity only (Direct sampling architecture) No LOs 4 channels (2 stands) per board (128/station) LWA Memo 121 Gain Control + Reconfigurable Bandpass: (1) MHz (2) 41 MHz highpass shelf filter (x 2) (equalizes HF) (3) MHz (safe(r) mode)

11 Direct Sampling A/D Confirmed performance of direct sampling is consistent with LWA specs 200 MSPS, 12 bit A/D prototype board (Analog Devices AD ) Evaluated also in lab; found OK Quick & dirty front end using ETA active antenna + ETA ARX modified for MHz; Site near Blacksburg, VA HF ATSC Carrier NTSC Carrier FM Broadcast LWA Memos 127, 130

12 Frequency Plan A/D output (196 MSPS real) Beamformer (98 MSPS complex) Fs/4 Shift Left Multirate LPF + Decimate by 2 Challenge here is to achieve: Best possible rejection of strong out of band signals, consistent with: Bandwidth (78 MHz) and Low complexity LWA Memo MHz aliases onto itself MHz aliases onto itself

13 Polarization & Dispersion Calibration Beams should be not only full bandwidth (78 MHz) and fully independent, but also well calibrated. Xpol! Perfect calibration possible, but only for a single frequency and beam pointing, or if FIR filters of infinite length are available Cable dispersion further complicates this: Z=74, φ=45, M=16 Reasonable performance seems possible with M=16 (98 MSPS) FIR filters Z=74, φ=45, M=4 XPD 5-20 db Z=74, φ=45, M=16 (calibrated for Z=0) LWA Memo 138 XPD negl. ~ 10 db XPD negl.

14 Effect of Fence 120 m x 120 m security fence required around array effect? Biggest impact is for H-plane pattern, when collinear (as shown in these moment method simulations) < 1 db gain variation, but oscillates Effect depends on ground type 38 MHz 80 MHz

15 Acknowledgements Site infrastructure, cable system, electronic shelter (J. Copeland, A. Kerkhoff, D. Munton, J. York) Program management, systems engineering, analog receivers, civil engineering (J. Craig, W. Gerstle, Y. Pihlstrom, L. Rickard, G. Taylor) Antennas, front end, array geometry (T. Clarke, A. Cohen, B. Hicks, N. Paravastu, P. Ray) JPL Digital electronics (L. D Addario, R. Navarro) Array, signal processing, calibration, monitoring & control, architecture (S. Ellingson, M. Harun, K. Lee) + Many others at these institutions also involved in the LWA project + Many others at other institutions helping out Office of Naval Research

The First Station of the Long Wavelength Array

The First Station of the Long Wavelength Array University of New Mexico E-mail: henning@cosmos.phys.unm.edu Steven W. Ellingson Virginia Polytechnic Institute and State University E-mail: ellingson@vt.edu Gregory B. Taylor, Joseph Craig, Ylva Pihlström,

More information

arxiv: v1 [astro-ph.im] 3 Sep 2010

arxiv: v1 [astro-ph.im] 3 Sep 2010 arxiv:1009.0666v1 [astro-ph.im] 3 Sep 2010 University of New Mexico E-mail: henning@cosmos.phys.unm.edu Steven W. Ellingson Virginia Polytechnic Institute and State University E-mail: ellingson@vt.edu

More information

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Steve Ellingson (Virginia Tech) LWA1 Radio Observatory URSI NRSM Jan 4, 2012 LWA1 Title 10-88 MHz usable, Galactic noise-dominated

More information

LWA1 Technical and Observational Information

LWA1 Technical and Observational Information LWA1 Technical and Observational Information Contents April 10, 2012 Edited by Y. Pihlström, UNM 1 Overview 2 1.1 Summary of Specifications.................................... 2 2 Signal Path 3 2.1 Station

More information

On-the-Air Demonstration of a Prototype LWA Analog Signal Path

On-the-Air Demonstration of a Prototype LWA Analog Signal Path On-the-Air Demonstration of a Prototype LWA Analog Signal Path Joe Craig, Mahmud Harun, Steve Ellingson April 12, 2008 Contents 1 Summary 2 2 System Description 2 3 Field Demonstration 3 University of

More information

ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA

ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA ARRAY CONFIGURATION AND TOTAL POWER CALIBRATION FOR LEDA Frank Schinzel & Joe Craig (UNM) on behalf of the LEDA Collaboration USNC-URSI National Radio Science Meeting 2013 - Boulder, 09.01.2013 What is

More information

System Parameters Affecting LWA Calibration (Memo 52 Redux)

System Parameters Affecting LWA Calibration (Memo 52 Redux) System Parameters Affecting LWA Calibration (Memo 52 Redux) Steve Ellingson September 20, 2007 Contents 1 Introduction 2 2 LWA Technical Characteristics 2 2.1 Image Sensitivity...........................................

More information

Detection & Localization of L-Band Satellites using an Antenna Array

Detection & Localization of L-Band Satellites using an Antenna Array Detection & Localization of L-Band Satellites using an Antenna Array S.W. Ellingson Virginia Tech ellingson@vt.edu G.A. Hampson Ohio State / ESL June 2004 Introduction Traditional radio astronomy uses

More information

LWA Beamforming Design Concept

LWA Beamforming Design Concept LWA Beamforming Design Concept Steve Ellingson October 3, 27 Contents Introduction 2 2 Integer Sample Period Delay 2 3 Fractional Sample Period Delay 3 4 Summary 9 Bradley Dept. of Electrical & Computer

More information

2. SYSTEM DESCRIPTION...

2. SYSTEM DESCRIPTION... Implementation of a Digital Signal Processing Subsystem for a Long Wavelength Array Station Melissa Soriano, Robert Navarro, Larry D Addario, Elliott Sigman, Douglas Wang Jet Propulsion Laboratory California

More information

Interaction Between an Antenna and a Shelter

Interaction Between an Antenna and a Shelter Interaction Between an Antenna and a Shelter Steve Ellingson September 25, 2008 Contents 1 Summary 2 2 Methodology 2 3 Results 2 Bradley Dept. of Electrical & Computer Engineering, 302 Whittemore Hall,

More information

Long Wavelength Array Station Architecture. Version 2.0

Long Wavelength Array Station Architecture. Version 2.0 Long Wavelength Array Station Architecture Version 2.0 Prepared By: Names(s) and Signature(s) Organization Date Joe Craig UNM LWA Project 2009-02-26 Approved By: Name and Signature Organization Date Joe

More information

LWA Analog Signal Path Planning

LWA Analog Signal Path Planning LWA Analog Signal Path Planning Steve Ellingson January 23, 2008 Contents 1 Summary 2 2 Noise and RFI Environment 4 3 Analog Signal Path Requirements 6 3.1 Configuration 1: Maximum Bandwidth, Flat Response................

More information

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012

Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Detrimental Interference Levels at Individual LWA Sites LWA Engineering Memo RFS0012 Y. Pihlström, University of New Mexico August 4, 2008 1 Introduction The Long Wavelength Array (LWA) will optimally

More information

The Long Wavelength Array

The Long Wavelength Array PROCEEDINGS OF THE IEEE, VOL. X, NO. X, MONTH YYYY 1 The Long Wavelength Array S.W. Ellingson, Senior Member, IEEE, T.E. Clarke, A. Cohen, J. Craig, Member, IEEE, N.E. Kassim, Y. Pihlström, L. J Rickard,

More information

Long Wavelength Array Station Architecture

Long Wavelength Array Station Architecture Long Wavelength Array Station Architecture Prepared By: Names(s) and Signature(s) Organization Date Steve Ellingson VT 2007-11-09 Approved By: Name and Signature Organization Date Steve Ellingson VT 2007-11-19

More information

Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site

Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site Radio Frequency Interference Analysis of Spectra from the Big Blade Antenna at the LWDA Site Robert Duffin (GMU/NRL) and Paul S. Ray (NRL) March 23, 2007 Introduction The LWA analog receiver will be required

More information

Beam Dwell and Repointing

Beam Dwell and Repointing Beam Dwell and Repointing Steve Ellingson November 25, 2008 Contents 1 Summary 2 2 Analysis 2 3 Recommendations 3 Bradley Dept. of Electrical & Computer Engineering, 302 Whittemore Hall, Virginia Polytechnic

More information

Designing a Sky-Noise-Limited Receiver for LWA

Designing a Sky-Noise-Limited Receiver for LWA The Next Generation of Receivers for Low Frequency Radio Astronomy: Designing a Sky-Noise-Limited Receiver for LWA Steve Ellingson Contributions from D. Wilson, T. Kramer Virginia Tech ellingson@vt.edu

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

Testing a Prototype Blade Antenna at the LWDA Site

Testing a Prototype Blade Antenna at the LWDA Site 1 Testing a Prototype Blade Antenna at the LWDA Site Nagini Paravastu, William Erickson, Ylva Pihlstrom, Namir Kassim, Brian Hicks August 30, 2005 September 1, 2005 I. INTRODUCTION This report summarizes

More information

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc,

More information

Single-Stand Polarimetric Response and Calibration

Single-Stand Polarimetric Response and Calibration Single-Stand Polarimetric Response and Calibration Steve Ellingson June 15, 28 Contents 1 Summary 2 2 Response Model 3 3 Expected Polarimetric and Frequency Response of an LWA Antenna Stand 4 4 Efficacy

More information

Some Notes on Beamforming.

Some Notes on Beamforming. The Medicina IRA-SKA Engineering Group Some Notes on Beamforming. S. Montebugnoli, G. Bianchi, A. Cattani, F. Ghelfi, A. Maccaferri, F. Perini. IRA N. 353/04 1) Introduction: consideration on beamforming

More information

The Long Wavelength Array System Technical Requirements. Version: Draft # February-24

The Long Wavelength Array System Technical Requirements. Version: Draft # February-24 The Long Wavelength Array System Technical Requirements Version: Draft #10 2009-February-24 Compiled by Clint Janes, Joseph Craig, and Lee Rickard Approval: G. Taylor, Co-PI: L. J Rickard, Exec. Project

More information

The LWA1 Radio Telescope

The LWA1 Radio Telescope SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. c 22 IEEE. The LWA Radio Telescope S.W. Ellingson, Senior Member, IEEE, G.B. Taylor, J. Craig, Member, IEEE, J. Hartman, J. Dowell, C.N. Wolfe,

More information

Radioastronomy in Space with Cubesats

Radioastronomy in Space with Cubesats Radioastronomy in Space with Cubesats Baptiste Cecconi (1), Philippe Zarka (1), Marc Klein Wolt (2), Jan Bergman (3), Boris Segret (1) (1) LESIA, CNRS-Observatoire de Paris, France (2) Radboud University

More information

Figure 1 Photo of an Upgraded Low Band Receiver

Figure 1 Photo of an Upgraded Low Band Receiver NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO EVLA TECHNICAL REPORT #175 LOW BAND RECEIVER PERFORMANCE SEPTMBER 27, 2013 S.DURAND, P.HARDEN Upgraded low band receivers, figure 1, were installed

More information

Preliminary Design for the Digital Processing Subsystem of a Long Wavelength Array Station I. Introduction and Summary II.

Preliminary Design for the Digital Processing Subsystem of a Long Wavelength Array Station I. Introduction and Summary II. LWA Memo No. 154 Preliminary Design for the Digital Processing of a Long Wavelength Array Station L. D'Addario and R. Navarro Jet Propulsion Laboratory, California Institute of Technology 1 11 February

More information

A Comparison of Two Power Combining Elements for LWA Active-Baluns Hybrid versus Wideband Transformer

A Comparison of Two Power Combining Elements for LWA Active-Baluns Hybrid versus Wideband Transformer A Comparison of Two Power Combining Elements for LWA Active-Baluns - 180 Hybrid versus Wideband Transformer Brian Hicks, Nagini Paravastu, Paul Ray, and Bill Erickson May 9, 2007 We present a detailed

More information

August 22, 2012 Revision in response to review. This document has been submitted to the IEEE for consideration for publication.

August 22, 2012 Revision in response to review. This document has been submitted to the IEEE for consideration for publication. The LWA Radio Telescope S.W. Ellingson, G.B. Taylor, J. Craig, J. Hartman, J. Dowell, C.N. Wolfe, T.E. Clarke, B.C. Hicks, N.E. Kassim, P.S. Ray, L. J Rickard, F.K. Schinzel and K.W. Weiler August 22,

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg Correlator Development at Haystack Roger Cappallo Haystack-NRAO Technical Mtg. 2006.10.26 History of Correlator Development at Haystack ~1973 Mk I 360 Kb/s x 2 stns. 1981 Mk III 112 Mb/s x 4 stns. 1986

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

2 2. Antenna The strawman antenna is the big blade design mounted on a pyramidal PVC structure as shown in Figure 1. Each PVC pyramid with two linearl

2 2. Antenna The strawman antenna is the big blade design mounted on a pyramidal PVC structure as shown in Figure 1. Each PVC pyramid with two linearl DRAFT Version 0.1 April 11, 2006 A Strawman Design for the Long Wavelength Array Stations Paul S. Ray1 (NRL), S. Ellingson (VA Tech), R. Fisher (NRAO), N. E. Kassim (NRL), L. J. Rickard (Independent),

More information

Dense Aperture Array for SKA

Dense Aperture Array for SKA Dense Aperture Array for SKA Steve Torchinsky EMBRACE Why a Square Kilometre? Detection of HI in emission at cosmological distances R. Ekers, SKA Memo #4, 2001 P. Wilkinson, 1991 J. Heidmann, 1966! SKA

More information

High Gain Advanced GPS Receiver

High Gain Advanced GPS Receiver High Gain Advanced GPS Receiver NAVSYS Corporation 14960 Woodcarver Road, Colorado Springs, CO 80921 Introduction The NAVSYS High Gain Advanced GPS Receiver (HAGR) is a digital beam steering receiver designed

More information

Il progetto SKA: misure di campo elettromagnetico mediante UAV

Il progetto SKA: misure di campo elettromagnetico mediante UAV Applied Electromagnetics and Electronic Devices group Il progetto SKA: misure di campo elettromagnetico mediante UAV in collaboration with POLITECNICO DI TORINO Environment, Land and Infrastructures Department

More information

Antenna Design and Site Planning Considerations for MIMO

Antenna Design and Site Planning Considerations for MIMO Antenna Design and Site Planning Considerations for MIMO Steve Ellingson Mobile & Portable Radio Research Group (MPRG) Dept. of Electrical & Computer Engineering Virginia Polytechnic Institute & State

More information

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009 Overview of the SKA P. Dewdney International SKA Project Engineer Nov 9, 2009 Outline* 1. SKA Science Drivers. 2. The SKA System. 3. SKA technologies. 4. Trade-off space. 5. Scaling. 6. Data Rates & Data

More information

Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2)

Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2) Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2) (1) Space Research Institute, Graz, Austria (2) Commission for Astronomy, Austrian Academy of Sciences, Graz 1

More information

EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System

EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System EVLA Memo 173 Strut-Straddling Arrays for the VLA 4-meter Observing System Steve Ellingson, Dan Mertley, Sterling Coffey, Ravi Subrahmanyan September 22, 2013 This memo describes several prototype strut

More information

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array Journal of Computer and Communications, 2016, 4, 116-125 Published Online March 2016 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2016.43018 Time-Frequency System Builds and

More information

Enhancing space situational awareness using passive radar from space based emitters of opportunity

Enhancing space situational awareness using passive radar from space based emitters of opportunity Tracking Space Debris Craig Benson School of Engineering and IT Enhancing space situational awareness using passive radar from space based emitters of opportunity Space Debris as a Problem Debris is fast

More information

Galactic Background Measurements with the LWDA Receive Chain

Galactic Background Measurements with the LWDA Receive Chain Galactic Background Measurements with the LWDA Receive Chain Aaron Kerkhoff, Johnathan York, David Munton Introduction On a second field test was conducted on the full LWDA signal chain. The test was conducted

More information

MWA Antenna Description as Supplied by Reeve

MWA Antenna Description as Supplied by Reeve MWA Antenna Description as Supplied by Reeve Basic characteristics: Antennas are shipped broken down and require a few minutes to assemble in the field Each antenna is a dual assembly shaped like a bat

More information

Towards SKA Multi-beam concepts and technology

Towards SKA Multi-beam concepts and technology Towards SKA Multi-beam concepts and technology SKA meeting Meudon Observatory, 16 June 2009 Philippe Picard Station de Radioastronomie de Nançay philippe.picard@obs-nancay.fr 1 Square Kilometre Array:

More information

Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 Radio-SkyPipe Units (SPU)

Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 Radio-SkyPipe Units (SPU) Amplitude Calibration - Measuring Antenna Temperature R.S. Flagg, RF Associates, March 2012 The Jove radio telescope is designed to receive radio noise bursts from Jupiter and the Sun and also radio noise

More information

Antenna selection in a SIMO architecture for HF radio links

Antenna selection in a SIMO architecture for HF radio links Antenna selection in a SIMO architecture for HF radio links Y. Erhel*, **, D. Lemur*, M. Oger* and J. Le Masson ** *IETR, UMR CNRS 6164 Université de Rennes 1, France **CREC Saint-Cyr, French Military

More information

Pulsar polarimetry. with. Charlotte Sobey. Dr. Aris Noutsos & Prof. Michael Kramer

Pulsar polarimetry. with. Charlotte Sobey. Dr. Aris Noutsos & Prof. Michael Kramer Pulsar polarimetry with Dr. Aris Noutsos & Prof. Michael Kramer Outline Introduction Observations Ionosphere Outline Pulsars as objects Pulsars as probes of the ISM Faraday rotation using RM synthesis

More information

Introduction to Radio Astronomy!

Introduction to Radio Astronomy! Introduction to Radio Astronomy! Sources of radio emission! Radio telescopes - collecting the radiation! Processing the radio signal! Radio telescope characteristics! Observing radio sources Sources of

More information

LOFAR Long Baseline Calibration Commissioning

LOFAR Long Baseline Calibration Commissioning LOFAR Long Baseline Calibration Commissioning anderson@mpifr-bonn.mpg.de On behalf of LOFAR and the LLBWG 1/31 No, No Fringes On Long Baseline Yet... I hate pretending to be an optimist when writing abstract

More information

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt

Instrument Requirements and Options for Meeting the Science Opportunities MHz P. Dewdney A. Gray, B. Veidt Instrument Requirements and Options for Meeting the Science Opportunities 300-3000 MHz P. Dewdney A. Gray, B. Veidt Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National

More information

The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research Laboratory, Washington, DC 20375 Stephen M. White AFRL, Kirtland

More information

Design and Evaluation of an Active Antenna for a MHz Radio Telescope Array

Design and Evaluation of an Active Antenna for a MHz Radio Telescope Array IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, MONTH XXXX 1 Design and Evaluation of an Active Antenna for a 29 47 MHz Radio Telescope Array S.W. Ellingson, Senior Member, IEEE, J.H. Simonetti,

More information

Initial ARGUS Measurement Results

Initial ARGUS Measurement Results Initial ARGUS Measurement Results Grant Hampson October 8, Introduction This report illustrates some initial measurement results from the new ARGUS system []. Its main focus is on simple measurements of

More information

A Prototype Simple Reconfigurable Antenna for the. Multiband LMR Antenna System

A Prototype Simple Reconfigurable Antenna for the. Multiband LMR Antenna System A Prototype Simple Reconfigurable Antenna for the Multiband LMR Antenna System Mahmud Harun and S.W. Ellingson April 4, 2012 Bradley Dept. of Electrical & Computer Engineering, 444 Durham Hall, Virginia

More information

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing 2016 Multi-Antenna Transceiver Systems Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing --- For ES, DF, COMS & EA 1 Multi-Antenna Systems D-TA

More information

Field Experiments in RFI Detection using an Array

Field Experiments in RFI Detection using an Array Field Experiments in RFI Detection using an Array International SKA Meeting Berkeley July 2001 Steve Ellingson ellingson.1@osu.edu http://esl.eng.ohio-state.edu/rfse/argus/rfse-argus.html Introduction

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

Test Results of a 7-Element Small Controlled Reception Pattern Antenna

Test Results of a 7-Element Small Controlled Reception Pattern Antenna Test Results of a 7-Element Small Controlled Reception Pattern Antenna Alison Brown and David Morley, NAVSYS Corporation BIOGRAPHY Alison Brown is the President and CEO of NAVSYS Corporation. She has a

More information

ARRAY DESIGN AND SIMULATIONS

ARRAY DESIGN AND SIMULATIONS ARRAY DESIGN AND SIMULATIONS Craig Walker NRAO Based in part on 2008 lecture by Aaron Cohen TALK OUTLINE STEPS TO DESIGN AN ARRAY Clarify the science case Determine the technical requirements for the key

More information

MCMS. A Flexible 4 x 16 MIMO Testbed with 250 MHz 6 GHz Tuning Range

MCMS. A Flexible 4 x 16 MIMO Testbed with 250 MHz 6 GHz Tuning Range A Flexible 4 x 16 MIMO Testbed with 250 MHz 6 GHz Tuning Range Steve Ellingson Mobile & Portable Radio Research Group (MPRG) Dept. of Electrical & Computer Engineering Virginia Polytechnic Institute &

More information

A model for the SKA. Melvyn Wright. Radio Astronomy laboratory, University of California, Berkeley, CA, ABSTRACT

A model for the SKA. Melvyn Wright. Radio Astronomy laboratory, University of California, Berkeley, CA, ABSTRACT SKA memo 16. 21 March 2002 A model for the SKA Melvyn Wright Radio Astronomy laboratory, University of California, Berkeley, CA, 94720 ABSTRACT This memo reviews the strawman design for the SKA telescope.

More information

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line DEUTERIUM ARRAY MEMO #068 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 August 2, 2007 Telephone: 978-692-4764 Fax: 781-981-0590 To: Deuterium Array Group From:

More information

A Prototype Analog Receiver for LWA

A Prototype Analog Receiver for LWA A Prototype Analog Receiver for LWA Mahmud Harun and S.W. Ellingson March 28, 2007 Contents 1 Introduction 2 2 Design 2 3 Predicted Performance 4 4 Test Results 4 A Appendix: Components and Cost Data 9

More information

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Professor Tony Brown School of Electrical and Electronic Engineering University of Manchester

More information

Updates from EDGES. Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh

Updates from EDGES. Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh Updates from EDGES Judd D. Bowman (Arizona State University), Raul Monsalve, Alan Rogers, Tom Mozdzen, and Nivedita Mahesh in collaboration with CSIRO February 8, 2018 EDGES (since 2012) Goal - Detect/constrain

More information

ECE 6560 Multirate Signal Processing Chapter 13

ECE 6560 Multirate Signal Processing Chapter 13 Multirate Signal Processing Chapter 13 Dr. Bradley J. Bazuin Western Michigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering 1903 W. Michigan Ave.

More information

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array

All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array All-Digital Wideband Space-Frequency Beamforming for the SKA Aperture Array Vasily A. Khlebnikov, 44-0865-273302, w.khlebnikov@ieee.org, Kristian Zarb-Adami, 44-0865-273302, kza@astro.ox.ac.uk, Richard

More information

Solar Observing Low-frequency Array for Radio Astronomy (SOLARA)

Solar Observing Low-frequency Array for Radio Astronomy (SOLARA) Solar Observing Low-frequency Array for Radio Astronomy (SOLARA) Exploring the last frontier of the EM spectrum Mary Knapp, Dr. Alessandra Babuscia, Rebecca Jensen-Clem, Francois Martel, Prof. Sara Seager

More information

Near Earth space monitoring with LOFAR PL610 station in Borówiec

Near Earth space monitoring with LOFAR PL610 station in Borówiec Near Earth space monitoring with LOFAR PL610 station in Borówiec Hanna Rothkaehl 1, Mariusz Pożoga 1, Marek Morawski 1, Barbara Matyjasiak 1, Dorota Przepiórka 1, Marcin Grzesiak 1 and Roman Wronowski

More information

Methodology for Analysis of LMR Antenna Systems

Methodology for Analysis of LMR Antenna Systems Methodology for Analysis of LMR Antenna Systems Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 System Model 2 2.1 Receive System Model................................... 2 2.2 Calculation of

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

November SKA Low Frequency Aperture Array. Andrew Faulkner

November SKA Low Frequency Aperture Array. Andrew Faulkner SKA Phase 1 Implementation Southern Africa Australia SKA 1 -mid 250 15m dia. Dishes 0.4-3GHz SKA 1 -low 256,000 antennas Aperture Array Stations 50 350/650MHz SKA 1 -survey 90 15m dia. Dishes 0.7-1.7GHz

More information

Fundamentals of Radio Interferometry

Fundamentals of Radio Interferometry Fundamentals of Radio Interferometry Rick Perley, NRAO/Socorro Fourteenth NRAO Synthesis Imaging Summer School Socorro, NM Topics Why Interferometry? The Single Dish as an interferometer The Basic Interferometer

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

OLFAR Orbiting Low-Frequency Antennas for Radio Astronomy. Mark Bentum

OLFAR Orbiting Low-Frequency Antennas for Radio Astronomy. Mark Bentum Orbiting Low-Frequency Antennas for Radio Astronomy Mark Bentum JENAM, April 22, 2009 Outline Presentation of a new concept for low frequency radio astronomy in space Why low frequencies? Why in space?

More information

Low Frequency Radio Astronomy from the Lunar Surface

Low Frequency Radio Astronomy from the Lunar Surface Low Frequency Radio Astronomy from the Lunar Surface R. J. MacDowall (1), T. J. Lazio (2), J. Burns (3) (1) NASA/GSFC, Greenbelt, MD, USA (2) JPL/Caltech, Pasadena, CA, USA (3) U. Colorado, Boulder, CO,

More information

UWB medical radar with array antenna

UWB medical radar with array antenna UWB medical radar with array antenna UWB Implementations Workshop Jan Hammerstad PhD student FFI MELODY project 04. May 2009 Overview Role within the MELODY project. Stepped frequency continuous wave radar

More information

RFI Monitoring and Analysis at Decameter Wavelengths. RFI Monitoring and Analysis

RFI Monitoring and Analysis at Decameter Wavelengths. RFI Monitoring and Analysis Observatoire de Paris-Meudon Département de Radio-Astronomie CNRS URA 1757 5, Place Jules Janssen 92195 MEUDON CEDEX " " Vincent CLERC and Carlo ROSOLEN E-mail adresses : Carlo.rosolen@obspm.fr Vincent.clerc@obspm.fr

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

Performance Comparison of the Prototype. Reconfigurable Antenna with Commercial LMR. Antennas

Performance Comparison of the Prototype. Reconfigurable Antenna with Commercial LMR. Antennas Performance Comparison of the Prototype Reconfigurable Antenna with Commercial LMR Antennas Mahmud Harun, Akshay Kumar and S.W. Ellingson April 10, 2012 Bradley Dept. of Electrical & Computer Engineering,

More information

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE MITIGATING INTERFERENCE ON AN OUTDOOR RANGE Roger Dygert MI Technologies Suwanee, GA 30024 rdygert@mi-technologies.com ABSTRACT Making measurements on an outdoor range can be challenging for many reasons,

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system H. Nguyen, J. Whittington, J. C Devlin, V. Vu and, E. Custovic. Department of Electronic

More information

Data processing with the RTS A GPU-accelerated calibration & imaging stream processor

Data processing with the RTS A GPU-accelerated calibration & imaging stream processor Data processing with the RTS A GPU-accelerated calibration & imaging stream processor Daniel Mitchell 2018 ICRAR/CASS Radio School CSIRO ASTRONOMY AND SPACE SCIENCE The RTS (Real-Time System) A GPU-accelerated

More information

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging? Wide-Band Imaging 24-28 Sept 2012 Narrabri, NSW, Australia Outline : - What is wideband imaging? - Two Algorithms Urvashi Rau - Many Examples National Radio Astronomy Observatory Socorro, NM, USA 1/32

More information

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 TUT/ICE 1 ELT-44006 Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 General idea of these Model Questions is to highlight the central knowledge expected to be known

More information

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA Dr. Dirk Baker (KAT FPA Sub-system Manager) Prof. Justin Jonas (SKA SA Project Scientist) Ms. Anita Loots (KAT Project Manager) Mr. David de

More information

Adaptive Reception of Dual Polarity EME Signals Using Linrad. By Ed Cole KL7UW

Adaptive Reception of Dual Polarity EME Signals Using Linrad. By Ed Cole KL7UW Adaptive Reception of Dual Polarity EME Signals Using Linrad By Ed Cole KL7UW Introduction This paper explores receiving eme signals in two polarities simultaneously, and using the Linrad (Linux radio)

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

Specifications for the GBT spectrometer

Specifications for the GBT spectrometer GBT memo No. 292 Specifications for the GBT spectrometer Authors: D. Anish Roshi 1, Green Bank Scientific Staff, J. Richard Fisher 2, John Ford 1 Affiliation: 1 NRAO, Green Bank, WV 24944. 2 NRAO, Charlottesville,

More information

Antenna Technology Bootcamp. NTA Show 2017 Denver, CO

Antenna Technology Bootcamp. NTA Show 2017 Denver, CO Antenna Technology Bootcamp NTA Show 2017 Denver, CO Review: How a slot antenna works The slot antenna is a TEM-Mode coaxial structure. Coupling structures inside the pylon will distort and couple to the

More information

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Nicholas J. Kirsch Drexel University Wireless Systems Laboratory Telecommunication Seminar October 15, 004 Introduction MIMO

More information

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science 1 st science Assessment WS, Jodrell Bank P. Dewdney Mar 27, 2013 Intent of the Baseline Design Basic architecture: 3-telescope, 2-system

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

May AA Communications. Portugal

May AA Communications. Portugal SKA Top-level description A large radio telescope for transformational science Up to 1 million m 2 collecting area Operating from 70 MHz to 10 GHz (4m-3cm) Two or more detector technologies Connected to

More information