System Level Design Review

Size: px
Start display at page:

Download "System Level Design Review"

Transcription

1 System Level Design Review PO94 Microwave Data II Joel Barry Amanda Kristoff Mia Mujezinovic Michael Pecoraro

2 P094 Microwave Data II Technical Review Agenda Meeting Purpose: This meeting is to review the system and components to confirm it meets the Functionality, ngineering Specifications and Customer Needs of the P094 Microwave Data II KGOC MSD team. Materials to be Reviewed: Project Overview (Rev. A) Customer Needs Chart (Rev. B) Customer Specifications Chart (Rev. B) Customer Needs to Specifications Chart (Rev. B) Concept Generation/System Level Design (Rev. A) Risk Assessment (Rev. A) ngineering Design Process (Rev. A) Component and System Progress Report (Rev. A) Two Quarter Schedule/Milestones (Rev. B) Meeting Date: January 16, 2009 Meeting Location: Meeting time: 12:0 2 PM Timeline: Start Time Topic of Review 12:0 Team Introductions 12:5 Project Overview 12:40 Concept Generation/System Level Design 12:50 Risk Assessment 12:55 ngineering Design Process 1:05 Component Progress: Branchline Hybrid 1:10 Component Progress: Knochel Hybrid 1:15 Component Progress: Schiffman Phase Shifter 1:20 System Progress: System A 1:25 System Progress: System B 1:0 Two Quarter Schedule 1:40 Question

3 Introduction Mia Members: Mia Mujezinovic (Team Lead) Michael Pecoraro Amanda Kristoff Joel Barry Breakdown of Roles/Tasks: 90 Degree Hybrid: Michael Pecoraro 180 Degree Hybrid: Joel Barry Schiffman Phase Shifter: Mia Mujezinovic System A: Mia Mujezinovic System B: Amanda Kristoff Vertical Launch: Anaren, Joel Barry, Michael Pecoraro DG Updates: Amanda Kristoff Ansoft Designer Ansoft HFSS I Xplorer Database Michael nders (Anaren, customer) Resources Utilized:

4 Project Overview Michael Customer Michael nders RF ngineer Anaren Microwave Incorporated Space and Defense Group Project To design, build and verify the operation of two 4x4 Butler Matrices for use in antenna beamforming Figure 1: Block Diagram of System A Figure 2: Block Diagram of System B Purpose Butler Matrices are networks that allow antenna beams to be electrically (as opposed to physically) steered. The necessary condition for electrically steering an antenna beam is that the antenna elements must be given different phase progressions. This is what a Butler Matrix does depending on which input is used, a different phase progression is realized at the output. This project is more of a research type project for Anaren. They have two main goals that they would like us to attain: o Both Butler Matrices should be wideband covering a bandwidth of 10-12GHz o Anaren has never used a Knöchel hybrid - they would like to see how it performs individually as well as in a system

5 Concept Generation / System Level Design Joel Layout Stackup Chosen Stackup Copper Ground Plane Alternative Stackup 1.5 mil 60 mil 60 mil Rogers 00 Arlon 6700 Copper Traces Rogers 00 Copper Ground Plane 0 mil 0 mil Figure : Anaren specified stackup designs for implementation into both Butler Matrices. The only difference between the two stackups is the thickness of the Rogers 00 dielectric. The 120 mil stackup will be implemented in the Butler Matrix Designs for some key advantages: o Thicker dielectric yields thicker traces for equal impedance lines ensures traces will be greater than the minimum manufacturing tolerance of 10 mil o Thicker traces are less susceptible to variation with the width tolerance of 0.5 mil 1.5 mil Topology Selection By unfolding the crossovers of the Butler Matrix A design, a single copper trace layer that mirrors the symmetry of the 90 coupler. Butler Matrix B is similarly unfolded to a single copper trace Vertical Mounting SMA connectors allow for access to all ports without implementation of crossover networks. Figure 4: Selected topologies for the Butler Matrix A Design (Top) and the Butler Matrix B Design (Bottom).

6 Risk Assessment Amanda Risks that have been addressed: Understanding the theory behind the components Understanding customer expectations/needs Learning HFSS Understanding ideal simulation tool in Ansoft Designer Risks that still need to be addressed or considered: o Finalize and reevaluate specifications from Anaren o Vertical mount (receiving documentation from Anaren, designing and effects at system level needs to be considered) o Lead time on board manufacturing is 6 weeks

7 Process Michael An extremely simplified process (or flow) by which we have been working to complete this project is seen below: Theory Ideal Simulations Designer Simulations HFSS Simulations Figure 5: Project Flow Chart This process applies to each component and system that we will design. To explain the above process a bit further, read below: Theory - verything begins with theory there are textbook entries and papers written on each of the components that we are building (not necessarily the systems, but definitely on Butler Matrices in general). We read them, check them and fully understand them before getting started with any type of simulations. When we feel we are ready to start simulating, we go to the next level: Ideal Simulations - This type of simulation is done in Ansoft Designer using the special ideal components. These components do not take into account any losses and show the absolute best case performance of your component or system. Impedance values, electrical lengths and frequencies are determined by the papers that were read (formulas would be given) and depending on the specific specifications for the project. Designer Simulations - Once the ideal simulations are completed, one can now include the substrate effects, discontinuities and other losses into the system using Ansoft Designer. These simulations will be, clearly, worse than the ideal simulations. The ideal simulation is, however, your goal; you always check back to see how well you can match it. Designer allows for many variables to be tuned in real time. Intelligent tuning, however, takes into account your ideal values and theoretical dependencies. HFSS Simulations - Once the designer simulation has been finished, the final step is tuning in HFSS. Using the theoretical dependencies and the ability of designer to see, magnitude-wise, how much these changes affect the output variables, the final tweaking is done. Again, this process applies to both the component level and system level designs. This is the most efficient way of simulating otherwise, you would have no real basis for what you are doing you would be blindly tuning variables and hoping for the best.

8 Port4 =90deg Z=a =90deg =90deg Z=a Port1 Port2 Port Component Progress - Branchline Hybrid Michael Ideal =90deg =90deg =90deg =90deg =90deg =90deg =90deg =90deg Figure 6: Schematic View of Ideal Branchline Hybrid Figure 7: S-Parameters of Ideal Branchline Hybrid Figure 8: Output Phase Difference for Ideal Branchline Hybrid Ideal values were obtained from the paper: A Multisection Broadband Impedance Transforming Branch-Line Hybrid; I Transaction on Microwave Theory and Techniques. Formulas were given for theoretical values of impedances these were solved for a line impedance of 50 ohms. Results are as expected: over the entire bandwidth of 10-12GHz, there is equal power division between ports two and three and a 90 degree phase difference between ports two and three.

9 Component Progress - Branchline Hybrid Michael Designer (Initial 120mil) Figure 9: Schematic View of Designer Hybrid Figure 10: Layout View of Designer Hybrid Figure 11: S-Parameters of Designer Hybrid Figure 12: Output Phase Difference for Designer Hybrid Variable Value [mm] Value [mil] fifty down mid a b c b d a The tune feature was used to tune the lengths and widths of the transmission lines the values seen in the table to the left were found to give the best performance Although not as perfect as the ideal results, the simulated results are quite good we have approximately equal power division between ports 2 and and there is approximately a 90 degree phase difference between ports 2 and.

10 Component Progress - Branchline Hybrid Michael Designer (Second Cut 120mil) Figure 1: Schematic View of Second Cut Hybrid Figure 14: Layout View of Second Cut Hybrid Figure 15: S-Parameters of Second Cut Hybrid Figure 16: Output Phase Difference for Second Cut Hybrid Variable Value [mm] Value [mil] fifty down mid a b c b d a qwt Quarter Wave Transformers (QWTs) were included at each of the four ports. These widths tuned, as well as the other lengths and widths to produce the table found to the left. Transmission did not change much, neither did the phase. However, the return loss and isolations improved to approximately 22dB down.

11 Component Progress - Branchline Hybrid Michael HFSS (Initial) Figure 17: D View of HFSS Branchline Hybrid Figure 18: Power fficiency of HFSS Branchline Hybrid Figure 19: S-Parameters of HFSS Branchline Hybrid Figure 20: Output Phase Difference for HFSS Branchline Hybrid The xport to HFSS option in Ansoft Designer was used to create the HFSS model seen in Figure 12. This model, when simulated, has major problems. Figure 1 shows the power efficiency of this model as can be seen, over half of power over the entire 10-12GHz bandwidth is being lost somewhere. From the simulated S-Parameters we see that the transmission is no longer 50:50 and that the reflections and isolations have risen. The phase difference plot shows that the phase difference is approximately correct, but has worsened from the Designer simulation.

12 Port Port2 F =11GH z =45deg Z =86.0 Z =91.96 =180deg F =11GH z =60deg F =11GH z Z =50 =60deg F =11GH z Z =50 =90deg F =11GH z Z =69.64 =180deg F =11GH z Z =41.7 =180deg F =11GH z Z =69.97 =90deg F =11GH z Z =69.64 Component Progress - Knöchel Hybrid Joel Ideal =90deg Z=55.78 =90deg Z=77.81 Port1 =60deg =90deg Z=49.95 =15deg Z=86.0 Port4 =90deg Z=55.78 =90deg Z=77.81 =60deg Figure 21: Schematic View of Ideal 180 Hybrid Coupler Figure 22: S-Parameters of Ideal 180 Hybrid Coupler Figure 2: Output Phase Difference for Ideal 180 Hybrid Coupler Ideal values were obtained from the paper: Broadband Printed Circuit 0 /180 Couplers and High Power Inphase Power Dividers; I Transaction on Microwave Theory and Techniques. Designer simulations were presented for a 50 ohm line impedance. The results are as expected. Over the entire desired bandwidth of 10-12GHz, there is equal power division between ports two and three and a 180 phase difference between ports two and three when power is applied to port four.

13 Port W= mm P= mm W= mm ANG=5deg R=1e-020mm W= mm ANG=55deg R=1e-020mm W= mm W= mm P=.976mm W= mm P= mm W=2.68mm P= mm W=1.054mm P= mm W=1.9762mm Component Progress - Knöchel Hybrid Joel Designer (Initial 120 mil) Port2 Port2 W= mm P=.976mm 2 1 W=1.9762mm W2= mm W1=1.6679mm W=1.6679mm P=.976mm W1=1.6679mm W2=0.8586mm W=2.68mm 1 2 W=0.8586mm P=.976mm W1=0.8586mm W2=1.054mm Port1 2 1 W=1.9762mm W= mm P=.976mm W2=1.9762mm W1=1.9795mm W=1.9795mm W1=1.9795mm W= mm P=.976mm W2= mm P=5.9006mm W= mm W4= mm W1= mm W2= mm Port1 R=1e-020mm ANG=5deg W= mm W= mm P=.976mm R=1e-020mm ANG=55deg W= mm W=1.9762mm P=.976mm W1= mm W2=1.6679mm W=1.9762mm W=1.6679mm W=2.68mm P=.976mm W2=1.6679mm W1=0.8586mm W=0.8586mm P=.976mm 2 1 W=1.054mm W2=0.8586mm W1=1.9762mm Port4 W=1.9762mm P=.976mm Port4 Port Figure 24: Schematic View of Designer Hybrid Figure 25: Layout View of Designer Hybrid Figure 26: S-Parameters of 180 Hybrid Coupler Variable Value [mm] Value [mil] $wfifty $wz $wz $wz $wz $wz $wz $wz $wz Figure 27: Output Phase Difference for 180 Hybrid Coupler The tune feature was used to tune the lengths and widths of the transmission lines the values seen in the table to represent the widths of the different transmission lines based on the ideal impedances that will be tuned. With the addition of non-ideal corners, junctions and bends, the parasitic impedances of the lines have been changed, resulting in a shifted band of operation and relatively poor performance when compared to the ideal model.

14 W =$w fifty P= m il W 1=$w fifty W 2=$w Z 1 W =$w Z R =12m il AN G=180deg W =$w Z 6 Port1 P=70m il W =$w Z 6 W =$w Z P=$LZ W =$w Z 5 P=$LZ W =$w Z 8 P=$LZ 8 W 1=$w Z 1 W 2=$w fifty W =$w Z W =$w fifty P= m il Port4 Component Progress - Knöchel Hybrid Joel Designer (Second Cut 120 mil) Port2 W1=$wZ2 W2=$wZ4 W=$wZ W1=$wZ4 W2=$wZ5 1 2 W=$wZ2 W=$wZ4 P=$LZ4 P=$LZ4 W=$wZ1 P=$LZ1 W=$wZ1 P=$wZ2/2 P=7mil W=$wZ6 W=$wZ6 ANG=45deg R=12mil W=$wZ6 ANG=90deg 2 1 W=$wf if ty W=$wZ8 P= mil W2=$wf if ty W1=$wZ7 W=$wZ7 P= mil W1=$wZ7 W=$wZ6 W2=$wZ1 P=25mil W=$wZ6 W4=$wZ1 R=0.001mil P=25mil W=$wZ6 P=$wZ2/2 W=$wZ1 W=$wZ1 P=$LZ W=$wZ2 P=$LZ4 W=$wZ W2=$wZ2 W=$wZ4 P=$LZ4 W=$wZ5 W2=$wZ4 W=$wf if ty P= mil W1=$wZ4 W1=$wf if ty Port Figure 28: Schematic View of Designer Hybrid Figure 29: Layout View of Designer Hybrid Figure 0: S-Parameters of 180 Hybrid Coupler Variable Value [mm] Value [mil] $wfifty $wz $wz $wz $wz $wz $wz $wz $wz Figure 1: Output Phase Difference for 180 Hybrid Coupler The tune feature was used to tune the lengths and widths of the transmission lines the values seen in the table to the left were found to give the best performance Although not as perfect as the ideal results, the simulated results are quite good relative to the initial trial we have approximately equal power division between ports 2 and and there is a normalized phase difference error of approximately +/- 0.4 between ports 2 and.

15 Component Progress - Schiffman Phase Shifter Mia The original Schiffman phase shifter design performed in Week 2 was scrapped completely and had to be redesigned. There was a misunderstanding of the purpose of the phase shifter and how it functions within the entire circuit. After a meeting with Michael nders at Anaren on 1/9/2009, the Schiffman phase shifter was re-designed from scratch. Ideal =90deg ZO=42 Z=66 Port1 Port2 Port =(180+45) deg Port4 Figure 2: Schematic View of Ideal Schiffman Phase Shifter Figure : Ideal Phase Difference Figure 4: Ideal Reflection and Transmission Losses The ideal model was developed using Schiffman s original paper published in the I Microwave Techniques Journal. B.M. Schiffman, A New Class of Broadband Microwave 90-Degree Phase Shifters, IR Trans. Microwave Theory Tech., vol. MTT-6, no. 4, pp The results are: Over 10 12GHz, the phase difference between the reference line and the Shiffman phase shifter is 45 flat, with a return loss of -4.88dB at best between Markers 1 and. From the ideal model, even and odd mode impedances are extracted to be used in the real model. Z oe =66Ω and Z oo =42Ω

16 Port Port1 Port2 Port4 Component Progress - Schiffman Phase Shifter Mia Designer Because of the nature of the Shiffman phase shifter, the design cannot be modeled in Designer and then verified in HFSS. Attempts to model the phase shifter in Designer first have lead to failures. After speaking with Michael nders at Anaren, he suggested from his experience that the design be completed in HFSS, and Designer used to obtain starting values. As a sanity check, the ideal model was converted to a physical model with the chosen substrate of 121.5mil. P=L S=S W=W W= mil P=87.181mil Figure 5: Schematic view of semi-ideal phase shifter. Figure 6: Variable values for the phase shifter. Figure 7: Phase difference of semi-deal shifter. Figure 8: Reflection and transmission. From the figures above, it can be seen that the substrate does have some effect on the results. The phase difference is a bit flatter, and the return loss becomes a bit worse, with best case return loss of 1.07dB. The results above are the best possible results, and the model will be exported to HFSS and modified.

17 Component Progress - Schiffman Phase Shifter Mia HFSS The Schiffman phase shifter is designed primarily in HFSS. The ideal design does not take into account the thin strip of copper connecting the two coupled lines, and is nearly impossible to model in Designer. Also, port locations will become significant in the HFSS design. The design is still in progress, and results so far are unusable. Figure 9: D view of the Schiffman phase shifter, with chamfered edges.

18 Po r t1 Po r t2 =90deg =90deg = 9 0 d e g Z = a =90deg =90deg = 9 0 d e g Z = b =90deg =90deg = 9 0 d e g Z = a =90deg =90deg =(180+45) deg Port6 = 9 0 d e g Z = 5 0 = 9 0 d e g Z = b = 9 0 d e g Z = b = 9 0 d e g Z = 5 0 Port5 Z=66 ZO=42 = 9 0 d e g Z = 5 0 = 9 0 d e g Z = b = 9 0 d e g Z = b = 9 0 d e g Z = 5 0 =90deg Z=a =90deg =90deg Z=a =90deg Z=a =90deg =90deg Z=a =90deg Port8 = 9 0 d e g Z = 5 0 = 9 0 d e g Z = b = 9 0 d e g Z = b = 9 0 d e g Z = 5 0 Port7 = 9 0 d e g Z = 5 0 = 9 0 d e g Z = b = 9 0 d e g Z = b = 9 0 d e g Z = 5 0 Z=66 ZO=42 =90deg =(180+45) deg =90deg =90deg = 9 0 d e g Z = a =90deg =90deg = 9 0 d e g Z = b =90deg =90deg = 9 0 d e g Z = a =90deg =90deg Po r t Po r t4 System Progress - System A Mia Ideal Figure 40: Circuit layout of the ideal System A. Figure 41: Transmission from Port 1 to all outputs. Figure 42: Phase difference between output ports when Port 1 is input.

19 System Progress - System A Mia Figure 4: Reflection at all inputs. Figure 44: All S parameters. The above results are the best possible using all ideal components. The phase difference at the outputs when Port 1 is excited is 45 ±0.1. The best possible return loss is -2.18dB. All four outputs have about -6dB ±0.dB amplitude, meaning power is being split relatively equal between the four outputs, with each getting a quarter of the total input power

20 System Progress - System B Amanda Designer Port6 Port7 Port1 Port4 Port10 Port15 Port16 Port11 Figure 45: Schematic view of System B Figure 46: Layout view of System B Figure 47: Simulation results for input port 1 Figure 48: Simulation results for input port 2 Figure 49: Simulation results for input port Figure 50: Simulation results for input port 4 Simulation results show that there is a large amount of reflection at S55 and S66, these require the 180 degree Hybrid Coupler to be readjusted S78 also needs improved isolation, these will be re-evaluated after a new revision of the Hybrid Coupler is implemented

Detailed Design Review

Detailed Design Review Detailed Design Review P09343 Microwave Data II Joel Barry Amanda Kristoff Mia Mujezinovic Michael Pecoraro 1 P09343 Microwave Data II Technical Review Agenda Meeting Purpose: This meeting is to review

More information

Test Plans & Test Results

Test Plans & Test Results Table of contents P09343 Microwave Devices II Test Plans & Test Results By: Mia Mujezinovic, Michael Pecoraro, Amanda Kristoff, and Joel Barry 1. MSD I: PRELIMINARY TEST PLAN... 2 1.1. Introduction and

More information

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits

Even / Odd Mode Analysis This is a method of circuit analysis that uses super-positioning to simplify symmetric circuits NOMNCLATUR ABCD Matrices: These are matrices that can represent the function of simple two-port networks. The use of ABCD matrices is manifested in their ability to be cascaded through simple matrix multiplication.

More information

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER Progress In Electromagnetics Research C, Vol. 11, 229 236, 2009 A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER E. Jafari, F. Hodjatkashani, and R. Rezaiesarlak Department

More information

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network Microwave Science and Technology, Article ID 854346, 6 pages http://dx.doi.org/1.1155/214/854346 Research Article Wideband Microstrip 9 Hybrid Coupler Using High Pass Network Leung Chiu Department of Electronic

More information

Compact Wideband Quadrature Hybrid based on Microstrip Technique

Compact Wideband Quadrature Hybrid based on Microstrip Technique Compact Wideband Quadrature Hybrid based on Microstrip Technique Ramy Mohammad Khattab and Abdel-Aziz Taha Shalaby Menoufia University, Faculty of Electronic Engineering, Menouf, 23952, Egypt Abstract

More information

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China Progress In Electromagnetics Research Letters, Vol. 17, 181 189, 21 A MINIATURIZED BRANCH-LINE COUPLER WITH WIDEBAND HARMONICS SUPPRESSION B. Li Ministerial Key Laboratory of JGMT Nanjing University of

More information

A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE

A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE Progress In Electromagnetics Research C, Vol. 34, 227 237, 2013 A NEW BROADBAND MICROSTRIP QUADRATURE HYBRID WITH VERY FLAT PHASE RESPONSE A. Ladu 1, * and G. Pisano 2 1 Dipartimento di Ingegneria Elettrica

More information

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios Microwave Science and Technology Volume 13, Article ID 56734, 1 pages http://dx.doi.org/1.1155/13/56734 Research Article Compact and Wideband Parallel-Strip 18 Hybrid Coupler with Arbitrary Power Division

More information

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter SYRACUSE UNIVERSITY Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter Project 2 Colin Robinson Thomas Piwtorak Bashir Souid 12/08/2011 Abstract The design, optimization, fabrication,

More information

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Progress In Electromagnetics Research Letters, Vol. 24, 9 16, 2011 MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE Z. Zhang *, Y.-C. Jiao, S.-F. Cao, X.-M.

More information

Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas

Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas RADIO SCIENCE, VOL. 43,, doi:10.1029/2007rs003800, 2008 Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas Atsushi Sanada 1 Received 4 December

More information

Post-Manufacturing SMA Launch Tuning Network. Michael s Work on the SMA Launch as of 3/24/2009

Post-Manufacturing SMA Launch Tuning Network. Michael s Work on the SMA Launch as of 3/24/2009 Post-Manufacturing SMA Launch Tuning Network Michael s Work on the SMA Launch as of 3/24/2009 Table of Contents De-embedding / Tuning in Designer What happened, conclusions drawn HFSS Tuning (Neck Added)

More information

RF Circuit Synthesis for Physical Wireless Design

RF Circuit Synthesis for Physical Wireless Design RF Circuit Synthesis for Physical Wireless Design Overview Subjects Review Of Common Design Tasks Break Down And Dissect Design Task Review Non-Synthesis Methods Show A Better Way To Solve Complex Design

More information

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band

Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band Smart Antenna System using 4x4 Butler Matrix switched beam network for 2.4 GHz ISM band Prof. F I Shaikh 1, Mr. Sanjay Bansidhar Akhade 2 1 Electronics and Telecommunication department J. N. E. C. Aurangabad

More information

Design and Optimization of Lumped Element Hybrid Couplers

Design and Optimization of Lumped Element Hybrid Couplers From August 2011 Copyright 2011, Summit Technical Media, LLC Design and Optimization of Lumped Element Hybrid Couplers By Ashok Srinivas Vijayaraghavan, University of South Florida and Lawrence Dunleavy,

More information

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE Progress In Electromagnetics Research Letters, Vol. 26, 87 96, 211 SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE M. Kazerooni * and M. Aghalari

More information

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS Progress In Electromagnetics Research C, Vol. 33, 123 132, 2012 COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS B. Henin * and A. Abbosh School of ITEE, The University of Queensland, QLD 4072,

More information

WIDE-BAND circuits are now in demand as wide-band

WIDE-BAND circuits are now in demand as wide-band 704 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 Compact Wide-Band Branch-Line Hybrids Young-Hoon Chun, Member, IEEE, and Jia-Sheng Hong, Senior Member, IEEE Abstract

More information

Figure 1 Schematic diagram of a balanced amplifier using two quadrature hybrids (eg Lange Couplers).

Figure 1 Schematic diagram of a balanced amplifier using two quadrature hybrids (eg Lange Couplers). 1 of 14 Balanced Amplifiers The single amplifier meets the specification for noise figure and again but fails to meet the return loss specification due to the large mis-matches on the input & outputs.

More information

Atlanta RF Services, Software & Designs

Atlanta RF Services, Software & Designs 1 Multi-Section Symmetrical Directional Couplers Presentation Content N-section Symmetrical Directional Couplers 1. Technical Articles on N-section Symmetrical Couplers. 2. Principle of Operation. 3. Terminology

More information

Bandpass-Response Power Divider with High Isolation

Bandpass-Response Power Divider with High Isolation Progress In Electromagnetics Research Letters, Vol. 46, 43 48, 2014 Bandpass-Response Power Divider with High Isolation Long Xiao *, Hao Peng, and Tao Yang Abstract A novel wideband multilayer power divider

More information

ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band

ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band Progress In Electromagnetics Research Letters, Vol. 62, 49 55, 2016 ACompactN-Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band S. S. Kakatkar *,PrafullIrpache,andK.P.Ray

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

Experiment 9: Microwave Directional Couplers and Hybrids

Experiment 9: Microwave Directional Couplers and Hybrids Experiment 9: Microwave Directional Couplers and Hybrids 1. Directional Couplers and Hybrids Directional couplers and hybrids are used in a variety of important applications at microwave frequencies. The

More information

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS Jeyasingh Nithianandam Electrical and Computer Engineering Department Morgan State University, 500 Perring Parkway, Baltimore, Maryland 5 ABSTRACT

More information

Chapter 4 Transmission Line Transformers and Hybrids Introduction

Chapter 4 Transmission Line Transformers and Hybrids Introduction RF Electronics Chapter4: Transmission Line Transformers and Hybrids Page Chapter 4 Transmission Line Transformers and Hybrids Introduction s l L Figure. Transmission line parameters. For a transmission

More information

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 1, 185 191, 29 A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS T. Yang, C. Liu, L. Yan, and K.

More information

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Progress In Electromagnetics Research C, Vol. 43, 217 229, 2013 BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO Puria Salimi *, Mahdi Moradian,

More information

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs

Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Design of a 9GHz, 7dB Branchline Coupler with 180 Phase Shift at Outputs Usman Sammani Sani Lecturer, Department of Electrical Engineering Bayero University, Kano, P.M.B. 3011, Nigeria. usmanssani@live.com

More information

Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures

Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures Simbeor Application Note #2008_02, April 2008 2008 Simberian Inc. Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures Simberian, Inc. www.simberian.com Simbeor : Easy-to-Use, Efficient

More information

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Progress In Electromagnetics Research Letters, Vol. 75, 39 45, 218 Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator Lihua Wu 1, Shanqing Wang 2,LuetaoLi 3, and Chengpei

More information

REALIZATION OF A COMPACT BRANCH-LINE COU- PLER USING QUASI-FRACTAL LOADED COUPLED TRANSMISSION-LINES

REALIZATION OF A COMPACT BRANCH-LINE COU- PLER USING QUASI-FRACTAL LOADED COUPLED TRANSMISSION-LINES Progress In Electromagnetics Research C, Vol. 13, 33 40, 2010 REALIZATION OF A COMPACT BRANCH-LINE COU- PLER USING QUASI-FRACTAL LOADED COUPLED TRANSMISSION-LINES M. Nosrati Faculty of Engineering Department

More information

Top View (Near-side) Side View Bottom View (Far-side) ± ±.08. 4x.28. Orientation Marker Balanced port 1.

Top View (Near-side) Side View Bottom View (Far-side) ± ±.08. 4x.28. Orientation Marker Balanced port 1. Model BD2FAHF Ultra Low Profile 168 Balun Ω to Ω Balanced Description The BD2FAHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential input locations on data conversion

More information

A Novel Wideband Phase Shifter Using T- and Pi-Networks

A Novel Wideband Phase Shifter Using T- and Pi-Networks Progress In Electromagnetics Research Letters, Vol. 71, 29 36, 2017 A Novel Wideband Phase Shifter Using T- and Pi-Networks Mohammad H. Maktoomi 1, *, Rahul Gupta 1, Mohammad A. Maktoomi 2, and Mohammad

More information

SMT Hybrid Couplers, RF Parameters and Applications

SMT Hybrid Couplers, RF Parameters and Applications SMT Hybrid Couplers, RF Parameters and Applications A 90 degree hybrid coupler is a four-port device used to equally split an input signal into two signals with a 90 degree phase shift between them. The

More information

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique 1 P.Priyanka, 2 Dr.S.Maheswari, 1 PG Student, 2 Professor, Department of Electronics and Communication Engineering Panimalar

More information

Modified Wilkinson Compact Wide Band (2-12GHz) Equal Power Divider

Modified Wilkinson Compact Wide Band (2-12GHz) Equal Power Divider American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-10, pp-90-98 www.ajer.org Research Paper Open Access Modified Wilkinson Compact Wide Band (2-12GHz)

More information

A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications

A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications A Wideband Stacked Microstrip Patch Antenna for Telemetry Applications Item Type text; Proceedings Authors Hategekimana, Bayezi Publisher International Foundation for Telemetering Journal International

More information

Research Article Negative Group Delay Circuit Based on Microwave Recursive Filters

Research Article Negative Group Delay Circuit Based on Microwave Recursive Filters Microwave Science and Technology Volume 25, Article ID 64629, 6 pages http://dx.doi.org/.55/25/64629 Research Article Negative Group Delay Circuit Based on Microwave Recursive Filters Mohammad Ashraf Ali

More information

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA Raja Namdeo, Sunil Kumar Singh Abstract: This paper present high gain and wideband electromagnetically coupled patch antenna.

More information

MMIC GHz Quadrature Hybrid

MMIC GHz Quadrature Hybrid MMIC 3.5-10GHz Quadrature Hybrid MQH-3R510 1 Device Overview 1.1 General Description The MQH-3R510 is a MMIC 3.5 GHz 10 GHz quadrature (90 ) hybrid. Wire bondable 50Ω terminations are available on-chip.

More information

Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications

Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 149 Using Pcb-Techniques And Dielectric Design Band Pass Filter Resonators For Ku - Band Applications

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngECE-2007/08-- Student Name: CHEUNG KING YIN Student ID: Supervisor: Dr WS Chan Assessor: Dr Peter

More information

Progress In Electromagnetics Research C, Vol. 12, , 2010

Progress In Electromagnetics Research C, Vol. 12, , 2010 Progress In Electromagnetics Research C, Vol. 12, 93 1, 21 A NOVEL DESIGN OF DUAL-BAND UNEQUAL WILKINSON POWER DIVIDER X. Li, Y.-J. Yang, L. Yang, S.-X. Gong, X. Tao, Y. Gao K. Ma and X.-L. Liu National

More information

Dual Feed Microstrip Patch Antenna for Wlan Applications

Dual Feed Microstrip Patch Antenna for Wlan Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 5, Ver. I (Sep - Oct.2015), PP 01-05 www.iosrjournals.org Dual Feed Microstrip

More information

Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines

Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines 248 ACES JOURNAL, VOL. 27, NO. 3, MARCH 212 Design and Analysis of Multi-Frequency Unequal-Split Wilkinson Power Divider using Non-Uniform Transmission Lines Derar Hawatmeh 1, Khair Al Shamaileh 2, and

More information

PCB Routing Guidelines for Signal Integrity and Power Integrity

PCB Routing Guidelines for Signal Integrity and Power Integrity PCB Routing Guidelines for Signal Integrity and Power Integrity Presentation by Chris Heard Orange County chapter meeting November 18, 2015 1 Agenda Insertion Loss 101 PCB Design Guidelines For SI Simulation

More information

Combined Band MHz. Fig. 1 Typical Diplexer Filter Combiner Fig. 2 Typical Diplexer Combiner

Combined Band MHz. Fig. 1 Typical Diplexer Filter Combiner Fig. 2 Typical Diplexer Combiner Choosing the Best Power Divider for the Task of Signal Combining As systems become more and more complex, choosing how best to combine two or more RF signals has become a far more difficult question to

More information

LTE Small-Cell Base Station Antenna Matched for Maximum Efficiency

LTE Small-Cell Base Station Antenna Matched for Maximum Efficiency Application Note LTE Small-Cell Base Station Antenna Matched for Maximum Efficiency Overview When designing antennas for base stations and mobile devices, an essential step of the design process is to

More information

Estimation of the Loss in the ECH Transmission Lines for ITER

Estimation of the Loss in the ECH Transmission Lines for ITER Estimation of the Loss in the ECH Transmission Lines for ITER S. T. Han, M. A. Shapiro, J. R. Sirigiri, D. Tax, R. J. Temkin and P. P. Woskov MIT Plasma Science and Fusion Center, MIT Building NW16-186,

More information

Application Note 5499

Application Note 5499 MGA-31389 and MGA-31489 High-Gain Driver Amplifier Using Avago MGA-31389 and MGA-31489 Application Note 5499 Introduction The MGA-31389 and MGA-31489 from Avago Technologies are.1 Watt flat-gain driver

More information

2 to 4 GHz Frequency Discriminator for RF Front-End Instantaneous Frequency Measurement Receivers

2 to 4 GHz Frequency Discriminator for RF Front-End Instantaneous Frequency Measurement Receivers Progress In Electromagnetics Research C, Vol. 73, 27 36, 217 2 to 4 GHz Frequency Discriminator for RF Front-End Instantaneous Frequency Measurement Receivers Hazem Deeb 1, *,KhaledYazbek 2, and Adnan

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

Three Dimensional Transmission Lines and Power Divider Circuits

Three Dimensional Transmission Lines and Power Divider Circuits Three Dimensional Transmission Lines and Power Divider Circuits Ali Darwish*, Amin Ezzeddine** *American University in Cairo, P.O. Box 74 New Cairo 11835, Egypt. Telephone 20.2.2615.3057 adarwish@aucegypt.edu

More information

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW Progress In Electromagnetics Research Letters, Vol. 8, 151 159, 2009 A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW C.-P. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang Institute of Microelectronics,

More information

Broadband and Small-size 3-dB Ring Coupler

Broadband and Small-size 3-dB Ring Coupler Progress In Electromagnetics Research Letters, Vol. 44, 23 28, 2014 Broadband and Small-size 3-dB Ring Coupler Stefan Simion 1, * and Giancarlo Bartolucci 2 Abstract A topology for a 3-dB broadband and

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 23, 147 155, 2011 A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS Z.-N. Song, Y. Ding, and K. Huang National Key Laboratory of Antennas

More information

Electrical & Electronic University Complex (EEUC), MAUT, Tehran , Iran

Electrical & Electronic University Complex (EEUC), MAUT, Tehran , Iran Progress In Electromagnetics Research C, Vol. 27, 209 222, 2012 A NOVEL 180 HYBRID BASED ON THE MODIFIED GYSEL POWER DIVIDER M. Fartookzadeh, S. H. Mohseni Armaki *, and M. Kazerooni Electrical & Electronic

More information

SPECIFICATION. Low Profile Stacked Patch Antenna. Highest Accuracy, Lowest Profile Low Axial Ratio. Wideband GNSS Antenna. GPS L1+L2 Band Operation

SPECIFICATION. Low Profile Stacked Patch Antenna. Highest Accuracy, Lowest Profile Low Axial Ratio. Wideband GNSS Antenna. GPS L1+L2 Band Operation SPECIFICATION Patent Pending Part No: GPDF.47.8.A.02 Product Name: Embedded 47.5*47.5*8mm GPS L1/L2 Low Profile Stacked Patch Antenna Features: Highest Accuracy, Lowest Profile Low Axial Ratio Wideband

More information

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability Progress In Electromagnetics Research Letters, Vol. 53, 13 19, 215 Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability Lulu Bei 1, 2, Shen Zhang 2, *, and Kai

More information

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band V. Vassilev and V. Belitsky Onsala Space Observatory, Chalmers University of Technology ABSTRACT As a part of Onsala development of

More information

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE

IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE Progress In Electromagnetics Research M, Vol. 3, 205 215, 2008 IMPROVEMENT THE CHARACTERISTICS OF THE MICROSTRIP PARALLEL COUPLED LINE COUPLER BY MEANS OF GROOVED SUBSTRATE M. Moradian and M. Khalaj-Amirhosseini

More information

Design and Analysis of Wilkinson Power Divider Using Microstrip Line and Coupled Line Techniques

Design and Analysis of Wilkinson Power Divider Using Microstrip Line and Coupled Line Techniques IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 34-40 www.iosrjournals.org Design and Analysis of Wilkinson Power Divider Using Microstrip Line

More information

A Novel Dual-Band SIW Filter with High Selectivity

A Novel Dual-Band SIW Filter with High Selectivity Progress In Electromagnetics Research Letters, Vol. 6, 81 88, 216 A Novel Dual-Band SIW Filter with High Selectivity Yu-Dan Wu, Guo-Hui Li *, Wei Yang, and Tong Mou Abstract A novel dual-band substrate

More information

Low Cost Mixer for the 10.7 to 12.8 GHz Direct Broadcast Satellite Market

Low Cost Mixer for the 10.7 to 12.8 GHz Direct Broadcast Satellite Market Low Cost Mixer for the.7 to 12.8 GHz Direct Broadcast Satellite Market Application Note 1136 Introduction The wide bandwidth requirement in DBS satellite applications places a big performance demand on

More information

Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz

Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz Introduction Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz Wavelength Division Multiplexing Passive Optical Networks (WDM PONs) have

More information

Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010

Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010 Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010 COMPACT ULTRA-WIDEBAND PHASE SHIFTER M. N. Moghadasi Electrical Engineering Department Science and Research Branch Islamic Azad University

More information

Top View (Near-side) Side View Bottom View (Far-side) .89±.08. 4x.280. Orientation Marker Orientation Marker.

Top View (Near-side) Side View Bottom View (Far-side) .89±.08. 4x.280. Orientation Marker Orientation Marker. Model B2F2AHF Ultra Low Profile 168 Balun Ω to 2Ω Balanced Description The B2F2AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential input locations on data conversion

More information

Design and Matching of a 60-GHz Printed Antenna

Design and Matching of a 60-GHz Printed Antenna Application Example Design and Matching of a 60-GHz Printed Antenna Using NI AWR Software and AWR Connected for Optenni Figure 1: Patch antenna performance. Impedance matching of high-frequency components

More information

Investigation of the Double-Y Balun for Feeding Pulsed Antennas

Investigation of the Double-Y Balun for Feeding Pulsed Antennas Proceedings of the SPIE, Vol. 5089, April 2003 Investigation of the Double-Y Balun for Feeding Pulsed Antennas Jaikrishna B. Venkatesan a and Waymond R. Scott, Jr. b Georgia Institute of Technology Atlanta,

More information

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands

Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Compact Microstrip Dual-Band Quadrature Hybrid Coupler for Mobile Bands Vamsi Krishna Velidi, Mrinal Kanti Mandal, Subrata Sanyal, and Amitabha Bhattacharya Department of Electronics and Electrical Communications

More information

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE 140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 1, JANUARY 2009 Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE Abstract

More information

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR Progress In Electromagnetics Research Letters, Vol. 35, 89 98, 2012 COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR K. C. Lee *, H. T. Su, and M. K. Haldar School of Engineering, Computing

More information

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Microwave Science and Technology Volume 213, Article ID 8929, 4 pages http://dx.doi.org/1.11/213/8929 Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Leung Chiu and Quan Xue Department

More information

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model HSD Strategic Intent Provide the industry s premier HSD EDA software. Integration of premier

More information

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler 278 Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler R. Gotfrid*, Z. Luvitzky*, H. Matzner* and E. Levine** * HIT, Holon Institute of Technology Department of Communication Engineering,

More information

MMIC 18-42GHz Quadrature Hybrid

MMIC 18-42GHz Quadrature Hybrid MMIC 18-42GHz Quadrature Hybrid MQH-1842 1 Device Overview 1.1 General Description The MQH-1842 is a MMIC 18GHz 42 GHz quadrature (90 ) hybrid. Passive GaAs MMIC technology allows production of smaller

More information

Model XC0900P-03AS Rev D

Model XC0900P-03AS Rev D Hybrid Coupler 3 db, 90 Features: 800 1000 MHz AMPS High Power Very Low Loss Tight Amplitude Balance High Isolation Production Friendly Tape and Reel Lead-Free Reliable, FIT=0.49 Mechanical Outline Description

More information

EEE 161 Applied Electromagnetics Laboratory 7 Microstrip Lines and PCB fabrication

EEE 161 Applied Electromagnetics Laboratory 7 Microstrip Lines and PCB fabrication Dr. Milica Markovic Applied Electromagnetics Laboratory page 1 EEE 161 Applied Electromagnetics Laboratory 7 Microstrip Lines and PCB fabrication Part I. Design an impedance matching circuit using actual

More information

High-frequency transmission line transitions

High-frequency transmission line transitions High-frequency transmission line transitions Leonard T. Hall a,b,hedleyj.hansen a,b,c, and Derek Abbott a,b a Centre for Biomedical Engineering, The University of Adelaide, SA 55 Australia b Department

More information

Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides

Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Daniel Stevens and John Gipprich Northrop

More information

A Semi-Elliptical Wideband Directional Coupler

A Semi-Elliptical Wideband Directional Coupler Progress In Electromagnetics Research C, Vol. 79, 139 148, 2017 A Semi-Elliptical Wideband Directional Coupler Yew-Chiong Lo 1, *, Boon-Kuan Chung 2,andEng-HockLim 2 Abstract A new design of wideband directional

More information

Passive GaAs MMIC IQ Mixer. Green Status. Refer to our website for a list of definitions for terminology presented in this table.

Passive GaAs MMIC IQ Mixer. Green Status. Refer to our website for a list of definitions for terminology presented in this table. Passive GaAs MMIC IQ Mixer MMIQ-1037H 1. Device Overview 1.1 General Description MMIQ-1037H is a high linearity, passive GaAs MMIC IQ mixer. This is an ultra-broadband mixer spanning 10 to 37 GHz on the

More information

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION Progress In Electromagnetics Research Letters, Vol. 41, 125 134, 2013 DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION Maoze Wang *, Fushun Zhang, Jian Sun, Ke Chen, and Bin Wen National

More information

Comparative analysis of single-band Wilkinson Power Dividers

Comparative analysis of single-band Wilkinson Power Dividers IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 3, Ver. II (May - Jun. 2014), PP 65-70 Comparative analysis of single-band Wilkinson

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 4.542 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 4, Issue 4, April-2017 Design and Development of Varactor

More information

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012 A COMPACT DUAL-BAND PLANAR BRANCH-LINE COUPLER D. C. Ji *, B. Wu, X. Y. Ma, and J. Z. Chen 1 National Key Laboratory of Antennas and Microwave

More information

DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ.

DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ. DESIGN OF BPF USING INTERDIGITAL BANDPASS FILTER ON CENTER FREQUENCY 3GHZ. 1 Anupma Gupta, 2 Vipin Gupta 1 Assistant Professor, AIMT/ECE Department, Gorgarh, Indri (Karnal), India Email: anupmagupta31@gmail.com

More information

LECTURE 6 BROAD-BAND AMPLIFIERS

LECTURE 6 BROAD-BAND AMPLIFIERS ECEN 54, Spring 18 Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder LECTURE 6 BROAD-BAND AMPLIFIERS The challenge in designing a broadband microwave amplifier is the fact that the

More information

Micromachined Coupled Resonator Butler Matrix. Shuli Li

Micromachined Coupled Resonator Butler Matrix. Shuli Li Micromachined Coupled Resonator Butler Matrix Shuli Li A thesis submitted to the University of Birmingham for the degree of MASTER OF PHILOSOPHY School of Electronic, Electrical and Computer Engineering

More information

A Low-Loss VHF/UHF Diplexer

A Low-Loss VHF/UHF Diplexer A Low-Loss / Diplexer Why use two lengths of expensive feed line when one will do? This hy box lets you use one feed line for both energy, simultaneously! By Pavel Zanek, OK1DNZ Do you need to operate

More information

GHz 6-Bit Digital Phase Shifter Module

GHz 6-Bit Digital Phase Shifter Module 5. 6.5 GHz 6-Bit Digital Phase Shifter Module Features Frequency Range: 5. to 6.5 GHz Low RMS Phase Error ~ 4 o 8.5 db Maximum Insertion Loss 23dBm Input P 1dB Integrated TTL driver SMA (RF) / D-type(control)

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler

ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler 1 ELC 4383 RF/Microwave Circuits I Laboratory 7: Microstrip Coupled-Line Coupler Note: This lab procedure has been adapted from a procedure written by Dr. Larry Dunleavy and Dr. Tom Weller at the University

More information

Mini Modules Castellation Pin Layout Guidelines - For External Antenna

Mini Modules Castellation Pin Layout Guidelines - For External Antenna User Guide Mini Modules Castellation Pin Layout Guidelines - For External Antenna Dcoument No: 0011-00-17-03-000 (Issue B) INTRODUCTION The MeshConnect EM35x Mini Modules (ZICM35xSP0-1C and ZICM35xSP2-1C)

More information

Improved Meandered Gysel Combiner/Divider Design with Stepped-Impedance Load Line for High-Power Applications

Improved Meandered Gysel Combiner/Divider Design with Stepped-Impedance Load Line for High-Power Applications Progress In Electromagnetics Research C, Vol. 70, 53 62, 2016 Improved Meandered Gysel Combiner/Divider Design with Stepped-Impedance Load Line for High-Power Applications Mehrdad Gholami 1, *,RonyE.Amaya

More information

AN5129 Application note

AN5129 Application note Application note Low cost PCB antenna for 2.4 GHz radio: meander design for STM32WB Series Introduction This application note is dedicated to the STM32WB Series microcontrollers. One of the main reasons

More information