Experiment 9: Microwave Directional Couplers and Hybrids

Size: px
Start display at page:

Download "Experiment 9: Microwave Directional Couplers and Hybrids"

Transcription

1 Experiment 9: Microwave Directional Couplers and Hybrids 1. Directional Couplers and Hybrids Directional couplers and hybrids are used in a variety of important applications at microwave frequencies. The way a directional coupler functions can be depicted as shown in Fig. 1. A signal is fed into one of the four ports. Ideally, part of the signal power emerges from the transmitted port. Ideally, the rest of the input power emerges from the coupled port. Again, ideally, no signal emerges from the isolated port. The direction from the input port to the transmitted port is considered to be the forward direction of signal propagation. If the input signal minus the transmitted signal emerges as shown in Fig.1a., then the coupler is denoted as a forward coupler. If the input signal minus the transmitted signal emerges as shown in Fig. 1b., then the coupler is denoted as a backward coupler. Directional couplers can be designed to send different portions of the input power to the coupled port, depending on the application for which they are designed. If the directional coupler is designed to lightly sample the input power, the coupled signal may be either 10 db or 20 db relative to the input signal strength. Such directional couplers are often used to sample (lightly couple) the signal strength of the input signal for applications like the network analyzer in the previous laboratory exercise (see Fig. 2. in the previous lab description). Input port Transmitted port Isolated port Coupled port Fig. 1a. Forward Directional Coupler Input port Transmitted port Coupled port Isolated port Fig. 1b. Backward Directional Coupler

2 Directional couplers also are available in 6dB and 3dB coupled signal strength. A 3dB directional coupler ideally sends one half the input power to the transmitted port and the other half of the power to the coupled port. Components that split half the power between the transmitted port and the coupled port are called hybrids. Depending on the intended application, these components may be designed so the transmitted and coupled signals are 90 o or 180 o different in phase. A 3dB directional coupler with a 90 o phase difference between the transmitted and the coupled signals is called a quadrature hybrid. The symbol used to represent a hybrid is shown in Fig. 2. Coupled signal Isolated signal (no signal) (1/2 input signal power) Input signal Transmitted signal (1/2 input signal power) Fig. 2. Symbol for hybrid Two of the more important applications where quadrature (90 o ) hybrids are employed are in power combining applications for power amplifiers and in mutiplexer or demultiplexer design. Fig. 3. depicts the use in combining the output from two lower power amplifiers to achieve greater output power from the combination than is possible from either of the individual power amplifiers. 90 o PA 0 o PA Fig. 3. Hybrids used to combine two power amplifiers Fig.. depicts a similar use of quadrature hybrids for passing a particular frequency band from a broader received band of frequencies. The configuration in Fig.. is a channel dropping configuration. Fig. 5. shows a demultiplexer that would separate signals received in the frequency range from f1 to f2 into two channels, one from f1 to f1 and one from. Hybrids can also be used to combine channels, therby creating a multiplexer.

3 90 o BPF BPF 0 o Fig.. Channel dropping configuration of the band pass filter pass band f1 to f1 f1 to f2 0 o BPF 90 o BPF f1 to f1 f1 to f1 0 o BPF 90 o BPF Fig. 5. Two channel demultiplexer

4 In this laboratory class, you will create and experimentally characterize two couplers. One will be a 20 db parallel line directional coupler. The other will be a 3dB directional coupler or hybrid. As you will see, each of these couplers ideally has a 90 o or quadrature relationship between the phase of the signals emerging from the transmitted and coupled ports, respectively. It can be shown [1] that for a coupled line region that is symmetric with respect to both the horizontal and vertical center lines through the coupled region, the signals emerging from the transmitted and coupled ports differ from each other in phase by 90 o. This result is true independent of the coupling strength. The parallel line directional coupler configuration is shown in Fig. 6. Input Port 1 Transmitted Port Coupled Region Coupled Port 2 3 Isolated Port Fig. 6. Parallel Line Directional Coupler The branch line quadrature hybrid schematic is shown in Fig. 7. Both of these coupler structures have symmetry along the length of the coupler on the substrate. As a result, both couplers can be represented symbolically as in Fig. 8. This symmetry and the linearity of the couplers enables the port couplers to be treated using by superimposing the responses to even and odd mode excitations as shown in Figs. 9a and 9b. The use of even and odd mode excitations, enables each port coupler to be decomposed into two, 2 port networks; each one corresponding to its appropriate excitation. The responses at each of the ports in Figs. 6 and 7 can be determined by appropriately combining the responses at each of the four ports for each coupler type. The results of this analysis for each coupler type are presented in the next sections.

5 1 2 3 Fig. 7. Branch Line Quadrature Hybrid Schematic 1 Vs 2 3 Fig. 8. View of Coupler Symmetry along Its Length 1 Vs/2 2 Vs/2 3 Fig. 9a. Even Mode Excitation Model 1 Vs/2 2 Vs/2 3 Fig. 9b. Odd Mode Excitation Model

6 Parallel Line Directional Coupler The signal emerging from the coupled port (port 2) in the coupler shown in Fig. 6. is given by the following expression [1] (1) The signal emerging from the transmitted port (port ) for that coupler is [1] (2) In these expressions where f is the operating frequency, L is the physical length of the coupled line region, and v is the phase velocity on the transmission line. Also, e and o are the characteristic impedances for the even and odd mode in (for this case) coupled microstrip. For a coupled microstrip coupled line structure, the values needed for e and o are determined by designing the coupler for a particular value of coupling at the center of the desired operating frequency band (k) using eqs. () and (5). (3) () (5) Here, is the characteristic impedance of the lines feeding the coupled line region in Fig. 6. The values for the actual line widths and lengths of the microstrip lines needed to obtain the desired behavior can be obtained from references [2 ]. For this analysis, it is assumed that the signal level emerging from the isolated port (port 3) and the reflected signal at the input port are both zero.

7 Branch Line Quadrature Hybrid Even and odd mode analysis of the branch line coupler leads to the following result for the S parameter matrix value at the mid band frequency value (6) More generally, the signals emerging at the various ports as a function of frequency can be determined by superimposing the responses for the even and odd mode networks at each port. The signals emerging at each port for the even and odd mode networks can be obtained using the following relationships for the ABCD matrices. (7) In (7), (8) L is the physical length of the horizontal and vertical line length denoted as lengths is Fig. 7. f is the operating frequency. v is the phase velocity for the microstrip line that can be determined from reference [2]. Also, YA is the admittance of the horizontal line shown with length. The parameter Ye,o is given by in Fig. 7. For the design in that figure (9) Using (7), (8), and (9) the A parameter can be found for both the even and odd mode signals. The ratio (1/A) gives the ratio of the output (at port ) to the input signal at port 1. By superimposing these results for the even and odd modes, the total signal emerging at port could be determined. Once this is known, the signal

8 emerging from port 3 can be found, by assuming that there is no reflection at the input and no signal emerging from the isolated port (perfect match and isolation assumptions). Laboratory Procedure 1. Obtain the pre cut copper pattern for the 20 db parallel line directional coupler. You will need to use the copper strip of the proper width to lay out the coupled lines with the spacing between them. Use the adhesive on these strips and solder these coupler contacts to the appropriate microstrip pigtails on the PCB. Take a picture of the coupler model that corresponds to the measurements you make on it. 2. Make sure to use the most appropriate calibration possible for the coupler measurements. In order to measure the input to transmitted, coupled, and isolated signals, you will have to perform three two port measurements while the unmeasured ports are terminated in 50 ohm loads. Take sufficient data over the 2 to GHz frequency range to capture all the important features of these signals. You will plot this data in db versus frequency. The directivity of a directional coupler or hybrid is defined by the following. (10) 3. Obtain the pre cut copper patterns needed to implement the branch line quadrature hybrid. Attach this to the circuit by trimming and pressing into place the copper strips. Then, solder these to the appropriate microstrip pigtails on the PCB. Take a picture of the circuit that corresponds to the hybrid you actually measure.. Make sure to use the most appropriate calibration possible for the hybrid measurements. Make measurements of signals emerging from the transmitted, coupled, isolated, and input ports versus frequency. You will ultimately need to plot these in db versus frequency for the 2 to GHz range. You will also have to plot all of these on the same plot versus frequency. Laboratory Report a. For the 20 db parallel line coupler, plot the transmitted, coupled, isolated, and reflected signals in db and the directivity versus frequency; first on separate plots for each quantity and finally all on the same graph. Show a photograph of the coupler you measured. Compare and discuss each of these quantities to the corresponding measurements you made on the commercial directional coupler you measured in the laboratory exercises when you first learned to use the network analyzer. Discuss how the value of coupling that is set at the middle frequency in the band of interest (here, 2 to GHz) determines the departure from the nominal coupling value over that frequency band.

9 b. For the quadrature hybrid, do similar plots and discussion (including directivity). Then compare results to those obtained for a commercially available quadrature hybrid. Discuss these results. References 1. L. Young ed., Advances in Microwaves, Section by R. Levy Directional Couplers, Academic Press, New York, NY, 1966, pp R. Ludwig and P. Bretchko, RF Circuit Design, Theory and Applications, Prentice Hall, Upper Saddle River, NJ, 2000, pp K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Line and Slotlines, Artech House, Dedham, MA, B. C. Wadell, Transmission Line Design Handbook, Artech House, Boston, MA, 1991.

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

SMT Hybrid Couplers, RF Parameters and Applications

SMT Hybrid Couplers, RF Parameters and Applications SMT Hybrid Couplers, RF Parameters and Applications A 90 degree hybrid coupler is a four-port device used to equally split an input signal into two signals with a 90 degree phase shift between them. The

More information

Optimized Design Method of Microstrip Parallel-Coupled Bandpass Filters with Compensation for Center Frequency Deviation

Optimized Design Method of Microstrip Parallel-Coupled Bandpass Filters with Compensation for Center Frequency Deviation Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 1 Optimized Design Method of Microstrip Parallel-Coupled Bandpass Filters with Compensation for Center Frequency Deviation

More information

Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course

Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course Session 2520 Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course Willie K. Ofosu Telecommunications Department Penn State Wilkes-Barre Abstract Wireless applications have experienced

More information

Theoretical Information About Branch-line Couplers

Theoretical Information About Branch-line Couplers Theoretical Information About Branch-line Couplers Generally branch-line couplers are 3dB, four ports directional couplers having a 90 phase difference between its two output ports named through and coupled

More information

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits NOMNCLATUR ABCD Matrices: These are matrices that can represent the function of simple two-port networks. The use of ABCD matrices is manifested in their ability to be cascaded through simple matrix multiplication.

More information

Department of Electrical Engineering University of North Texas

Department of Electrical Engineering University of North Texas Name: Shabuktagin Photon Khan UNT ID: 10900555 Instructor s Name: Professor Hualiang Zhang Course Name: Antenna Theory and Design Course ID: EENG 5420 Email: khan.photon@gmail.com Department of Electrical

More information

DESIGN OF SEQUENTIALLY FED BALANCED AMPLIFYING ANTENNA FOR CIRCULAR POLARIZATION

DESIGN OF SEQUENTIALLY FED BALANCED AMPLIFYING ANTENNA FOR CIRCULAR POLARIZATION ISSN: 2229 6948 (ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, DECEMBER 2010, VOL.1, ISSUE: 04 DESIGN OF SEQUENTIALLY FED BALANCED AMPLIFYING ANTENNA FOR CIRCULAR POLARIZATION S. K. Behera 1, D.

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE Progress In Electromagnetics Research M, Vol. 3, 205 215, 2008 IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE M. Moradian and M. Khalaj-Amirhosseini

More information

Design and Optimization of Lumped Element Hybrid Couplers

Design and Optimization of Lumped Element Hybrid Couplers From August 2011 Copyright 2011, Summit Technical Media, LLC Design and Optimization of Lumped Element Hybrid Couplers By Ashok Srinivas Vijayaraghavan, University of South Florida and Lawrence Dunleavy,

More information

Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers

Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers Numerical Even- and Odd-Mode Analysis of Branch-Line Couplers Kazuhito MURAKAMI* and Hideaki FUJIMOTO** This paper presents that the numerical analysis using the central difference method is efficient

More information

Theoretical Information About Branch-line Couplers

Theoretical Information About Branch-line Couplers Theoretical Information About Branch-line Couplers Generally branch-line couplers are 3dB, four ports directional couplers having a 90 phase difference between its two output ports named through and coupled

More information

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 23, , 2011 Progress In Electromagnetics Research Letters, Vol. 23, 173 180, 2011 A DUAL-MODE DUAL-BAND BANDPASS FILTER USING A SINGLE SLOT RING RESONATOR S. Luo and L. Zhu School of Electrical and Electronic Engineering

More information

Dual Feed Microstrip Patch Antenna for Wlan Applications

Dual Feed Microstrip Patch Antenna for Wlan Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 5, Ver. I (Sep - Oct.2015), PP 01-05 www.iosrjournals.org Dual Feed Microstrip

More information

LECTURE 6 BROAD-BAND AMPLIFIERS

LECTURE 6 BROAD-BAND AMPLIFIERS ECEN 54, Spring 18 Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder LECTURE 6 BROAD-BAND AMPLIFIERS The challenge in designing a broadband microwave amplifier is the fact that the

More information

Development of closed form design formulae for aperture coupled microstrip antenna

Development of closed form design formulae for aperture coupled microstrip antenna Journal of Scientific & Industrial Research Vol. 64, July 2005, pp. 482-486 Development of closed form design formulae for aperture coupled microstrip antenna Samik Chakraborty, Bhaskar Gupta* and D R

More information

RF Power Amplifier Design and Testing

RF Power Amplifier Design and Testing RF Power Amplifier Design and Testing Final Project Proposal By: Jonathan Lipski Brandon Larison Advisor: Dr. Prasad N. Shastry 11/17/11 Project Summary: An RF power amplifier is a type of electronic amplifier

More information

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE Progress In Electromagnetics Research Letters, Vol. 26, 87 96, 211 SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE M. Kazerooni * and M. Aghalari

More information

S-parameters. Jvdtang. RFTE course, #3: RF specifications and system design (I) 73

S-parameters. Jvdtang. RFTE course, #3: RF specifications and system design (I) 73 S-parameters RFTE course, #3: RF specifications and system design (I) 73 S-parameters (II) Linear networks, or nonlinear networks operating with signals sufficiently small to cause the networks to respond

More information

(a) The insertion loss is the average value of the transmission coefficient, S12 (db), in the passband (Figure 1 Label A)

(a) The insertion loss is the average value of the transmission coefficient, S12 (db), in the passband (Figure 1 Label A) Lab 6-1: Microwave Multiport Circuits In this lab you will characterize several different multiport microstrip and coaxial components using a network analyzer. Some, but not all, of these components have

More information

ECEN 4634/5634, MICROWAVE AND RF LABORATORY

ECEN 4634/5634, MICROWAVE AND RF LABORATORY ECEN 4634/5634, MICROWAVE AND RF LABORATORY Final Exam December 18, 2017 7:30-10:00pm 150 minutes, closed book, 1 sheet allowed, no calculators (estimates need to be within 3dB) Part 1 (60%). Briefly answer

More information

Available online at I-SEEC Proceeding - Science and Engineering (2013)

Available online at  I-SEEC Proceeding - Science and Engineering (2013) Available online at www.iseec212.com I-SEEC 212 Proceeding - Science and Engineering (21) 247 251 Proceeding Science and Engineering www.iseec212.com Science and Engineering Symposium 4 th International

More information

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA F. Ferrero (1), C. Luxey (1), G. Jacquemod (1), R. Staraj (1), V. Fusco (2) (1) Laboratoire d'electronique, Antennes et Télécommunications

More information

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE)

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE) 1 Dual Band Wilkinson Power divider without Reactive Components Subramanian.T.R (DESE) Abstract This paper presents an unequal Wilkinson power divider operating at arbitrary dual band without reactive

More information

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 2, AUGUST 2016 ` A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure Neetu Marwah 1, Ganga P. Pandey 2, Vivekanand N. Tiwari 1, Sarabjot S.

More information

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR Progress In Electromagnetics Research Letters, Vol. 35, 89 98, 2012 COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR K. C. Lee *, H. T. Su, and M. K. Haldar School of Engineering, Computing

More information

Investigation of the Double-Y Balun for Feeding Pulsed Antennas

Investigation of the Double-Y Balun for Feeding Pulsed Antennas Proceedings of the SPIE, Vol. 5089, April 2003 Investigation of the Double-Y Balun for Feeding Pulsed Antennas Jaikrishna B. Venkatesan a and Waymond R. Scott, Jr. b Georgia Institute of Technology Atlanta,

More information

What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices.

What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices. What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices. Rick Nelson, Senior Technical Editor -- Test & Measurement World,

More information

ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler

ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler 1 ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler Note: This lab procedure has been adapted from a procedure written by Dr. Larry Dunleavy and Dr. Tom Weller at the University

More information

Differential Signal and Common Mode Signal in Time Domain

Differential Signal and Common Mode Signal in Time Domain Differential Signal and Common Mode Signal in Time Domain Most of multi-gbps IO technologies use differential signaling, and their typical signal path impedance is ohm differential. Two 5ohm cables, however,

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Upper UWB Interference Free Filter Using Dumb- Bell Resonator and Vias

Upper UWB Interference Free Filter Using Dumb- Bell Resonator and Vias Upper UWB Interference Free Filter Using Dumb- Bell Resonator and Vias 1 Dr.H.Umma Habiba, 2 M.Aishwarya, 3 Kavyashri Parameswaran, 4 Minakshy.R, 5 Mohit Jhunjhunwala 1 Professor, 2,3,4,5 Research Scholars

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #10 Microstrip Circuits and Measurements 1. Objective The objective of Experiment #8 is to investigate the application of microstrip technology. A precision

More information

Power Combiners, Impedance Transformers and Directional Couplers: Part III

Power Combiners, Impedance Transformers and Directional Couplers: Part III From February 8 High Frequency Electronics Copyright 8 Summit Technical Media, LLC Power Combiners, Impedance Transformers and Directional Couplers: Part III By Andrei Grebennikov Microwave hybrids This

More information

Welcome to AntennaSelect Volume 1 August 2013

Welcome to AntennaSelect Volume 1 August 2013 Welcome to AntennaSelect Volume 1 August 2013 This is the first issue of our new periodic newsletter, AntennaSelect. AntennaSelect will feature informative articles about antennas and antenna technology,

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ.

DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ. DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ. 1 Anupma Gupta, 2 Vipin Gupta 1 Assistant Professor, AIMT/ECE Department, Gorgarh, Indri (Karnal), India Email: anupmagupta31@gmail.com

More information

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Usman Sammani Sani Lecturer, Department of Electrical Engineering Bayero University, Kano, P.M.B. 3011, Nigeria. usmanssani@live.com

More information

ELEC4604. RF Electronics. Experiment 2

ELEC4604. RF Electronics. Experiment 2 ELEC4604 RF Electronics Experiment MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF front end of a microwave communication system it is important to appreciate that the

More information

A Compact Microstrip Antenna for Ultra Wideband Applications

A Compact Microstrip Antenna for Ultra Wideband Applications European Journal of Scientific Research ISSN 1450-216X Vol.67 No.1 (2011), pp. 45-51 EuroJournals Publishing, Inc. 2011 http://www.europeanjournalofscientificresearch.com A Compact Microstrip Antenna for

More information

Improved Ionospheric Propagation With Polarization Diversity, Using A Dual Feedpoint Cubical Quad Loop

Improved Ionospheric Propagation With Polarization Diversity, Using A Dual Feedpoint Cubical Quad Loop Improved Ionospheric Propagation With Polarization Diversity, Using A Dual Feedpoint Cubical Quad Loop by George Pritchard - AB2KC ab2kc@optonline.net Introduction This Quad antenna project covers a practical

More information

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China Progress In Electromagnetics Research Letters, Vol. 37, 21 28, 2013 RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA Jianhua Liu 1, Yonggang Zhou 1, 2, *, and Jun Zhu 1 1 College of Electronic and

More information

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION Progress In Electromagnetics Research C, Vol. 16, 233 239, 2010 COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION J. S. Kim Department of Information and Communications Engineering Kyungsung University

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

LAB MANUAL EXPERIMENT NO. 9

LAB MANUAL EXPERIMENT NO. 9 LAB MANUAL EXPERIMENT NO. 9 Aim of the Experiment: 1. Measure the characteristics of a Directional Coupler. 2. Use of the Directional Coupler and Ratio Meter to construct a Scalar Network Analyzer for

More information

Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique

Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique Mahdi Yousefi a), Mohammad Mosalanejad b), Gholamreza Moradi c), and Abdolali Abdipour d) Wave Propagation

More information

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network Microwave Science and Technology, Article ID 854346, 6 pages http://dx.doi.org/1.1155/214/854346 Research Article Wideband Microstrip 9 Hybrid Coupler Using High Pass Network Leung Chiu Department of Electronic

More information

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios Microwave Science and Technology Volume 13, Article ID 56734, 1 pages http://dx.doi.org/1.1155/13/56734 Research Article Compact and Wideband Parallel-Strip 18 Hybrid Coupler with Arbitrary Power Division

More information

Wideband Unidirectional Bowtie Antenna with Pattern Improvement

Wideband Unidirectional Bowtie Antenna with Pattern Improvement Progress In Electromagnetics Research Letters, Vol. 44, 119 124, 4 Wideband Unidirectional Bowtie Antenna with Pattern Improvement Jia-Yue Zhao *, Zhi-Ya Zhang, Neng-Wu Liu, Guang Fu, and Shu-Xi Gong Abstract

More information

Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band

Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band Prof. F I Shaikh 1, Mr. Sanjay Bansidhar Akhade 2 1 Electronics and Telecommunication department J. N. E. C. Aurangabad

More information

Including the proper parasitics in a nonlinear

Including the proper parasitics in a nonlinear Effects of Parasitics in Circuit Simulations Simulation accuracy can be improved by including parasitic inductances and capacitances By Robin Croston California Eastern Laboratories Including the proper

More information

Circular polarization 10GHz slot antenna

Circular polarization 10GHz slot antenna Circular polarization 10GHz slot antenna Agilent Momentum&EMDS Nicolae CRISAN, PhD 1 Objectives: Design a rectangular microstrip slot antenna Geometry: square 11.9x11.9 [mm] Two input ports: 50 [Ohm] Dielectric:

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 4.542 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 4, Issue 4, April-2017 Design and Development of Varactor

More information

Experiment 03 - Automated Scalar Reectometry Using BenchVue

Experiment 03 - Automated Scalar Reectometry Using BenchVue ECE 451 Automated Microwave Measurements Laboratory Experiment 03 - Automated Scalar Reectometry Using BenchVue 1 Introduction After our encounter with the slotted line, we are now moving to a slightly

More information

Test Plans & Test Results

Test Plans & Test Results Table of contents P09343 Microwave Devices II Test Plans & Test Results By: Mia Mujezinovic, Michael Pecoraro, Amanda Kristoff, and Joel Barry 1. MSD I: PRELIMINARY TEST PLAN... 2 1.1. Introduction and

More information

Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications

Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 1 Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications Krishan Kumar, Er. Sukhdeep

More information

Design and Investigation of Circular Polarized Rectangular Patch Antenna

Design and Investigation of Circular Polarized Rectangular Patch Antenna Design and Investigation of Circular Polarized Rectangular Patch Antenna Rajkumar 1 and Divyanshu Rao 2 1Shri Ram Institute Technology, Jabalpur (M.P.),India 2Prof. Divyanshu Rao, Shri Ram Institute Technology,

More information

Performance analysis of Wilkinson power divider and Miniaturized Wilkinson Power Divider at centre Frequency 2.14 GHz

Performance analysis of Wilkinson power divider and Miniaturized Wilkinson Power Divider at centre Frequency 2.14 GHz Performance analysis of Wilkinson power divider and Miniaturized Wilkinson Power Divider at centre Frequency 2.14 GHz Brajlata Chauhan 1 and S.C. Gupta 2 1 Department of Electronics & Communication Engineering,

More information

Validation & Analysis of Complex Serial Bus Link Models

Validation & Analysis of Complex Serial Bus Link Models Validation & Analysis of Complex Serial Bus Link Models Version 1.0 John Pickerd, Tektronix, Inc John.J.Pickerd@Tek.com 503-627-5122 Kan Tan, Tektronix, Inc Kan.Tan@Tektronix.com 503-627-2049 Abstract

More information

Multi-pole Microstrip Directional Filters for Multiplexing Applications

Multi-pole Microstrip Directional Filters for Multiplexing Applications Multi-pole Microstrip Directional Filters for Multiplexing Applications Humberto Lobato-Morales, Alonso Corona-Chávez, J. Luis Olvera-Cervantes, D.V.B. Murthy Instituto Nacional de Astrofísica, Óptica

More information

Broadband low cross-polarization patch antenna

Broadband low cross-polarization patch antenna RADIO SCIENCE, VOL. 42,, doi:10.1029/2006rs003595, 2007 Broadband low cross-polarization patch antenna Yong-Xin Guo, 1 Kah-Wee Khoo, 1 Ling Chuen Ong, 1 and Kwai-Man Luk 2 Received 27 November 2006; revised

More information

Design of Directional Coupler Using Synthesis Method on Defected Ground Structure

Design of Directional Coupler Using Synthesis Method on Defected Ground Structure Design of Directional Coupler Using Synthesis Method on Defected Ground Structure Rohit Samadhiya, Neeraj Sharma, Abhishek Tripathi, Sriram Gupta, Praveen Sharma Electronics Department Madhav Institute

More information

Atlanta RF Services, Software & Designs

Atlanta RF Services, Software & Designs 1 Multi-Section Symmetrical Directional Couplers Presentation Content N-section Symmetrical Directional Couplers 1. Technical Articles on N-section Symmetrical Couplers. 2. Principle of Operation. 3. Terminology

More information

Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides

Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Daniel Stevens and John Gipprich Northrop

More information

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran Progress In Electromagnetics Research Letters, Vol. 14, 31 40, 2010 DESIGN OF MODIFIED MICROSTRIP COMBLINE ARRAY ANTENNA FOR AVIONIC APPLICATION A. Pirhadi Faculty of Electrical and Computer Engineering

More information

Gain Lab. Image interference during downconversion. Images in Downconversion. Course ECE 684: Microwave Metrology. Lecture Gain and TRL labs

Gain Lab. Image interference during downconversion. Images in Downconversion. Course ECE 684: Microwave Metrology. Lecture Gain and TRL labs Gain Lab Department of Electrical and Computer Engineering University of Massachusetts, Amherst Course ECE 684: Microwave Metrology Lecture Gain and TRL labs In lab we will be constructing a downconverter.

More information

Fourth Year Antenna Lab

Fourth Year Antenna Lab Fourth Year Antenna Lab Name : Student ID#: Contents 1 Wire Antennas 1 1.1 Objectives................................................. 1 1.2 Equipments................................................ 1

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

Ansoft Designer Tutorial ECE 584 October, 2004

Ansoft Designer Tutorial ECE 584 October, 2004 Ansoft Designer Tutorial ECE 584 October, 2004 This tutorial will serve as an introduction to the Ansoft Designer Microwave CAD package by stepping through a simple design problem. Please note that there

More information

Compact Wideband Quadrature Hybrid based on Microstrip Technique

Compact Wideband Quadrature Hybrid based on Microstrip Technique Compact Wideband Quadrature Hybrid based on Microstrip Technique Ramy Mohammad Khattab and Abdel-Aziz Taha Shalaby Menoufia University, Faculty of Electronic Engineering, Menouf, 23952, Egypt Abstract

More information

System Level Design Review

System Level Design Review System Level Design Review PO94 Microwave Data II Joel Barry Amanda Kristoff Mia Mujezinovic Michael Pecoraro P094 Microwave Data II Technical Review Agenda Meeting Purpose: This meeting is to review the

More information

Fractal Monopoles: A Comparative Study

Fractal Monopoles: A Comparative Study Fractal Monopoles: A Comparative Study Vladimír Hebelka Dept. of Radio Electronics, Brno University of Technology, 612 00 Brno, Czech Republic Email: xhebel02@stud.feec.vutbr.cz Abstract In this paper,

More information

Chapter 4 Transmission Line Transformers and Hybrids Introduction

Chapter 4 Transmission Line Transformers and Hybrids Introduction RF Electronics Chapter4: Transmission Line Transformers and Hybrids Page Chapter 4 Transmission Line Transformers and Hybrids Introduction s l L Figure. Transmission line parameters. For a transmission

More information

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators International Journal of Electromagnetics and Applications 2016, 6(1): 7-12 DOI: 10.5923/j.ijea.20160601.02 Design of Duplexers for Microwave Communication Charles U. Ndujiuba 1,*, Samuel N. John 1, Taofeek

More information

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler 278 Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler R. Gotfrid*, Z. Luvitzky*, H. Matzner* and E. Levine** * HIT, Holon Institute of Technology Department of Communication Engineering,

More information

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE Karim A. Hamad Department of Electronics and Communications, College of Engineering, Al- Nahrain University,

More information

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, June 2010 10 Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Raj Kumar and P. Malathi

More information

ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band

ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band Progress In Electromagnetics Research Letters, Vol. 62, 49 55, 2016 ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band S. S. Kakatkar *,PrafullIrpache,andK.P.Ray

More information

Design and Development of Rectangular Microstrip Array Antennas for X and Ku Band Operation

Design and Development of Rectangular Microstrip Array Antennas for X and Ku Band Operation International Journal of Electronics Engineering, 2 (2), 2010, pp. 265 270 Design and Development of Rectangular Microstrip Array Antennas for X and Ku Band Operation B. Suryakanth, NM Sameena, and SN

More information

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System Wireless Engineering and Technology, 2013, 4, 59-63 http://dx.doi.org/10.4236/wet.2013.41009 Published Online January 2013 (http://www.scirp.org/journal/wet) 59 Design and Development of a 2 1 Array of

More information

AC : DEVELOPMENT OF A DOPPLER RADAR EXPERIMENT BOARD FOR USE IN MICROWAVE CIRCUITS AND ELECTRONICS COURSES

AC : DEVELOPMENT OF A DOPPLER RADAR EXPERIMENT BOARD FOR USE IN MICROWAVE CIRCUITS AND ELECTRONICS COURSES AC 2010-1521: DEVELOPMENT OF A DOPPLER RADAR EXPERIMENT BOARD FOR USE IN MICROWAVE CIRCUITS AND ELECTRONICS COURSES R.F. William Hollender, Montana State University James Becker, Montana State University

More information

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Progress In Electromagnetics Research C, Vol. 43, 217 229, 2013 BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Puria Salimi *, Mahdi Moradian,

More information

Progress In Electromagnetics Research Letters, Vol. 19, 49 55, 2010

Progress In Electromagnetics Research Letters, Vol. 19, 49 55, 2010 Progress In Electromagnetics Research Letters, Vol. 19, 49 55, 2010 A MODIFIED UWB WILKINSON POWER DIVIDER USING DELTA STUB B. Zhou, H. Wang, and W.-X. Sheng School of Electronics and Optical Engineering

More information

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND Progress In Electromagnetics Research C, Vol. 14, 45 52, 2010 A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND R.-Y. Yang, J.-S. Lin, and H.-S. Li Department

More information

CHAPTER - 3 PIN DIODE RF ATTENUATORS

CHAPTER - 3 PIN DIODE RF ATTENUATORS CHAPTER - 3 PIN DIODE RF ATTENUATORS 2 NOTES 3 PIN DIODE VARIABLE ATTENUATORS INTRODUCTION An Attenuator [1] is a network designed to introduce a known amount of loss when functioning between two resistive

More information

Reza Zoughi and Timothy Vaughan. Electrical Engineering Department Colorado State University Ft. Collins, CO INTRODUCTION

Reza Zoughi and Timothy Vaughan. Electrical Engineering Department Colorado State University Ft. Collins, CO INTRODUCTION DESIGN AND ANALYSIS OF AN ARRAY OF SQUARE MICROSTRIP PATCHES FOR NONDESTRUCTIVE MEASUREMENT OF INNER MATERIAL PROPERTIES OF VARIOUS STRUCTURES USING SWEPT MICROWAVE FREQUENCIES Reza Zoughi and Timothy

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

3D Directional Coupler for Impulse UWB

3D Directional Coupler for Impulse UWB 3D Directional Coupler for Impulse UWB 3D Electromagnetic Simulation and Prototyping Julien Le Kernec* Martin Klepal** Vratislave Sokol*** * ONERA, the French Aerospace Lab, Electromagnetic and Radar Department,

More information

Compact Gap-coupled Microstrip Antennas for Broadband and Dual Frequency Operations

Compact Gap-coupled Microstrip Antennas for Broadband and Dual Frequency Operations Compact Gap-coupled Microstrip Antennas for Broadband and Dual Frequency Operations 193 K. P. Ray *1, V. Sevani 1 and A. A. Deshmukh 2 1. SAMEER, IIT Campus, Powai, Mumbai 400076, India 2. MPSTME, NMIMS

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Microwave Engineering Class / Sem: BE (ECE) / VII Subject

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

ELC RF/Microwave Circuits I Laboratory 6: Quadrature Hybrid Coupler

ELC RF/Microwave Circuits I Laboratory 6: Quadrature Hybrid Coupler 1 ELC 4383 -RF/Microwave Circuits I Laboratory 6: Quadrature Hybrid Coupler Note: This lab procedure has been adapted from a procedure written by Dr. Larry Dunleavy and Dr. Tom Weller at the University

More information

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 399-407 Research India Publications http://www.ripublication.com Rectangular Patch Antenna to Operate

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

Microstrip Antenna System for Arbitrary Polarization Reconfigurability

Microstrip Antenna System for Arbitrary Polarization Reconfigurability Microstrip Antenna System for Arbitrary Polarization Reconfigurability Jarrah Bergeron, Bernard Lambrechts and Jens Bornemann Department of Electrical and Computer Engineering, University of Victoria,

More information

Modified Wilkinson Compact Wide Band (2-12GHz) Equal Power Divider

Modified Wilkinson Compact Wide Band (2-12GHz) Equal Power Divider American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-10, pp-90-98 www.ajer.org Research Paper Open Access Modified Wilkinson Compact Wide Band (2-12GHz)

More information

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE 140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 1, JANUARY 2009 Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE Abstract

More information

ELECTRIC GENERAL. MAINTENANCE MANUAL MHz, 35 WATT POWER AMPLIFIER ASSEMBLY 19D430488G1, 2 DESCRIPTION CIRCUIT ANALYSIS

ELECTRIC GENERAL. MAINTENANCE MANUAL MHz, 35 WATT POWER AMPLIFIER ASSEMBLY 19D430488G1, 2 DESCRIPTION CIRCUIT ANALYSIS MAINTENANCE MANUAL 851-870 MHz, 35 WATT POWER AMPLIFIER ASSEMBLY 19D430488G1, 2 DESCRIPTION The power amplifier assembly for MASTR II uses six RF power transistors to provide a maximum of 35 Watts output

More information

DESIGN AND IMPLEMENTATION OF 2-BIT LOADED LINE PHASE SHIFTER

DESIGN AND IMPLEMENTATION OF 2-BIT LOADED LINE PHASE SHIFTER Proceedings of the 8 th National onference on DESIGN AND IMPLEMENTATION OF -BIT LOADED LINE PHASE SHIFTER MERY.J 1 MUTHUKUMARAN.P 1 M.E ommunication Systems, Sri Venkateswara ollege of Engineering, Sriprembudur,

More information