Technology Development in Chinese VLBI Network

Size: px
Start display at page:

Download "Technology Development in Chinese VLBI Network"

Transcription

1 Technology Development in Chinese VLBI Network Xiuzhong ZHANG, Zhihan QIAN, Xiaoyu HONG, Zhiqiang SHEN and Team of CVN Shanghai Astronomical Observatory, CAS 1st International VLBI Technology Workshop, Haystack Oct. 2012

2 In the early time Early 1970s, SHAO started to study VLBI tech. In end of 1978, with several institutes, universities and industry, SHAO s propose about the development plan of Chinese VLBI system was approved by CAS.

3 In the early time (cont.) With this plan, three VLBI stations (with 30m antenna) would be established. Unfortunately, in Year 1980, due to the funding problem, the plan was modified to build Sheshan station first, the build of Nanshan and Kunming was delayed.

4 First Chinese - German VLBI Experiment To prepare to build completed VLBI system, SHAO build a 6 m telescope first. 6 meter test antenna

5 Established Sheshan 25 m Antenna At same time, Shanghai VLBI system was started to build. This was included 25 meter telescope, receiver system (Band :18,13/3.6,6,2.8 and 1.3 cm), MK II correlator and hydrogen atomic clock In 1985, 25 m antenna was configurated in manufactory, (shaanxi). Except normal test, with this antenna, SHAO did three months comet Halley observation Middle of 1986, 25m antenna was started to move to Sheshan station

6 Top left: 25m antenna in manufactory(1985) Bottom left : Set up of 25m antenna ( ) Top right: Shesan 25m telescope (end of 1987)

7 Main events of Nanshan 25 m Antenna May 1987, antenna contract was signed Dec. 1993, the antenna was installed in station Mar. 1994, first international VLBI observation Oct. 1994, official unveiling ceremony

8 Top left: Nanshan Station Bottom left : Group Photo (1994)

9 Some test obs. in Sheshan Station , The first geodetic VLBI test experiment at single X-band with Kashima, Gilcreek and Kauai , The first S/X dual-band geodetic VLBI experiment with Kashima, Gilcreek and Kauai, (NASA Crustal Dynamics Project) , The first mapping VLBI experiment at C- band with EVN stations: Effelsberg, Westerbork, Onsala, Medicina and Torun.

10 The First Successful VLBI Experiment Urumqi 25m Radio Telescope Date: Band: S/X Data acquisition system: VLBI Mark III Station: Urumqi, DSS45, Gilcreek, Kokee, Sheshan Mode: NASA CDP standard (X-8 ch.; S-6 ch.)

11 Oct. 1978, Prof. M. H. Cohen (CIT) visited SHAO

12 IAA VLBI experts visited SHAO(1980) Visit Kashima,CRL(1982) Connect with VLBI experts in the world

13 Team China Team China in Sheshan (1997)

14 Team China in Nanshan (1997)

15 VLBA type Correlator in SHAO(2000)

16 First Fringe (Aug. 2000)

17 Development in 2000s In year 2000, China started again to discuss about the launch of lunar probe The orbit determine of the lunar satellite was a main problem SHAO proposed to use VLBI technology to provide precise angle results for orbiting of our lunar probe. After long time discussion and comparing, our proposal was accessed With this opportunity, we started to improve the performance of Sheshan and Nanshan stations, to build Miyun and Kunming stations These included antenna, receive system, DAS, Clock, Network and the data processing center

18 Chinese VLBI Network (CVN) 2476Km 2158Km 3249Km 1114Km 2460Km 1920Km

19 Shanghai (sheshan station) Diameter:25m Band: L, S/X, C, K (22GHz) Recoding system: MK2, S2, MK3, MK4, Mk5A, Mk5B,DBBC Member of EVN, IVS 19

20 Nanshan Station Diameter:25m Band: P, L, S/X, C, K(22GHz) Recoding system: MK2, MK3, MK4, K-4,K-5, Mk5A,Mk5B,DBBC Member of EVN, IVS 20

21 The Kunming 40-m Radio Telescope Dianmeter; 40m Band : S/X Recording system: Mk5A,Mk5B,DBBC, Hydrogen maser; GPS 上海天文台 Shanghai Astronomical Observatory 21

22 Diameter:50m Band: S/X Recording system: Mk5A, MK5B,DBBC Hydrogen maser; GPS 22

23 CVN--VLBI data processing center Hardware correlator (5 stations) Software correlator (10 stations) Output data: CE-1 format CE-1 data processing: near real time evlbi, in 5 min. delay

24 NEW Receivers (2012)

25 Superconductor Filter feed network Molecular pump Dewar of receiver

26 NEW Receivers Power supply unit of S/X receiver

27

28 Digital Data Acquisition System Since year 2007 started to develop : Chinese VLBI Data Acquisition system (CDAS) Main characteristics: - use 5MHz as standard frequency signal input - four channel Ifs input, bandwidth of each If : 512MHz, - frequency step: 1Hz - two VSI interface to MK5B Disk Array - full compatible FS interface of traditional DAQ (H&S) - PCAL and auto-spectrum output - PCI interface for control - Auto/cross - spectrum checken for any two selected channels

29 Diagram of CDAS

30 PCB and Module of CDAS Main board: 2 x 1GHz ADC + 4 LX160 + cpci + 10/100/1000Mbps network VSI-H interface board VSI-H interface board with 10GE

31 CDAS 16 channels Platform (digital part) 5 Processing Boards One for data Selecting 4 Ifs input, 2GHz total BW 16 Ch. output / VSI-H 2 VSI-H interface 1 / 2 / 4 bit output Dual redundant system

32 CDAS Poly-Phase Platform 1 U Box One main Board 2x512Mhz IF input 1x16x32MHz output with VSI-H 2x16x32MHz output with 10GE (in developing)

33 CDAS in UR

34 Project Timeline of SH65M 2008:funded, contract for the antenna construction 2009: complete design, start manufacturing 2010: ground breaking, foundation completed 2011~2012: antenna costruction. 2012(end): L/S/C/X band test observations, ready for participation in the Chinese Lunar Mission : active surface tested, Ku/K/Ka/Q band test observations 2015: project accomplished, in full operation

35 SH65M telescope

36 VLBI Development in China 1970s VLBI Network Concept 1980s Shanghai 25m 1990s Urumqi 25m 2000s Beijing and Kunming (CVN:4 Ant. + correlator) 南山 QTT Chinese VLBI Network 2010s FAST (500m) + Shanghai (65m) 2020s QTT(110m) + space VLBI 36

37 Five hundred meter Aperture Spherical Telescope (FAST) located in Guizhou Province, southwest of China 4,600 triangular panels and similar in design to the Arecibo Observatory diameter : 500m active surface working frequency will be GHz, pointing precision : 4 asec should be complete by September cost of 700 million yuan

38 FAST Left : FAST optical geometry Right: FAST 3-D model

39 上海天文台 Shanghai Astronomical Observatory QTT:QiTai radio Telescope 110-m diameter fully steerable Active surface system Cover GHz 8 bands (UHF L S X K V W) General-purpose radio astronomy, geodynamics, single-dish, VLBI

40 奇台县 Station

41 Space VLBI Array Road map of Millimeter/submillimeter space VLBI array : Stage 1: Long-mm-wavelength Space VLBI Array, aim to be funded in two 10-12meter Space telescopes, highest frequency 43GHz, to realize 20uas high resolution and good uv coverage together with ground-based telescopes for imaging.

42 Phase 0 (road map) Stage 2: Mm-wavelength Space VLBI Array, aim to be funded in three 12-15meter mm-wavelength Space telescopes (86GHz), to achieve high resolution with ground VLBI telescopes Stage 3: submm Space VLBI Array, aim to be funded after 2026 three-four 12-15meter Submm Space telescopes to acquire ultra-high resolution, great astrophysics breakthrough

43 Phase 0.5 of stage 1 A proposal of stage 1 was selected as possible Prototype Research project. two 10m Space telescopes 43GHz Design for imaging The review report of proposal (June 15, 2011): The scientific purpose will be very good, but it hasn t well studied the technique and engineering possibility, and the design of whole project. Phase years pre-study

44 Phase 0.5 of stage 1 Shanghai Astronomical Observatory should work with scientific Institutes and industry to study sciences and design for the system Two Satellites (10m in diameter) Apogee: km Perigee: 1200 km Inclination: 28.5 deg

45 Phase 0.5 of stage 1 Observing Bands (Dual Polarization LCP/RCP) : X (6-9 GHz) K (20-24 GHz) Q (40-46 GHz) Data Rate: 1.2 Gbps or 2.4 Gbps Ang. Res.: 20 micro-as Pointing : <15 Life time: 3 years 45

46 Key Techniques KT 2 15 Satellite KT3 KT5 Astronomical Receiving Sys. 1.2/2.4Gbps Mass Storage KT 1 10m Antenna KT4 Time & Freq. Standard Ground Receiving & Transmission

47 Looking forward the project will be funded during the period of 2016 to 2020 for pre-phase study, the project is approved in last month (Sept. 2012). 47

48 Thank you for your attention!

Chinese VLBI Network and its application to evlbi

Chinese VLBI Network and its application to evlbi Chinese VLBI Network and its application to evlbi Zhong Chen Chinese VLBI Team The 8th International e-vlbi Workshop 22-26 June 2009 - Madrid, Spain 1 Outline 1.Chinese VLBI Network a) History b) Stations

More information

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners digital VLBI-receiver: ~1.5-15.5 GHz for the EVN and other telescopes Prototype for prime focus

More information

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners EVN Observing Bands < 22GHz Today in the EVN separate receivers cover: 18 cm - L band 13 cm - S

More information

High Speed Data Transmission and Processing Systems for e-vlbi Observations

High Speed Data Transmission and Processing Systems for e-vlbi Observations High Speed Data Transmission and Processing Systems for e-vlbi Observations Yasuhiro Koyama, Tetsuro Kondo, and Junichi Nakajima Communications Research Laboratory, Kashima Space Research Center 893-1

More information

BRAND EVN AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-b AND EVN) (BRoad-bAND Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners digital VLBI-receiver: ~1.5-15.5 GHz for the EVN and other telescopes Prototype for

More information

A report on KAT7 and MeerKAT status and plans

A report on KAT7 and MeerKAT status and plans A report on KAT7 and MeerKAT status and plans SKA SA, Cape Town Office 3rd Floor, The Park, Park Road, Pinelands, Cape Town, South Africa E mail: tony@hartrao.ac.za This is a short memo on the current

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

Polyphase based Wideband Digital SSB Converter of CDAS. L. Chen; X.Z. Zhang; Y. J. Wu; R.J.Zhu

Polyphase based Wideband Digital SSB Converter of CDAS. L. Chen; X.Z. Zhang; Y. J. Wu; R.J.Zhu Polyphase based Wideband Digital SSB Converter of CDAS L. Chen; X.Z. Zhang; Y. J. Wu; R.J.Zhu Abstract CDAS (Chinese VLBI Data Acquisition System) has been developed in Shanghai astronomical Observatory

More information

Very Long Baseline Interferometry

Very Long Baseline Interferometry Very Long Baseline Interferometry Cormac Reynolds, JIVE European Radio Interferometry School, Bonn 12 Sept. 2007 VLBI Arrays EVN (Europe, China, South Africa, Arecibo) VLBA (USA) EVN + VLBA coordinate

More information

LBA Operations. Cormac Reynolds, Chris Phillips, Phil Edwards + LBA Team 19 November 2015 CSIRO ASTRONOMY & SPACE SCIENCE

LBA Operations. Cormac Reynolds, Chris Phillips, Phil Edwards + LBA Team 19 November 2015 CSIRO ASTRONOMY & SPACE SCIENCE LBA Operations Cormac Reynolds, Chris Phillips, Phil Edwards + LBA Team 19 November 2015 CSIRO ASTRONOMY & SPACE SCIENCE Hartebeesthoek 8000 km Real-time e-vlbi LBA 6 ant 1700km 40 ujy/beam (Ceduna) +Auscope

More information

Developing an African VLBI Network

Developing an African VLBI Network Developing an African VLBI Network Michael Gaylard Hartebeesthoek Radio Astronomy Observatory (HartRAO) P. O. Box 443, Krugersdorp 1740, South Africa www.hartrao.ac.za mike@hartrao.ac.za The SKA is coming...

More information

Irbene radiotelescope RT-32

Irbene radiotelescope RT-32 Irbene radiotelescope RT-32 V.Bezrukovs VIRAC, Latvia EVN TOG 28 June, 2012 Outline Ø RT- 32 Current status Ø Irbene Radio telescope RT- 32 prepara7on for observa7ons. Ø VLBI observa7on of naviga7on satellites,

More information

Very Long Baseline Interferometry. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Very Long Baseline Interferometry. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Very Long Baseline Interferometry Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Introduction Principles and Practice of VLBI High angular resolution of long baselines The geophysics

More information

Preparing VIRAC radiotelescope RT-32 for VLBI observations

Preparing VIRAC radiotelescope RT-32 for VLBI observations Preparing VIRAC radiotelescope RT-32 for VLBI observations Vl.Bezrukovs Ventspils University College, Latvia BAASP 2012 08 May, 2012 Outline RT-32 Current status Irbene Radio telescope RT-32 preparation

More information

PoS(11th EVN Symposium)078

PoS(11th EVN Symposium)078 First successful VLBI observations in the EVN with VIRAC radio telescope RT-32 1 Engineering Research Institute, Ventspils International Radioastronomy Centre Inženieru Street 101, Ventspils, LV3600, Latvia

More information

Russian VLBI Network QUASAR: from 2006 to 2011

Russian VLBI Network QUASAR: from 2006 to 2011 Russian VLBI Network QUASAR: from 2006 to 2011 Finkelstein A., Ipatov A., Smolentsev S. Institute of Applied Astronomy Russian Academy of Sciences 1 In 2005 the Russian Academy of Sciences has completed

More information

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273 Other Space Geodetic Techniques E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu Satellite Laser Ranging = SLR Measurement of distance (=range) between a ground station and a

More information

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273

Other Space Geodetic Techniques. E. Calais Purdue University - EAS Department Civil 3273 Other Space Geodetic Techniques E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu Satellite Laser Ranging Measurement of distance (=range) between a ground station and a satellite

More information

VLBI2010: In search of Sub-mm Accuracy

VLBI2010: In search of Sub-mm Accuracy VLBI2010: In search of Sub-mm Accuracy Bill Petrachenko, Nov 6, 2007, University of New Brunswick What is VLBI2010? VLBI2010 is an effort by the International VLBI Service for Geodesy and Astrometry (IVS)

More information

(The basics of) VLBI Basics. Pedro Elosegui MIT Haystack Observatory. With big thanks to many of you, here and out there

(The basics of) VLBI Basics. Pedro Elosegui MIT Haystack Observatory. With big thanks to many of you, here and out there (The basics of) VLBI Basics Pedro Elosegui MIT Haystack Observatory With big thanks to many of you, here and out there Some of the Points Will Cover Today Geodetic radio telescopes VLBI vs GPS concept

More information

VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany

VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany VLBI2010 Current status of the TWIN radio telescope project at Wettzell, Germany Alexander Neidhardt, FESG/TU München (on behalf of the BKG) G. Kronschnabl, (BKG); Hase, H. (BKG); Schreiber, U. (BKG);

More information

Developments in Expanding the Event Horizon Telescope: Phased ALMA and South Pole Telescope

Developments in Expanding the Event Horizon Telescope: Phased ALMA and South Pole Telescope The 8 th East Asia VLBI Workshop 2015, Sapporo, Japan, 8-10 July 2015 Developments in Expanding the Event Horizon Telescope: Phased ALMA and South Pole Telescope Jan Wagner on behalf of European and Korean

More information

Broadband VLBI System GALA-V

Broadband VLBI System GALA-V Broadband VLBI System GALA-V Mamoru Sekido, K.Takefuji, H.Ujihara, T.Kondo, M.Tsutsumi, Y.Miyauchi, E.Kawai, S.Hasegawa, H.Takiguchi, R.Ichikawa,Y.Koyama, J.Komuro, K.Terada, K.Namba, R.Takahashi, T.Aoki,

More information

Cormac Reynolds. ATNF Synthesis Imaging School, Narrabri 10 Sept. 2008

Cormac Reynolds. ATNF Synthesis Imaging School, Narrabri 10 Sept. 2008 Very Long Baseline Interferometry Cormac Reynolds ATNF 10 Sept. 2008 Outline Very brief history Data acquisition Calibration Applications Acknowledgements: C. Walker, S. Tingay What Is VLBI? VLBI: Very

More information

IVS Report 2016/17. Dirk Behrend & Chopo Ma. GGOS Bureau of N&O, Vienna, Austria April 26, 2017

IVS Report 2016/17. Dirk Behrend & Chopo Ma. GGOS Bureau of N&O, Vienna, Austria April 26, 2017 IVS Report 2016/17 Dirk Behrend & Chopo Ma GGOS Bureau of N&O, Vienna, Austria April 26, 2017 Directing Board Lead: Chair: Axel Nothnagel, Univ Bonn [1 st term ends in May 17] Director CC: Dirk Behrend,

More information

Recent progress and future development of Nobeyama 45-m Telescope

Recent progress and future development of Nobeyama 45-m Telescope Recent progress and future development of Nobeyama 45-m Telescope Masao Saito: Director of Nobeyama Radio Observatory Tetsuhiro Minamidani: Nobeyama Radio Observatory Outline Nobeyama 45-m Telescope Recent

More information

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn Introduction to Radio Astronomy Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn 1 Contents Radio Waves Radio Emission Processes Radio Noise Radio source names and catalogues Radio telescopes

More information

Vie_SCHED_V22. Sun Jing 1 and David Mayer. Shanghai Astronomical Observatory

Vie_SCHED_V22. Sun Jing 1 and David Mayer. Shanghai Astronomical Observatory Vie_SCHED_V22 Sun Jing 1 and David Mayer 1 Shanghai Astronomical Observatory Introduction VLBI2010 goals: 1 mm position and 0.1 mm/year velocity measurement accuracy on global baselines, continuous measurements

More information

Current State and Future Developments of the IVS and Geodetic VLBI. H. Schuh, D. Behrend, A. Niell, B. Petrachenko, and R.

Current State and Future Developments of the IVS and Geodetic VLBI. H. Schuh, D. Behrend, A. Niell, B. Petrachenko, and R. Current State and Future Developments of the IVS and Geodetic VLBI H. Schuh, D. Behrend, A. Niell, B. Petrachenko, and R. Heinkelmann Bologna, 26-Sept-2008 Geodetic VLBI Unique technique for CRF Precession/Nutation

More information

SX Observations using a Broadband Receiver and RDBE: Revised frequencies

SX Observations using a Broadband Receiver and RDBE: Revised frequencies 1. Introduction SX Observations using a Broadband Receiver and RDBE: Revised frequencies A. Niell and R. Cappallo MIT Haystack Observatory 2016/02/18 (The frequencies are revised to allow the use of all

More information

PoS(11th EVN Symposium)113

PoS(11th EVN Symposium)113 High-order sampling technique for geodetic VLBI and the future National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501, Japan E-mail: takefuji@nict.go.jp

More information

An Overview of the Japanese GALA-V Wideband VLBI System

An Overview of the Japanese GALA-V Wideband VLBI System An Overview of the Japanese GALA-V Wideband VLBI System M.Sekido, K.Takefuji, H.Ujihara, T.Kondo, M.Tsutsumi, Y.Miyauchi, E.Kawai, H.Takiguchi, S.Hasegawa, R.Ichikawa,Y.Koyama,Y.Hanado, J.Komuro, K.Terada,

More information

TECHNOLOGICAL DEVELOPMENTS AT IGN INSTRUMENTATION AND TECHNOLOGICAL DEVELOPMENTS AT THE IGN

TECHNOLOGICAL DEVELOPMENTS AT IGN INSTRUMENTATION AND TECHNOLOGICAL DEVELOPMENTS AT THE IGN INSTRUMENTATION AND TECHNOLOGICAL DEVELOPMENTS AT THE IGN Yebes Observatory is a Fundamental Geodetic Station where Astronomical, Geodetic and Geophysical techniques are combined. Yebes, Guadalajara, Spain

More information

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array

Time-Frequency System Builds and Timing Strategy Research of VHF Band Antenna Array Journal of Computer and Communications, 2016, 4, 116-125 Published Online March 2016 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2016.43018 Time-Frequency System Builds and

More information

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO)

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO) Radio Interferometers Around the World Amy J. Mioduszewski (NRAO) A somewhat biased view of current interferometers Limited to telescopes that exist or are in the process of being built (i.e., I am not

More information

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract Comparing MMA and VLA Capabilities in the 36-50 GHz Band M.A. Holdaway National Radio Astronomy Observatory Socorro, NM 87801 September 29, 1995 Abstract I explore the capabilities of the MMA and the VLA,

More information

VERY LONG BASELINE INTERFEROMETRY

VERY LONG BASELINE INTERFEROMETRY VERY LONG BASELINE INTERFEROMETRY Summer Student Lecture Socorro, June 28, 2011 Adapted from 2004 Summer School Lecture and 2005, 2007, and 2009 Summer Student Lectures WHAT IS VLBI? 2 Radio interferometry

More information

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications

A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications 1 A Feasibility Study of Techniques for Interplanetary Microspacecraft Communications By: G. James Wells Dr. Robert Zee University of Toronto Institute for Aerospace Studies Space Flight Laboratory August

More information

Practical Radio Interferometry VLBI. Olaf Wucknitz. Bonn, 21 November 2012

Practical Radio Interferometry VLBI. Olaf Wucknitz. Bonn, 21 November 2012 Practical Radio Interferometry VLBI Olaf Wucknitz wucknitz@mpifr-bonn.mpg.de Bonn, 21 November 2012 VLBI Need for long baselines What defines VLBI? Techniques VLBI science Practical issues VLBI arrays

More information

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 Receivers for VLBI2010 FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 There is no fundamental difference between the receivers for PRIME FOCUS & CASSEGRAIN Except for: the beamwidth

More information

Practical Radio Interferometry VLBI. Olaf Wucknitz.

Practical Radio Interferometry VLBI. Olaf Wucknitz. Practical Radio Interferometry VLBI Olaf Wucknitz wucknitz@astro.uni-bonn.de Bonn, 1 December 2010 VLBI Need for long baselines What defines VLBI? Techniques VLBI science Practical issues VLBI arrays how

More information

Practical Radio Interferometry VLBI. Olaf Wucknitz.

Practical Radio Interferometry VLBI. Olaf Wucknitz. Practical Radio Interferometry VLBI Olaf Wucknitz wucknitz@astro.uni-bonn.de Bonn, 23 November 2011 VLBI Need for long baselines What defines VLBI? Techniques VLBI science Practical issues VLBI arrays

More information

Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory. 9 August

Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory. 9 August Dustin Johnson REU Program Summer 2012 MIT Haystack Observatory 1 Outline What is the SRT? Why do we need a new one? Design of the new SRT Performance Interference Problems Software Documentation Astronomy

More information

Technician Licensing Class

Technician Licensing Class Technician Licensing Class Talk to Outer Presented Space by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules

More information

PROCEEDINGS OF SPIE. Inter-satellite omnidirectional optical communicator for remote sensing

PROCEEDINGS OF SPIE. Inter-satellite omnidirectional optical communicator for remote sensing PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Inter-satellite omnidirectional optical communicator for remote sensing Jose E. Velazco, Joseph Griffin, Danny Wernicke, John Huleis,

More information

Planning (VLA) observations

Planning (VLA) observations Planning () observations 14 th Synthesis Imaging Workshop (May 2014) Loránt Sjouwerman National Radio Astronomy Observatory (Socorro, NM) Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very

More information

Introduction to Radio Astronomy

Introduction to Radio Astronomy Introduction to Radio Astronomy The Visible Sky, Sagittarius Region 2 The Radio Sky 3 4 Optical and Radio can be done from the ground! 5 Outline The Discovery of Radio Waves Maxwell, Hertz and Marconi

More information

Phasing ALMA for (sub)mm-vlbi Observations

Phasing ALMA for (sub)mm-vlbi Observations Phasing ALMA for (sub)mm-vlbi Observations Enabling an Event Horizon Telescope A proposal for consideration by the ALMA Board Submitted by a collaboration including: MIT Haystack Observatory Harvard-Smithsonian

More information

IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

IPS observation system for the Miyun 50 m radio telescope and its commissioning observation Research in Astron. Astrophys. 2012 Vol. 12 No. 7, 857 864 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics IPS observation system for the Miyun 50 m radio

More information

Activity report from NICT

Activity report from NICT Activity report from NICT APMP 2013 / TCTF meeting 25-26 November, 2013 National Institute of Information and Communications Technology (NICT) Japan 1 1 Activities of our laboratory Atomic Frequency Standards

More information

Scheduling VLBI satellite observations with VieVS. Andreas Hellerschmied

Scheduling VLBI satellite observations with VieVS. Andreas Hellerschmied Scheduling VLBI satellite observations with VieVS Andreas Hellerschmied VLBI satellite observations Motivation for VLBI satellite observations Establish inter-technique ties in space Improve ITRF realization

More information

New Zealand evlbi. Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi

New Zealand evlbi. Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi New Zealand evlbi Tim Natusch,Sergei Gulyaev, Stuart Weston, Hiroshi Takiguchi Institute for Radio Astronomy and Space Research, AUT University Auckland New Zealand November 2011 Johannesburg 1/80 Radio

More information

Radio Interferometry. Xuening Bai. AST 542 Observational Seminar May 4, 2011

Radio Interferometry. Xuening Bai. AST 542 Observational Seminar May 4, 2011 Radio Interferometry Xuening Bai AST 542 Observational Seminar May 4, 2011 Outline Single-dish radio telescope Two-element interferometer Interferometer arrays and aperture synthesis Very-long base line

More information

New Trends on Receivers Development" May 30, 2005, Medicina. RECEIVING SYSTEMs for the ANTENNAS OPERATED by the INSTITUTE of RADIOASTRONOMY in ITALY

New Trends on Receivers Development May 30, 2005, Medicina. RECEIVING SYSTEMs for the ANTENNAS OPERATED by the INSTITUTE of RADIOASTRONOMY in ITALY New Trends on Receivers Development" May 30, 2005, Medicina RECEIVING SYSTEMs for the ANTENNAS OPERATED by the INSTITUTE of RADIOASTRONOMY in ITALY Alessandro Orfei IRA-INAF, Medicina station (Italy) RADIONET

More information

LOFAR: Special Issues

LOFAR: Special Issues Netherlands Institute for Radio Astronomy LOFAR: Special Issues John McKean (ASTRON) ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Preamble http://www.astron.nl/~mckean/eris-2011-2.pdf

More information

Smart Antennas in Radio Astronomy

Smart Antennas in Radio Astronomy Smart Antennas in Radio Astronomy Wim van Cappellen cappellen@astron.nl Netherlands Institute for Radio Astronomy Our mission is to make radio-astronomical discoveries happen ASTRON is an institute for

More information

Introduction to Radio Astronomy!

Introduction to Radio Astronomy! Introduction to Radio Astronomy! Sources of radio emission! Radio telescopes - collecting the radiation! Processing the radio signal! Radio telescope characteristics! Observing radio sources Sources of

More information

More Radio Astronomy

More Radio Astronomy More Radio Astronomy Radio Telescopes - Basic Design A radio telescope is composed of: - a radio reflector (the dish) - an antenna referred to as the feed on to which the radiation is focused - a radio

More information

40 Years of Planning for Radio Astronomy from Space and the Moon

40 Years of Planning for Radio Astronomy from Space and the Moon ROLSS - Launch 201X? DARE - Launch 201X? DALI - Launch 202X? 40 Years of Planning for Radio Astronomy from Space and the Moon Kurt W. Weiler Computational Physics, Inc. (CPI) T. Joseph W. Lazio JPL Namir

More information

Miniature Deployable High Gain Antenna for CubeSats

Miniature Deployable High Gain Antenna for CubeSats Phantom Works Miniature Deployable High Gain Antenna for CubeSats Charles S. Scott MacGillivray Office: (714) 372-1617 e-mail: charles.s.macgillivray@boeing.com Mobile: (714) 392-9095 e-mail: zserfv23@gmail.com

More information

Casper Instrumentation at Green Bank

Casper Instrumentation at Green Bank Casper Instrumentation at Green Bank John Ford September 28, 2009 The NRAO is operated for the National Science Foundation (NSF) by Associated Universities, Inc. (AUI), under a cooperative agreement. GBT

More information

University of Groningen. The logistic design of the LOFAR radio telescope Schakel, L.P.

University of Groningen. The logistic design of the LOFAR radio telescope Schakel, L.P. University of Groningen The logistic design of the LOFAR radio telescope Schakel, L.P. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it.

More information

Phased Array Processors for Submm VLBI

Phased Array Processors for Submm VLBI Phased Array Processors for Submm VLBI SMITHSONIAN ASTROPHYSICAL OBSERVATORY SMA ACADEMIA SINICA IAA Event Horizon Telescope Workshop 26 January 2010 Jonathan Weintroub Phased Array Processors for Submm

More information

VLBI MEASUREMENTS FOR FREQUENCY TRANSFER

VLBI MEASUREMENTS FOR FREQUENCY TRANSFER Joint Discussion 6 Time and Astronomy IAU XXVII GENERAL ASSEMBLY AUGUST 6, 2009 Rio de Janeiro, Brazil MEASUREMENTS FOR FREQUENCY TRANSFER 2 Hiroshi Takiguchi (htaki@nict.go.jp), Yasuhiro Koyama, Ryuichi

More information

BeiDou Space Service Volume Parameters and its Performance

BeiDou Space Service Volume Parameters and its Performance BeiDou Space Service Volume Parameters and its Performance Prof. Xingqun ZHAN, Shuai JING Shanghai Jiaotong University, China Xiaoliang WANG China Academy of Space Technology Contents 1 Background and

More information

The DARPA 100Gb/s RF Backbone Program

The DARPA 100Gb/s RF Backbone Program The DARPA 100Gb/s RF Backbone Program Dr. Ted Woodward Program Manager, DARPA/STO Briefing Prepared for NSF mmw RCN workshop Madison, WI 19 July 2017 1 100 Gb/s RF Backbone (100G) Objective: Capacity AND

More information

VLBI with IRAM 30m & NOEMA

VLBI with IRAM 30m & NOEMA VLBI with IRAM 30m & NOEMA Bologna 22.01.2015 M.Bremer, R.Garcia, O.Gentaz, A.Grosz, F.Gueth, C.Kramer, V.Pietu, S.Sanchez, K.Schuster IRAM is part of GMVA (2 sessions/yr @ 3mm since 2004) 1 mm experiments

More information

IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS

IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS IMPROVING THE PERFORMANCE OF LOW COST GPS TIMING RECEIVERS Thomas A. Clark NASA Goddard Space Flight Center (retired) mailto:k3io@verizon.net Richard M. Hambly CNS Systems, Inc. ( http://cnssys.com & http://gpstime.com

More information

Very Long Baseline Interferometry

Very Long Baseline Interferometry Very Long Baseline Interferometry Shep Doeleman (Haystack) Ylva Pihlström (UNM) Craig Walker (NRAO) Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 What is VLBI? 2 VLBI is interferometry

More information

Lecturer Series ASTRONOMY. FH Astros. Telecommunication with Space Craft. Kurt Niel (University of Applied Sciences Upper Austria)

Lecturer Series ASTRONOMY. FH Astros. Telecommunication with Space Craft. Kurt Niel (University of Applied Sciences Upper Austria) Lecturer Series ASTRONOMY FH Astros Telecommunication with Space Craft Kurt Niel (University of Applied Sciences Upper Austria) Lecturer Series ASTRONOMY FH Astros Telecommunication with Space Craft Kurt

More information

Sardinia Radio Telescope

Sardinia Radio Telescope Sardinia Radio Telescope Current status and future developments Carlo Migoni @ INAF - OAC Funded by: Italian Ministry of Education and Scientific Research (MIUR) Sardinia Regional Government (RAS) Italian

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

Global Ground VLBI Network as a Tied Array for Space VLBI

Global Ground VLBI Network as a Tied Array for Space VLBI Global Ground VLBI Network as a Tied Array for Space VLBI L.Kogan National Radio Astronomy Observatory, Socorro, New Mexi~i), ljsa ~. ".. : -......,... ~Gflr.l'i!ttf I' > t l t'~ '. ~ ' 'Ll \I'll April

More information

Observing the APOD satellite with the AuScope VLBI network

Observing the APOD satellite with the AuScope VLBI network 10 th IVS General Meeting, June 3-8, 2018, Svalbard, Norway Observing the APOD satellite with the AuScope VLBI network Andreas Hellerschmied Johannes Böhm Technische Universität Wien, Austria Lucia McCallum

More information

Global (3)mm VLBI : a brief summary and overview of the standard data analysis path. T.P.Krichbaum

Global (3)mm VLBI : a brief summary and overview of the standard data analysis path. T.P.Krichbaum Global (3)mm VLBI : a brief summary and overview of the standard data analysis path T.P.Krichbaum Max-Planck-Institut für Radioastronomie Bonn, Germany tkrichbaum@mpifr.de The Global Millimeter VLBI Array

More information

The EVN DBBC Project. G. Tuccari Istituto di Radioastronomia Noto, Italy. Digital Backend Workshop - Bonn, Germany

The EVN DBBC Project. G. Tuccari Istituto di Radioastronomia Noto, Italy. Digital Backend Workshop - Bonn, Germany The EVN DBBC Project G. Tuccari Istituto di Radioastronomia Noto, Italy EVN DBBC Working Group S. Pogrebenko, S. Parsley JIVE-Dwingeloo, The Netherlansds W. Alef MPI-Radiastronomie-Bonn, Germany Y. Xiang

More information

O3b A different approach to Ka-band satellite system design and spectrum sharing

O3b A different approach to Ka-band satellite system design and spectrum sharing O3b A different approach to Ka-band satellite system design and spectrum sharing ITU Regional Seminar for RCC countries on Prospects for Use of the Ka-band by Satellite Communication Systems, Almaty, Kazakhstan

More information

EVLA Memo 105. Phase coherence of the EVLA radio telescope

EVLA Memo 105. Phase coherence of the EVLA radio telescope EVLA Memo 105 Phase coherence of the EVLA radio telescope Steven Durand, James Jackson, and Keith Morris National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM, USA 87801 ABSTRACT The

More information

Specifications for the GBT spectrometer

Specifications for the GBT spectrometer GBT memo No. 292 Specifications for the GBT spectrometer Authors: D. Anish Roshi 1, Green Bank Scientific Staff, J. Richard Fisher 2, John Ford 1 Affiliation: 1 NRAO, Green Bank, WV 24944. 2 NRAO, Charlottesville,

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

New Broadband VLBI System for High Precision Delay Measurement

New Broadband VLBI System for High Precision Delay Measurement New Broadband VLBI System for High Precision Delay Measurement 1 National Institute of Information and Communications Technology(NICT) M. Sekido, K. Takefuji, H. Ujihara, T. Kondo, Y. Miyauchi, M. Tsutsumi,

More information

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16]

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16] Code No: R05410409 Set No. 1 1. Discuss in detail the Design Consideration of a Satellite Communication Systems. 2. (a) What is a Geosynchronous Orbit? Discuss the advantages and disadvantages of these

More information

Dr. Martina B. Arndt Physics Department Bridgewater State College (MA) Based on work by Dr. Alan E.E. Rogers MIT s Haystack Observatory (MA)

Dr. Martina B. Arndt Physics Department Bridgewater State College (MA) Based on work by Dr. Alan E.E. Rogers MIT s Haystack Observatory (MA) VSRT INTRODUCTION Dr Martina B Arndt Physics Department Bridgewater State College (MA) Based on work by Dr Alan EE Rogers MIT s Haystack Observatory (MA) August, 2009 1 PREFACE The Very Small Radio Telescope

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA. ELECTRONICS DIVISION INTERNAL REPORT No. 275 CRYOGENIC, HEMT, LOW-NOISE RECEIVERS

NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA. ELECTRONICS DIVISION INTERNAL REPORT No. 275 CRYOGENIC, HEMT, LOW-NOISE RECEIVERS NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT No. 275 CRYOGENIC, HEMT, LOW-NOISE RECEIVERS FOR 1.3 TO 43 GHz RANGE S. WEINREB M. W. POSPIESZALSKI R.

More information

System Failure Operational Recovery

System Failure Operational Recovery System Failure Operational Recovery VLBI data acquisition is a complex technical challenge for operators using various electronic data acquisition systems, large radio telescopes that use various drive

More information

May AA Communications. Portugal

May AA Communications. Portugal SKA Top-level description A large radio telescope for transformational science Up to 1 million m 2 collecting area Operating from 70 MHz to 10 GHz (4m-3cm) Two or more detector technologies Connected to

More information

arxiv: v1 [astro-ph.im] 7 Jun 2015

arxiv: v1 [astro-ph.im] 7 Jun 2015 MEASUREMENT OF THE GRAVITATIONAL REDSHIFT EFFECT WITH THE RADIOASTRON SATELLITE A.V. BIRIUKOV 1, V.L. KAUTS 1,2,D.A. LITVINOV 3, N.K. PORAYKO 3, V.N. RUDENKO 3 1 Astro Space Center, Lebedev Physical Institute,

More information

Low-Profile Antenna Package for Efficient Inter-CubeSat Communication in S- and V-band. C. Vourch & T. Drysdale

Low-Profile Antenna Package for Efficient Inter-CubeSat Communication in S- and V-band. C. Vourch & T. Drysdale Low-Profile Antenna Package for Efficient Inter-CubeSat Communication in S- and V-band C. Vourch & T. Drysdale Challenge A CubeSat flying formation is the only practical and affordable method for observation

More information

Study on Measurement of Group Delay in Broadband Channel Based on Nonlinear Fitting

Study on Measurement of Group Delay in Broadband Channel Based on Nonlinear Fitting International Conference on Artificial Intelligence and Engineering Applications (AIEA 2016) Study on Measurement of Group Delay in Broadband Channel Based on Nonlinear Fitting Xinfeng Mao a, Hong Ma b,

More information

Future DSN Capabilities

Future DSN Capabilities Future DSN Capabilities Barry Geldzahler Chief Scientist and DSN Program Executive NASA HQ: Space Communications and Navigation Division 202-358-0512 barry.geldzahler@nasa.gov 9/22/09 Geldzahler 1 Areas

More information

Orbit Determination for CE5T Based upon GPS Data

Orbit Determination for CE5T Based upon GPS Data Orbit Determination for CE5T Based upon GPS Data Cao Jianfeng (1), Tang Geshi (2), Hu Songjie (3), ZhangYu (4), and Liu Lei (5) (1) Beijing Aerospace Control Center, 26 Beiqing Road, Haidian Disrtrict,

More information

IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers

IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers IF/LO Systems for Single Dish Radio Astronomy cm-wave Receivers Lisa Wray, Arecibo Observatory NRAO/NAIC Single Dish Summer School August 2003 Introduction to Receivers a specialized class of microwave

More information

SMA Technical Memo 147 : 08 Sep 2002 HOLOGRAPHIC SURFACE QUALITY MEASUREMENTS OF THE SUBMILLIMETER ARRAY ANTENNAS

SMA Technical Memo 147 : 08 Sep 2002 HOLOGRAPHIC SURFACE QUALITY MEASUREMENTS OF THE SUBMILLIMETER ARRAY ANTENNAS SMA Technical Memo 147 : 08 Sep 2002 HOLOGRAPHIC SURFACE QUALITY MEASUREMENTS OF THE SUBMILLIMETER ARRAY ANTENNAS T. K. Sridharan, M. Saito, N. A. Patel Harvard-Smithsonian Center for Astrophysics 60 Garden

More information

ARTEMIS: Low-Cost Ground Station Antenna Arrays for Microspacecraft Mission Support. G. James Wells Mark A. Sdao Robert E. Zee

ARTEMIS: Low-Cost Ground Station Antenna Arrays for Microspacecraft Mission Support. G. James Wells Mark A. Sdao Robert E. Zee ARTEMIS: Low-Cost Ground Station Antenna Arrays for Microspacecraft Mission Support G. James Wells Mark A. Sdao Robert E. Zee Space Flight Laboratory University of Toronto Institute for Aerospace Studies

More information

Instrumentation for Millimetron - a large space antenna for THz astronomy

Instrumentation for Millimetron - a large space antenna for THz astronomy Instrumentation for Millimetron - a large space antenna for THz astronomy Wolfgang Wild 1,2, Andrey Baryshev 1,2, Thijs de Graauw 3, Nikolay Kardashev 4, Sergey Likhachev 4,Gregory Goltsman 4,5, Valery

More information

The Sardinia Radio Telescope conversion, distribution, and receiver control system

The Sardinia Radio Telescope conversion, distribution, and receiver control system Mem. S.A.It. Suppl. Vol. 10, 66 c SAIt 2006 Memorie della Supplementi The Sardinia Radio Telescope conversion, distribution, and receiver control system J. Monari, A. Orfei, A. Scalambra, S. Mariotti,

More information

KaVA Status Report for 2016A

KaVA Status Report for 2016A KaVA Status Report for 2016A KaVA User Support Team, NAOJ and KASI October 2, 2015 1 Contents 1 Introduction 3 2 System 4 2.1 Array.................................... 4 2.2 Antennas..................................

More information

2009 CubeSat Developer s Workshop San Luis Obispo, CA

2009 CubeSat Developer s Workshop San Luis Obispo, CA Exploiting Link Dynamics in LEO-to-Ground Communications 2009 CubeSat Developer s Workshop San Luis Obispo, CA Michael Caffrey mpc@lanl.gov Joseph Palmer jmp@lanl.gov Los Alamos National Laboratory Paper

More information

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard Michael Pearlman Director Central Bureau International Laser Ranging Service Harvard-Smithsonian Center for Astrophysics Cambridge MA

More information