Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers

Size: px
Start display at page:

Download "Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers"

Transcription

1 Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers Kazuhito MURAKAMI* and Hideaki FUJIMOTO** This paper presents that the numerical analysis using the central difference method is efficient for the evenand odd-mode analysis of the branch-line coupler. The boundary treatment which computes reflected and transmitted quantities at T-junction is carried out by signal flow graph. For 3-dB branch-line coupler, the electric and magnetic walls appeared by even-mode, odd-mode and all ports excitations are confirmed on the lines. It is shown that the simulated results for the equivalent circuits agree with those of the conventional analysis. Key words: microwave planar circuit, coupled transmission line, directional coupler, numerical analysis 1. Introduction Microwave simulators are actively used as a supporting tool of the microwave circuit design. The use is for the reduction of the development cost, shortening of the development period, and the reliability improvement of a system. In microwave planar circuits, the branch-line hybrid (branch-line coupler) is a passive element widely used as the directional coupler and the mixer, etc. Using such a discontinuity part for the design of microwave circuits is one of the important themes. Simulating the behavior and the characteristic of reflected and transmitted waves generated due to discontinuity is an important task. For the purpose of analyzing or designing microwave and millimeterwave circuits1>-3), it is also important to analyze directly the transmission line system corresponding to a physical structure given. For such a purpose there are a lot of electromagnetic field numerical analysis methods such as the finite element method, the moment method and the FDTD method with respect to the analysis of planar circuits. The use of threedimensional electromagnetic field analysis simulators have spread recently. Moreover, a circuit simulator 6) of SPICE system into which the transmission line model is worked have spread. In this paper, we present time solutions of voltage and current which occur by exciting a transmission line system with the sinusoidal signal. These solutions can be obtained by a numerical analysis based on the central difference method in which the boundary treatment is incorporated for T-junction. As for the boundary treatment, by introducing the theory of the signal flow graph we process the reflected waves and the transmitted waves, which are generated with the incident waves of the voltage and current, on each transmission line with respect to in- stantaneous values of time. The obtained time solutions express the voltage and current variations, and the behavior of the multiple reflection waves along the line is made visible. In order to verify the effectiveness of the proposed numerical analysis method we give a numeric calculation example. The example is about a 3dB branchline coupler, and gives solutions for the voltage and current. By using the obtained solutions, we show the standing wave and the isolation at a center frequency from the distributions of the steady-state voltage and current. Moreover, we verify that combined solutions, which are obtained from the numeric even- and odd-mode analysis, agree with original solutions about the corresponding equivalent circuits. When a circuit under consideration is excited by each of the even and odd modes, and by adding input signals at all ports, its equivalent circuit may be obtained from the electric and magnetic walls generated because of the symmetricalness of circuit structure. 2. Transmission line model and nu- merical analysis For the branch-line coupler, as shown in Fig.1(a), using a planar circuit, we consider a model consisting of transmission lines shown in Fig.l(b). The following is the well known telegraphers' equations : where V(x, t) and I(x, t) are the voltage and current, respectively, at the any point x, where is a distance from the input port to the point x, and at time t. Moreover, the constants R, L, G, and C are resistance, inductance, conductance, and capacitance, respectively, per unit length distributed along the line.

2 On the assumption of TEM mode propagation, the characteristic impedance Z0 and the phase velocity vp are where Ax i *i, At j r j for the incremental length Ox of the line and the incremental time At. From the above equations we can have the following equations for successive calculation. respectively. approximatione4l Applying the central to equation (1) gives difference where Yo = 1/Zo. Assume that each port of the branch-line coupler is terminated in a matched load. When exciting its Port 1 we set an initial value and a boundary value, as follows. Initial value: Here Vpk (t) (k = 1,., 4) is the voltage at Port k. From equation (3), obtain all solutions of voltage and current on the transmission lines. After that, extract the forward and backward waves due to the input and output responses obtained at each port of the coupler under consideration. As a result, for the input voltagevin (t) at Port 1 given by TT I \ 1 ITT 1L\ r7 r IL\\ we canget an output voltage Vpko(t) (k = 1,, 4) at each of other ports by the following: Fig.l Branch-line coupler and its equivalent circuits: (a) branch-line coupler; (b) transmission line model; (c) even mode equivalent circuit; (d) odd mode equivalent circuit.

3 3. Boundary treatment In discontinuities within the branch-line coupler, the boundary treatment for the reflected and transmitted waves is required about the incident wave that arrives from each line. The boundary treatment of T-junction is done by processing the reflected and transmitted waves, and this processing is especially performed by applying the theory of the signal flow graph, as shown in Fig. 2. The reflection coefficient Fk (k = 1, 2, 3) of each port of T-junction can be described by the following equations. Fig.3 Steady-state voltage and current variations. For the incident voltage and current on each transmission line, the corresponding reflected and transmitted quantities can be written in the forms: Here, superscripts "+" and "-" mean the incident wave and the transmitted wave (the reflected wave is included), respectively. The boundary treatment at each of discontinuities is done by calculating the reflected and transmitted quantities with respect to the incident voltage and current on each line at each time. 4. Simulation results As an example of the numerical analysis of the coupler under consideration, in Fig.3 we show variations of the steady-state voltage and current, when exciting its Port 1 with a voltage generator e(t) = sin (2ir fat) (10 Center frequency). (11) From the result, Port 3 is recognized as the isolated port, and moreover -3dB is then observed for the input signal to be output to Port 2 and Port 4, respectively. From this figure we can see these voltage and current variations, respectively, are almost corresponding to the phenomenon of electric field distribution measured and the current density distribution.5) Fig.2 Signal flow graph of T-junction. I r ) Even- and odd-mode excitations We shall apply the proposed numerical analysis ethod to the even- and odd-mode analysis. When

4 two ports, Port 1 and Port 3, are simultaneously and sinusoidally excited, i.e., for the steady-state when the coupler is excited by each of even mode and odd mode, Figs. 4 and 5 show variations of voltage and current, respectively. From each figure, we can confirm that there are each of the electric and magnetic walls at the center part of coupler. When these two modes with respect to voltage are superposed, its result is in good agreement with the result shown in Fig.3(a). Of course, as shown in Fig.3(b), about the current also holds similarly. 1) Even mode Fig.4 illustrates the voltage and current variations under conditions V1 = V (t), V3 = V(t), V2 = 0, V4 = 0, i.e. under the even mode excitation. 2) Odd mode Fig.5 illustrates the voltage and current variations under conditions V1 = V (t), V3 = -V (t), V2 = 0, V4 = 0, i.e. under the odd mode excitation. 3) Equivalent circuits Fig.6 shows two equivalent circuits corresponding to the even mode and odd mode excitations, respectively. We have applied these circuits to obtain the variations shown in the above. The conventional analytical result for voltage that is obtained by using the even- and odd-mode equivalent circuits agrees with the lower half of Fig.3(a). On two voltages with respect to two modes, it should be noted that the superposition of their sum and difference agrees with the result shown in Fig.3(a) completely. Similarly, on two currents with respect to two modes the corresponding superposition agrees with that shown in Fig.3(b). B) Simultaneous all ports excitations Fig.7 illustrates the voltage and current variations in a steady-state response with respect to when each port of branch-line coupler is excited by four patterns simultaneously. It is observed respectively that, at a center of the main line and of branches, there exist the electric and magnetic walls that arise due to the symmetricalness of the circuit structure. Moreover, it agrees to the results, shown in Fig.3, when four kinds of all voltage solutions are superposed. Of course, the above about the current solutions is also true. 5. Conclusions We have shown the steady-state solutions with respect to voltages and currents on all transmission lines within the branch-line coupler. These solutions have been obtained by applying the time domain analysis based on a numerical analysis using the center difference method. Fig.4 Variations for the even mode excitaion. (a) Even mode equivalent circuit Fig.5 Variations for the odd mode excitaion. Fig.6 (b) Odd mode equivalent circuit Equivalent circuits for two modes.

5 1) V1=v0, V34/0, 1124/0, V4=v(t) Moreover, we have presented the usefulness of the numerical analysis method proposed in this paper by showing the following: (1) the presentation for voltage and current variations on the transmission lines about the even and odd mode excitations, and about the excitation at all ports where are terminated by matched loads, (2) verification for the existence of the electric wall and the magnetic wall, and of the existence of equivalent circuits because of these walls, (3) numeric even-mode and odd-mode analysis. The presented numerical analysis method can be used as a simple simulation tool for two purposes mainly: (1) for understanding characteristics of circuits, (2) for visualizing the operation phenomenon of planar circuits. References 2 ) V1=V(t), V3= 3/(t), V2.V(t), V4=V(t) 1) R.E.Collin, "Foundations for microwave engineering, 2nd ed.," McGraw-HILL, (1992). 2) K.C.Gupta, et al, "Microstrip Lines and Slotlines, 2nd ed.", ARTECH HOUSE, Norwood, (1996). 3) G.L.Matthaei, L. Young and E.M.T. Jones, "Microwave filters, impedance-matching networks, and coupling structures," ARTECH HOUSE, Norwood, MA, (1980). 4) K.Murakami, IEICE General Conf. 2004, Mar, (2004) A ) G.Fred, "Microstrip circuits," John Wiley & Sons.Inc., NewYork, NY, (1994). 6) Y.Yamashita, "Foundation of microwave simula tors," Publishing of IEICE, Tokyo, (2004). 3) V1=v(t), V3=-V0, V2=v(t), V4=.1/(t) 4) V1=V(t),V3=v(t),V2=-v(t),V4=-v(t)j I Fig.7 Voltage and current variations for when all ports is simultaneously excited. 5

Experiment 9: Microwave Directional Couplers and Hybrids

Experiment 9: Microwave Directional Couplers and Hybrids Experiment 9: Microwave Directional Couplers and Hybrids 1. Directional Couplers and Hybrids Directional couplers and hybrids are used in a variety of important applications at microwave frequencies. The

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Progress In Electromagnetics Research C, Vol. 43, 217 229, 2013 BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Puria Salimi *, Mahdi Moradian,

More information

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE Progress In Electromagnetics Research M, Vol. 3, 205 215, 2008 IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE M. Moradian and M. Khalaj-Amirhosseini

More information

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE Progress In Electromagnetics Research Letters, Vol. 26, 87 96, 211 SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE M. Kazerooni * and M. Aghalari

More information

Theoretical Information About Branch-line Couplers

Theoretical Information About Branch-line Couplers Theoretical Information About Branch-line Couplers Generally branch-line couplers are 3dB, four ports directional couplers having a 90 phase difference between its two output ports named through and coupled

More information

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 A COMPACT DUAL-BAND PLANAR BRANCH-LINE COUPLER D. C. Ji *, B. Wu, X. Y. Ma, and J. Z. Chen 1 National Key Laboratory of Antennas and Microwave

More information

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters

Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Review on Various Issues and Design Topologies of Edge Coupled Coplanar Waveguide Filters Manoj Kumar *, Ravi Gowri Department of Electronics and Communication Engineering Graphic Era University, Dehradun,

More information

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI ELECTRIC CIRCUITS Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI Includes 364 solved problems --fully explained Complete coverage of the fundamental, core concepts of electric circuits All-new chapters

More information

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Usman Sammani Sani Lecturer, Department of Electrical Engineering Bayero University, Kano, P.M.B. 3011, Nigeria. usmanssani@live.com

More information

Decomposition of Coplanar and Multilayer Interconnect Structures with Split Power Distribution Planes for Hybrid Circuit Field Analysis

Decomposition of Coplanar and Multilayer Interconnect Structures with Split Power Distribution Planes for Hybrid Circuit Field Analysis DesignCon 23 High-Performance System Design Conference Decomposition of Coplanar and Multilayer Interconnect Structures with Split Power Distribution Planes for Hybrid Circuit Field Analysis Neven Orhanovic

More information

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique 1 P.Priyanka, 2 Dr.S.Maheswari, 1 PG Student, 2 Professor, Department of Electronics and Communication Engineering Panimalar

More information

Microwave Engineering

Microwave Engineering Microwave Circuits 1 Microwave Engineering 1. Microwave: 300MHz ~ 300 GHz, 1 m ~ 1mm. a. Not only apply in this frequency range. The real issue is wavelength. Historically, as early as WWII, this is the

More information

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION Progress In Electromagnetics Research C, Vol. 16, 233 239, 2010 COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION J. S. Kim Department of Information and Communications Engineering Kyungsung University

More information

Microwave Engineering Third Edition

Microwave Engineering Third Edition Microwave Engineering Third Edition David M. Pozar University of Massachusetts at Amherst WILEY John Wiley & Sons, Inc. ELECTROMAGNETIC THEORY 1 1.1 Introduction to Microwave Engineering 1 Applications

More information

Microstrip Lines and Slotlines

Microstrip Lines and Slotlines Microstrip Lines and Slotlines Second Edition K.C. Gupta Ramesh Garg Inder Bahl Prakash Bhartia Artech House Boston London Contents Preface to the Second Edition Preface to the First Edition Chapter 1

More information

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE Progress In Electromagnetics Research Letters, Vol. 32, 1 10, 2012 A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE Y. Kim * School of Electronic Engineering, Kumoh National

More information

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Second Edition Peter Russer ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xvii Chapter 1 Introduction

More information

WIDE-BAND circuits are now in demand as wide-band

WIDE-BAND circuits are now in demand as wide-band 704 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 Compact Wide-Band Branch-Line Hybrids Young-Hoon Chun, Member, IEEE, and Jia-Sheng Hong, Senior Member, IEEE Abstract

More information

Lab Manual Experiment No. 2

Lab Manual Experiment No. 2 Lab Manual Experiment No. 2 Aim of Experiment: Observe the transient phenomenon of terminated coaxial transmission lines in order to study their time domain behavior. Requirement: You have to install a

More information

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 23, , 2011 Progress In Electromagnetics Research Letters, Vol. 23, 173 180, 2011 A DUAL-MODE DUAL-BAND BANDPASS FILTER USING A SINGLE SLOT RING RESONATOR S. Luo and L. Zhu School of Electrical and Electronic Engineering

More information

THE PROBLEM of electromagnetic interference between

THE PROBLEM of electromagnetic interference between IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 50, NO. 2, MAY 2008 399 Estimation of Current Distribution on Multilayer Printed Circuit Board by Near-Field Measurement Qiang Chen, Member, IEEE,

More information

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD IJRRAS 9 (3) December 20 www.arpapress.com/volumes/vol9issue3/ijrras_9_3_0.pdf PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD Abdullah Eroglu, Tracy Cline & Bill Westrick Indiana

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE 140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 1, JANUARY 2009 Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE Abstract

More information

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Vamsi Krishna Velidi, Mrinal Kanti Mandal, Subrata Sanyal, and Amitabha Bhattacharya Department of Electronics and Electrical Communications

More information

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 1, 185 191, 29 A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS T. Yang, C. Liu, L. Yan, and K.

More information

ON THE STUDY OF LEFT-HANDED COPLANAR WAVEGUIDE COUPLER ON FERRITE SUBSTRATE

ON THE STUDY OF LEFT-HANDED COPLANAR WAVEGUIDE COUPLER ON FERRITE SUBSTRATE Progress In Electromagnetics Research Letters, Vol. 1, 69 75, 2008 ON THE STUDY OF LEFT-HANDED COPLANAR WAVEGUIDE COUPLER ON FERRITE SUBSTRATE M. A. Abdalla and Z. Hu MACS Group, School of EEE University

More information

Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines

Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines 248 ACES JOURNAL, VOL. 27, NO. 3, MARCH 212 Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines Derar Hawatmeh 1, Khair Al Shamaileh 2, and

More information

Design of Multi-Stage Power Divider Based on the Theory of Small Reflections

Design of Multi-Stage Power Divider Based on the Theory of Small Reflections Progress In Electromagnetics Research Letters, Vol. 60, 23 30, 2016 Design of Multi-Stage Power Divider Based on the Theory of Small Reflections Tongfei Yu *, Dongping Liu, Zhiping Li, and Jungang Miao

More information

EM Design of an Isolated Coplanar RF Cross for MEMS Switch Matrix Applications

EM Design of an Isolated Coplanar RF Cross for MEMS Switch Matrix Applications EM Design of an Isolated Coplanar RF Cross for MEMS Switch Matrix Applications W.Simon 1, A.Lauer 1, B.Schauwecker 2, A.Wien 1 1 IMST GmbH, Carl-Friedrich-Gauss-Str. 2, 47475 Kamp Lintfort, Germany; E-Mail:

More information

Fundamentals of RF Design RF Back to Basics 2015

Fundamentals of RF Design RF Back to Basics 2015 Fundamentals of RF Design 2015 Updated January 1, 2015 Keysight EEsof EDA Objectives Review Simulation Types Understand fundamentals on S-Parameter Simulation Additional Linear and Non-Linear Simulators

More information

The 40 GHz band duplexer with E-plane planar circuit

The 40 GHz band duplexer with E-plane planar circuit The 40 GHz band duplexer with E-plane planar circuit Toshihisa Kamei a), Yozo Utsumi, and Nguyen Thanh Department of Communications Engineering, National Defense Academy, 1 10 20 Hashirimizu, Yokosuka,

More information

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios Microwave Science and Technology Volume 13, Article ID 56734, 1 pages http://dx.doi.org/1.1155/13/56734 Research Article Compact and Wideband Parallel-Strip 18 Hybrid Coupler with Arbitrary Power Division

More information

Compact Wideband Quadrature Hybrid based on Microstrip Technique

Compact Wideband Quadrature Hybrid based on Microstrip Technique Compact Wideband Quadrature Hybrid based on Microstrip Technique Ramy Mohammad Khattab and Abdel-Aziz Taha Shalaby Menoufia University, Faculty of Electronic Engineering, Menouf, 23952, Egypt Abstract

More information

Evaluation of Package Properties for RF BJTs

Evaluation of Package Properties for RF BJTs Application Note Evaluation of Package Properties for RF BJTs Overview EDA simulation software streamlines the development of digital and analog circuits from definition of concept and estimation of required

More information

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS Progress In Electromagnetics Research C, Vol. 8, 57 68, 29 A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS J.-S. Zhan and J.-L. Wang Xidian University China Abstract Generalized

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT II TRANSMISSION LINE PARAMETERS

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT II TRANSMISSION LINE PARAMETERS Part A (2 Marks) UNIT II TRANSMISSION LINE PARAMETERS 1. When does a finite line appear as an infinite line? (Nov / Dec 2011) It is an imaginary line of infinite length having input impedance equal to

More information

A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE

A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE Progress In Electromagnetics Research C, Vol. 34, 227 237, 2013 A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE A. Ladu 1, * and G. Pisano 2 1 Dipartimento di Ingegneria Elettrica

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

DESIGN OF COMPACT PLANAR RAT-RACE AND BRANCH- LINE HYBRID COUPLERS USING POLAR CURVES

DESIGN OF COMPACT PLANAR RAT-RACE AND BRANCH- LINE HYBRID COUPLERS USING POLAR CURVES DESIGN OF COMPACT PLANAR RAT-RACE AND BRANCH- LINE HYBRID COUPLERS USING POLAR CURVES Johan Joubert and Johann W. Odendaal Centre for Electromagnetism, Department of Electrical, Electronic and Computer

More information

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network Microwave Science and Technology, Article ID 854346, 6 pages http://dx.doi.org/1.1155/214/854346 Research Article Wideband Microstrip 9 Hybrid Coupler Using High Pass Network Leung Chiu Department of Electronic

More information

Design of Directional Coupler Using Synthesis Method on Defected Ground Structure

Design of Directional Coupler Using Synthesis Method on Defected Ground Structure Design of Directional Coupler Using Synthesis Method on Defected Ground Structure Rohit Samadhiya, Neeraj Sharma, Abhishek Tripathi, Sriram Gupta, Praveen Sharma Electronics Department Madhav Institute

More information

Compact Tunable 3 db Hybrid and Rat-Race Couplers with Harmonics Suppression

Compact Tunable 3 db Hybrid and Rat-Race Couplers with Harmonics Suppression 372 Compact Tunable 3 db Hybrid and Rat-Race Couplers with Harmonics Suppression Khair Al Shamaileh 1, Mohammad Almalkawi 1, Vijay Devabhaktuni 1, and Nihad Dib 2 1 Electrical Engineering and Computer

More information

Power Combiners, Impedance Transformers and Directional Couplers: Part III

Power Combiners, Impedance Transformers and Directional Couplers: Part III From February 8 High Frequency Electronics Copyright 8 Summit Technical Media, LLC Power Combiners, Impedance Transformers and Directional Couplers: Part III By Andrei Grebennikov Microwave hybrids This

More information

Part Number I s (Amps) n R s (Ω) C j (pf) HSMS x HSMS x HSCH x

Part Number I s (Amps) n R s (Ω) C j (pf) HSMS x HSMS x HSCH x The Zero Bias Schottky Detector Diode Application Note 969 Introduction A conventional Schottky diode detector such as the Agilent Technologies requires no bias for high level input power above one milliwatt.

More information

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE)

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE) 1 Dual Band Wilkinson Power divider without Reactive Components Subramanian.T.R (DESE) Abstract This paper presents an unequal Wilkinson power divider operating at arbitrary dual band without reactive

More information

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators International Journal of Electromagnetics and Applications 2016, 6(1): 7-12 DOI: 10.5923/j.ijea.20160601.02 Design of Duplexers for Microwave Communication Charles U. Ndujiuba 1,*, Samuel N. John 1, Taofeek

More information

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i

Impedance Inverter Z L Z Fig. 3 Operation of impedance inverter. i 1 An equivalent circuit of a two receiver wireless power transfer system is shown i 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS Impedance Inverter based Analysis of Wireless Power Transfer Consists of Abstract Repeaters via Magnetic Resonant Coupling

More information

D. Packiaraj a, K.J. Vinoy b, M. Ramesh a & A.T. Kalghatgi a a Central Research Laboratory, Bharat Electronics Limited,

D. Packiaraj a, K.J. Vinoy b, M. Ramesh a & A.T. Kalghatgi a a Central Research Laboratory, Bharat Electronics Limited, This article was downloaded by: [D PACKIARAJ] On: 14 April 2013, At: 20:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

Full Wave Analysis of Planar Interconnect Structures Using FDTD SPICE

Full Wave Analysis of Planar Interconnect Structures Using FDTD SPICE Full Wave Analysis of Planar Interconnect Structures Using FDTD SPICE N. Orhanovic, R. Raghuram, and N. Matsui Applied Simulation Technology 1641 N. First Street, Suite 17 San Jose, CA 95112 {neven, raghu,

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 29 Integrated Optics Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Microwaves - Lecture Notes - v Dr. Serkan Aksoy Microwaves. Lecture Notes. Dr. Serkan Aksoy. v.1.3.4

Microwaves - Lecture Notes - v Dr. Serkan Aksoy Microwaves. Lecture Notes. Dr. Serkan Aksoy. v.1.3.4 Microwaves - Lecture Notes - v.1.3.4 Dr. Serkan Aksoy - 2009 Microwaves Lecture Notes Dr. Serkan Aksoy v.1.3.4 2009 http://www.gyte.edu.tr/gytenet/dosya/102/~saksoy/ana.html Content 1. LUMPED CIRCUIT MODEL

More information

The analysis of microstrip antennas using the FDTD method

The analysis of microstrip antennas using the FDTD method Computational Methods and Experimental Measurements XII 611 The analysis of microstrip antennas using the FDTD method M. Wnuk, G. Różański & M. Bugaj Faculty of Electronics, Military University of Technology,

More information

Microstrip Line Discontinuities Simulation at Microwave Frequencies

Microstrip Line Discontinuities Simulation at Microwave Frequencies Microstrip Line Discontinuities Simulation at Microwave Frequencies Dr. A.K. Rastogi 1* (FIETE), (MISTE), Munira Bano 1, Manisha Nigam 2 1. Department of Physics & Electronics, Institute for Excellence

More information

Shielding Effectiveness of Rectangular Enclosure with Apertures on Two Different Sides

Shielding Effectiveness of Rectangular Enclosure with Apertures on Two Different Sides International Journal of Electromagnetics and Applications 215, 5(2): 8-89 DOI: 1.5923/j.ijea.21552.2 Effectiveness of Rectangular Enclosure with Apertures on Two Different Sides G. Kameswari *, P.. Y.

More information

2x2 QUASI-OPTICAL POWER COMBINER ARRAY AT 20 GHz

2x2 QUASI-OPTICAL POWER COMBINER ARRAY AT 20 GHz Third International Symposium on Space Terahertz Technology Page 37 2x2 QUASI-OPTICAL POWER COMBINER ARRAY AT 20 GHz Shigeo Kawasaki and Tatsuo Itoh Department of Electrical Engineering University of California

More information

Analysis of Waveguide Junction Discontinuities Using Finite Element Method

Analysis of Waveguide Junction Discontinuities Using Finite Element Method NASA Contractor Report 201710 Analysis of Waveguide Junction Discontinuities Using Finite Element Method Manohar D. Deshpande ViGYAN, Inc., Hampton, Virginia Contract NAS1-19341 July 1997 National Aeronautics

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Prerna Saxena,, 2013; Volume 1(8): 46-53 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK STUDY OF PATCH ANTENNA ARRAY USING SINGLE

More information

Multi-pole Microstrip Directional Filters for Multiplexing Applications

Multi-pole Microstrip Directional Filters for Multiplexing Applications Multi-pole Microstrip Directional Filters for Multiplexing Applications Humberto Lobato-Morales, Alonso Corona-Chávez, J. Luis Olvera-Cervantes, D.V.B. Murthy Instituto Nacional de Astrofísica, Óptica

More information

BIRD ELECTRONIC CORPORATION

BIRD ELECTRONIC CORPORATION BIRD ELECTRONIC CORPORATION Application Note Straight Talk About Directivity Application Note: Effects of Directivity on Power, VSWR and Return Loss Measurement Accuracy, / 475-APP-0404RV2 INTRODUCTION

More information

Theoretical Information About Branch-line Couplers

Theoretical Information About Branch-line Couplers Theoretical Information About Branch-line Couplers Generally branch-line couplers are 3dB, four ports directional couplers having a 90 phase difference between its two output ports named through and coupled

More information

Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics

Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 19, Number 3, 2016, 199 212 Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics Saurabh

More information

PARALLEL coupled-line filters are widely used in microwave

PARALLEL coupled-line filters are widely used in microwave 2812 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 9, SEPTEMBER 2005 Improved Coupled-Microstrip Filter Design Using Effective Even-Mode and Odd-Mode Characteristic Impedances Hong-Ming

More information

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Progress In Electromagnetics Research C, Vol. 35, 1 11, 2013 QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS Kenneth S. K. Yeo * and Punna Vijaykumar School of Architecture,

More information

MINIATURIZED SIZE BRANCH LINE COUPLER USING OPEN STUBS WITH HIGH-LOW IMPEDANCES

MINIATURIZED SIZE BRANCH LINE COUPLER USING OPEN STUBS WITH HIGH-LOW IMPEDANCES Progress In Electromagnetics Research Letters, Vol. 23, 65 74, 2011 MINIATURIZED SIZE BRANCH LINE COUPLER USING OPEN STUBS WITH HIGH-LOW IMPEDANCES M. Y. O. Elhiwaris, S. K. A. Rahim, U. A. K. Okonkwo

More information

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz International Journal of Management, IT & Engineering Vol. 7 Issue 7, July 2017, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS

ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS The Engineering Approach CHRISTOPHE CALOZ Ecole Polytechnique de Montreal TATSUO ITOH University of California at Los

More information

LAB MANUAL EXPERIMENT NO. 9

LAB MANUAL EXPERIMENT NO. 9 LAB MANUAL EXPERIMENT NO. 9 Aim of the Experiment: 1. Measure the characteristics of a Directional Coupler. 2. Use of the Directional Coupler and Ratio Meter to construct a Scalar Network Analyzer for

More information

Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas

Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas 3054 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 62, NO. 6, JUNE 2014 Spherical Mode-Based Analysis of Wireless Power Transfer Between Two Antennas Yoon Goo Kim and Sangwook Nam, Senior Member,

More information

Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method

Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method M.G. BANCIU and R. RAMER School of Electrical Engineering and Telecommunications University of New South Wales Sydney 5 NSW

More information

1 Introduction 2 Analysis

1 Introduction 2 Analysis Published in IET Microwaves, Antennas & Propagation Received on 3rd September 2009 Revised on 30th March 2010 ISSN 1751-8725 High-frequency crosstalk between two parallel slotlines V. Kotlan J. Machac

More information

STUDY OF ARTIFICIAL MAGNETIC MATERIAL FOR MICROWAVE APPLICATIONS

STUDY OF ARTIFICIAL MAGNETIC MATERIAL FOR MICROWAVE APPLICATIONS International Journal of Advances in Materials Science and Engineering (IJAMSE) Vol., No.,July 3 STUDY OF ARTIFICIAL MAGNETIC MATERIAL FOR MICROWAVE APPLICATIONS H. Benosman, N.Boukli Hacene Department

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Microwave Engineering Class / Sem: BE (ECE) / VII Subject

More information

SHIELDING EFFECTIVENESS

SHIELDING EFFECTIVENESS SHIELDING Electronic devices are commonly packaged in a conducting enclosure (shield) in order to (1) prevent the electronic devices inside the shield from radiating emissions efficiently and/or (2) prevent

More information

Equivalent Circuit Model Overview of Chip Spiral Inductors

Equivalent Circuit Model Overview of Chip Spiral Inductors Equivalent Circuit Model Overview of Chip Spiral Inductors The applications of the chip Spiral Inductors have been widely used in telecommunication products as wireless LAN cards, Mobile Phone and so on.

More information

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Progress In Electromagnetics Research, PIER 73, 29 38, 2007 THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Han S. H., Wang X. L., Fan Y., Yang Z. Q., and He Z. N. Institute of Electronic

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits FDTD Analysis of High-Speed Cells in Silicon Integrated Circuits Neven Orhanovic and Norio Matsui Applied Simulation Technology Gateway Place, Suite 8 San Jose, CA 9 {neven, matsui}@apsimtech.com Abstract

More information

Lecture #3 Microstrip lines

Lecture #3 Microstrip lines November 2014 Ahmad El-Banna Benha University Faculty of Engineering at Shoubra Post-Graduate ECE-601 Active Circuits Lecture #3 Microstrip lines Instructor: Dr. Ahmad El-Banna Agenda Striplines Forward

More information

Design of Microstrip line & Coupled line based equal & unequal Wilkinson Power Divider

Design of Microstrip line & Coupled line based equal & unequal Wilkinson Power Divider Design of Microstrip line & Coupled line based equal & unequal Wilkinson Power Divider Pradeep H S Dept.of ECE, Siddaganga Institute of Technology, Tumakuru, Karnataka. Abstract The passive devices are

More information

Transient and Steady-State on a Transmission Line

Transient and Steady-State on a Transmission Line Transient and Steady-State on a Transmission Line Transmission Lines We need to give now a physical interpretation of the mathematical results obtained for transmission lines. First of all, note that we

More information

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES 29 CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES A simple equivalent circuit modeling approach to describe Conducted EMI coupling system for the SPC is described

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure

A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure Progress In Electromagnetics Research Letters, Vol. 63, 53 57, 216 A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure Lizhong Song 1,

More information

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER Progress In Electromagnetics Research Letters, Vol. 31, 189 198, 2012 A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER X.-Q. Li *, Q.-X. Liu, and J.-Q. Zhang School of Physical Science and

More information

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T Antennas and Propagation Volume 212, Article ID 838962, 6 pages doi:1.1155/212/838962 Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T Guang Hua, Jiefu Zhang, Jiudong

More information

Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010

Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010 Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010 COMPACT ULTRA-WIDEBAND PHASE SHIFTER M. N. Moghadasi Electrical Engineering Department Science and Research Branch Islamic Azad University

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices.

What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices. What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices. Rick Nelson, Senior Technical Editor -- Test & Measurement World,

More information

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat Electric Circuits II Magnetically Coupled Circuits Dr. Firas Obeidat 1 Table of contents 1 Mutual Inductance 2 Dot Convention 3 Analyze Circuits Involving Mutual Inductance 4 Energy in a Coupled Circuit

More information

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR SIGNAL TRANSISSION CHARACTERISTICS IN STRIPLINE-TYPE BEA POSITION ONITOR T. Suwada, KEK, Tsukuba, Ibaraki 305-0801, Japan Abstract A new stripline-type beam position monitor (BP) system is under development

More information

Schottky diode mixer for 5.8 GHz radar sensor

Schottky diode mixer for 5.8 GHz radar sensor AN_1808_PL32_1809_130625 Schottky diode mixer for 5.8 GHz radar sensor About this document Scope and purpose This application note shows a single balanced mixer for 5.8 GHz Doppler radar applications with

More information

Admittance Loading Of Dielectric Loaded Inclined Slots In The Narrow Wall Of A H-Plane Tee Junction

Admittance Loading Of Dielectric Loaded Inclined Slots In The Narrow Wall Of A H-Plane Tee Junction Communication Technology, Vol 4, Issue, November- 5 ISSN (Online) 78-584 ISSN (Print) 3-556 Admittance Loading Of Dielectric Loaded Inclined Slots In The Narrow Wall Of A H-Plane Tee Junction G. Srivalli

More information

Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha

Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha M.Tech Research Scholar 1, Associate Professor 2 ECE Deptt. SLIET Longowal, Punjab-148106, India

More information

Design of Planar Dual-Band Branch-Line Coupler with π-shaped Coupled Lines

Design of Planar Dual-Band Branch-Line Coupler with π-shaped Coupled Lines Progress In Electromagnetics Research Letters, Vol. 55, 113 12, 215 Design of Planar Dual-Band Branch-Line Coupler with π-shaped Coupled Lines Yu Cao, Jincai Wen *, Hui Hong, and Jun Liu Abstract In this

More information