What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices.

Size: px
Start display at page:

Download "What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices."

Transcription

1 What are S-parameters, anyway? Scattering parameters offer an alternative to impedance parameters for characterizing high-frequency devices. Rick Nelson, Senior Technical Editor -- Test & Measurement World, 2/1/2001 Elementary circuit theory provides many methods for describing electronic networks. Those methods, however, best describe DC and low-frequency circuits. They fall short when the wavelengths of the signals of interest shrink to become comparable to the physical dimensions of the circuit of interest. To characterize high-frequency circuits, you can employ S-parameters (or scattering parameters) in place of the impedance or admittance parameters that describe low-frequency circuits. To give you a basis for understanding S- parameters, I will first review low-frequency analysis techniques. Most college texts present circuit analysis in terms of equations describing node voltages and loop currents. For a threeterminal circuit, such as the one shown in Figure 1, you can write three simultaneous equations in six variables; for the node voltages and current directions shown in Figure 1, these equations suffice: Figure 1. You can evaluate three-terminal networks like this one by solving three simultaneous equations having three unknowns. i 1 + i 3 = i 2 (1) i 1 = (v 1 v 3 )/R 1 (2) i 2 = (v 3 v 2 )/R 2 (3) If you specify any three variables, you can calculate the rest. Of course, without having to solve any equations, you recognize that if the current into node 3 of the Figure 1 circuit is zero (i 3 = 0), the voltage at node 3 is 80% of the difference between the node 1 and node 2 voltages. A problem But address this question: for v 1 v 2 = 10 V (assume that v 2 = 0), what voltage at node 3 will sustain a 1-A current into node 3? To get the answer, substitute the specified values into Equations 1 through 3 to obtain Equations 4 through 6: (4) (5)

2 (6) Substituting Equations 5 and 6 into Equation 4 yields (7) If you multiply both sides of Equation 7 by 8 Ω, Equation 7 reduces to 40 V 4v V = v 3, or 5v 3 = 48 V, so v 3 = 9.6 V. That s not too tough a calculation, but you probably would need paper and pencil to solve it. Further, the algebra increases dramatically with circuit node count. Although you can use a computer to solve sets of algebraic equations, you might find it difficult to conveniently load your equations into a computer. (The easiest way, in fact, is probably to enter your circuit graphically using a schematic-capture program and then use a simulator such as Spice to develop and solve the equations for you.) But whether you intend to calculate circuit values by hand or with computer assistance, you can simplify the computational and data-management aspects of the problem if you can group your circuit nodes into appropriate pairs, which leads to the concepts of ports and matrix representations of circuit characteristics (see Matrix math methods ). In fact, you needn t know anything about internal circuit topology to make use of the port concept. Given a black box, you can make lab measurements that let you develop a simple matrix representation of the internal circuitry. So, what is a port? Figure 2a shows a two-port network. You can treat any circuit as a two-port network if you can select two pairs of nodes (for example, an input pair and an output pair) such that the current into the positive node of a pair equals the current out of the negative node of the same pair that is, i 1 must equal i A and i 2 must equal i B in Figure 2a. Figure 2b shows the Figure 1 circuit rearranged to emphasize that it is indeed a two-port network. (See clarification, below) A two-port network can be represented by a 2-by-2 matrix. (An n-port network, having n pairs of nodes, can be represented by an n-by-n matrix). In Figure 2a, the x ij terms (where x ij represents the value at row i column j) stand in for impedance parameters (Z-parameters), admittance parameters (Y-parameters), hybrid parameters (h-parameters), chain parameters (A-, B-, C-, and D-parameters), or S-parameters. I will briefly review Z- Figure 2. (a) You can completely describe the external functionality of a two-port network by means of a 2x2 matrix. (b) The voltage divider of Figure 1 constitutes a two-port network. parameter representations to illustrate how matrix representations work and how you can derive matrix parameters from laboratory measurements. Then, I will show you how you can apply similar matrix representations to characterize high-frequency circuits using S-parameters.

3 In a Z-parameter representation, the matrix elements take on the values that satisfy this matrix equation: (8) To measure z 11, you leave port 2 open-circuited, apply a test voltage v 1 to port 1, and divide that voltage by the resulting current i 1 into port 1: z 11 = v 1 /i 1 for i 2 = 0 (9) Similarly, to measure z 22, you leave port 1 open-circuited, apply a test voltage v 2 to port 2, and divide that voltage by the resulting current i 2 into port 2: z 22 = v 2 /i 2 for i 1 = 0 (10) Parameters z 11 and z 22 are called the open-circuit driving-point impedances (Ref. 1). Visualizing the measurements of the remaining two matrix entries the open-circuit transfer impedances with respect to the instrumentation you would use is slightly more difficult. Mathematically, the upper-right matrix parameter is z 12 = v 1 /i 2 for i 1 = 0 (11) To make the measurement, you can use two voltage sources: use one to apply test voltage v 1 to port 1; then monitor current i 1 into port 1 and adjust the second voltage source, connected to port 2, until i 1 = 0. Then, divide v 1 by the resulting current i 2 into port 2. Similarly, to measure the lowerleft matrix parameter, you apply v 2 to port 2, adjust the v 1 voltage until i 2 goes to zero, and divide v 2 by the resulting i 1 : z 21 = v 2 /i 1 for i 2 = 0 (12) You can try these out for the circuit values shown in Figure 2b, either on the bench or with some quick calculations. Calculating the z terms on the matrix major diagonal (top left to bottom right) is simple: With i 2 = 0, z 11 = v 1 /i 1, where i 1 = v 1 /(2 Ω + 8 Ω ). So z 11 = 10 V. With i 1 = 0, z 22 = v 2 /i 2, where i 2 = v 2 /(8 Ω ). So z 22 = 8 Ω. Calculating the remaining two terms is a tad more difficult. To determine z 12 = v 1 /i 2 for i 1 = 0, note that if i 1 = 0, then v 2 = v 1, and i 2 = v 1 /8 Ω, so z 12 = 8 Ω. Finally, to determine z 21 = v 2 /i 1 for i 2 = 0, note that i 1 = v 1 /10 Ω, so z 21 = v 2 /(v 1 /10 Ω), or (10 Ω) v 2 /v 1. Note also that if i 2 = 0, then v 2 = 0.8 v 1, so z 12 = 8 Ω. These calculations yield the following matrix equation: (13) You can test out this representation on the Figure 2 circuit problem that was solved above with three node equations: if v 1 = 10 V, what value of v 2 will sustain a 1-A current into port 2? With these values, Equation 13 becomes

4 (14) which yields 10 V = (10 V) i 1 +(8 V)(1 A) = (10 V) i V (15) and v 2 = (8 V) i 1 + (8 V)(1 A) (16) Therefore, from Equation 15, i 1 = (2 V)/10 Ω, or 0.2 A, which, substituted into Equation 16, yields v 2 = (8 Ω)(0.2 A) + 8 V = 9.6 V, which is the same result obtained from solving the node equations. Active networks You can apply matrix parameters to active networks as well as to passive ones like the Figure 2 voltage divider. Figure 3 models a transistor amplifier using two resistors and a dependent current source. Using equations 9 and 10, you can determine that z 11 = v 1 /i 1 for i 2 = 0 is R b and that z 22 = v 2 /i 2 for i 1 = 0 is R L. Figure 3. Matrix parameters can describe active as well as passive networks. This amplifier includes a transistor having a beta of 1000 and a 1-MΩ input resistance. To determine z 12 = v 1 /i 2 for i 1 = 0 (Equation 11), imagine applying a test current (1 A, for instance) to port 2. Then, while holding i 1 to zero, measure v 1. If i 1 = 0, then v 1 must equal zero, so z 12 = 0/(1 A) = 0. This result helps to illustrate the physical meaning of Z- and other matrix parameters. The subscript ij indicates the effect on port i of a test input applied to port j. The fact that z 12 = 0 for the transistor amplifier simply means that nothing you do to the amplifier s output will change its input. Conversely, parameter z 21 does have a nonzero value, meaning that something done to the input will affect the output (as you would expect for an amplifier). To calculate z 21 = v 2 /i 1 for i 2 = 0 (Equation 12), first note that for i 2 = 0, 1000i b R L must equal v 2. Therefore, z 21 = (1000i b R L )/i 1, and since i 1 equals i b (representing transistor base current), z 21 = 1000R L. This matrix equation therefore represents the transistor amplifier: (17) You can use this equation to calculate the no-load output voltage in response to a 1-V input with the resistance values as shown in Figure 3: (18)

5 Therefore, 1 V = (1 MΩ) i 1, so i 1 = 1 µa, and v 2 = (10 MΩ)(1 µa) = 10 V. Z-parameters for microwaves? The impedance matrix is a general analytical tool applicable in theory to any multiport network. Practically, though, it is difficult to apply to microwave networks. You can t conveniently apply a test signal and simultaneously monitor the response. Current and voltage ratios aren t constant throughout a microwave network; they depend on position relative to wavelength. You can choose to make network measurements at a location that you define as the network s reference plane (or calibration plane), but even then your instrumentation leads will introduce loading and other errors. To accurately measure millimeterwavelength voltage and current signals simultaneously at a reference plane, you would need miniature sources and meters with submillimeter-length leads. Figure 4. You can cue up an incident voltage waveform and direct it toward an n-port network. An S-parameter matrix describes the relative strengths of reflected and transmitted signals at each port. The plus superscript represents an incident wave (moving toward the network). The minus superscript indicates a wave moving away from the network (whether transmitted or reflected). What you can do to measure a microwave network is apply incident waveforms and measure the resulting waveforms that your network reflects and transmits (Figure 4). Just as Z-parameters relate port voltages and currents, S-parameters relate incident waves to transmitted or reflected ones. Note that S-parameters are not independent of Z-parameters. Z-parameters are not unique to lowfrequency circuits, and S-parameters are not unique to microwave networks. You can describe any network in terms of either, and if you have one set of parameters, you can derive another. Here, for example, is s 11 in terms of the Z-parameters: (19) where z 01 and z 02 are the characteristic impedances of ports 1 and 2. Ref. 2 provides a table of the algebraic relationships among all the S-parameters, Y-parameters, and chain parameters for twoport networks. As Equation 19 suggests, deriving S-parameter descriptions based on network topology would be a nightmare. Because S-parameters directly relate incident and reflected or transmitted waves, however, they are ideal for characterizing microwave devices in a laboratory. Consider only ports 1 and 2 in Figure 4. For source and measurement instruments having the same characteristic impedance (typically 50 Ω ), parameter s 11 describes the relationship between port 1 s incident signal V + 1 and port 1 s resulting reflected signal V 1 : s 11 = V 1 /V + 1. Similarly, s 22 = V 2 + /V 2, relating incident and reflected waves on port 2. (In commonly used terminology, the plus superscript always indicates a waveform propagating toward a network, and the minus superscript represents a waveform, either reflected or transmitted, moving away from the network. Some

6 instrument vendors use the variable a ij to represent incident waves and b ij to represent transmitted and reflected waves.) The remaining two S-parameters for two-port networks relate incident waveforms at one port to transmitted waves at the other: s 12 = V 1 /V 2 + (that is, the transmitted signal at port 1 divided by the incident signal at port 2) and s 21 = V 2 /V 1 + (that is, the transmitted signal at port 2 divided by the incident signal at port 1). The complete matrix representation follows: (20) Figure 5. Vector network analyzers include the source and receiver instruments needed to measure S-parameters. You can choose S-parameter test-set options to conveniently route signals to and from your DUT.

7 To make S-parameter measurements, you need a signal source and receivers capable of measuring your source signal as well as the response signals reflected from or transmitted through your DUT. Vector network analyzers (which measure signal magnitude and phase) include such instrumentation and are readily adaptable to S-parameter measurements. Vendors offer their vector network analyzers with S- parameter test-set options (Figure 5), which include the power splitters, switches, and couplers necessary to route signals to and from your DUT. The measurement examples and corresponding S-parameter matrices shown in Figure 6 are based on a vector network analyzer and S-parameter test set having 50-Ω characteristic impedance. If you connect a 25-Ω resistor to port 1 and leave port 2 unused (Figure 6a), the S- parameter matrix reduces to a single parameter (the resistor is a one-port network requiring a 1x1 matrix), which represents the reflection coefficient. The following equation (Ref. 3) describes the reflection coefficient due to a load impedance Z L with respect to characteristic impedance Z 0 : ρ = (Z L Z 0 )/(Z L + Z 0 ) (21) For the values shown in Figure 6a, ρ = s 11 = (25 Ω-50 Ω)/(25 Ω+50 Ω) = 0.333, or with a 180 phase angle. Figure 6b shows the application of a 1-GHz signal to a 3-in. length of lossless 50-V cable. The lossless cable contributes no amplification or attenuation, but the 3-in. length represents about a quarter wavelength at 1 GHz and therefore contributes a 90 phase shift, so s 12 = 1 at 90 (that is, a signal applied to port 2 produces a signal delayed by 90 at port 1) and s 21 = 1 at 90 (that is, a signal applied to port 1 produces a signal delayed by 90 at port 2). Figure 6c shows a matched 15-dB amplifier. It exhibits no reflections on input or output, and, as for the Figure 3 circuit, a signal applied to the output won t affect the input, so s 11 = s 12 = s 22 = 0. The nonzero s 21 parameter represents the amplifier s gain and phase shift. Note that the gain in decibels relates to the S-parameter as follows: 15 db = 20log 10 (V 2 /V 1 + ) where s 21 = V 2 /V 1 +, so 0.75 = log 10 (s 21 ). Therefore, s 21 = = 5.62 (at an unspecified phase angle). These examples illustrate how easy it is to relate S-parameters to the performance of microwave circuits. The April issue of T&MW will provide more information on the vector network analyzers you can use to make S-parameter measurements. T&MW References Figure 6. These measurement examples and corresponding S-parameter matrices are based on instrumentation having a 50-Ω characteristic impedance. (a) For a 25-Ω resistor connected to port 1, the S- parameter matrix reduces to a single parameter, s 11 = with a 180 phase angle. (b) A 3-in. length of cable represents about a quarter wavelength at 1 GHz, so s 12 = s 21 = 1 at 90. (c) A matched amplifier exhibits no reflections on input or output, and a signal applied to the output won t affect the input, so s 11 = s 12 = s 22 = 0. The nonzero s 21 parameter represents the amplifiers gain and phase shift. 1. Murdoch, Joseph B., Network Theory, McGraw-Hill, New York, NY, p Mongia, Rajesh, Inder Bahl, and Prakash Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Boston, MA, p Nelson, Rick, High Speeds and Fine Precision Knock PCB Traces Off Pedestal, Test & Measurement World, January p. 22. Rick Nelson received a BSEE degree from Penn State University. He has six years experience designing electronic industrial-control systems. A member of the IEEE, he has served as the

8 managing editor of EDN, and he became a senior technical editor at T&MW in rnelson@tmworld.com. Matrix math methods Matrix notation offers a convenient way of manipulating the sets of simultaneous algebraic equations often used to represent circuit performance. For example, the set of n equations which might relate an n-node circuit s voltages, currents, and impedances, is equivalent to this matrix representation: which you can also write as V = ZI Note that this representation lets you directly calculate values for V as a function of Z and I. You can manipulate this equation algebraically to provide I in terms of V and Z: I = Z -1 V Where Z -1 is the inverse of matrix Z. The freeware Calc98 program from Flow Simulation International (Sheffield, UK) makes matrix math a snap. One button generates the inverse (right) of the matrix shown at left. You can download the program from Obtaining the inverse of a matrix is tedious and difficult for a human (it involves calculation of matrix cofactors and determinants as well as transposition, not to mention a trip to the library to find a textbook that explains those terms). But matrix inversion is easy for a computer or calculator (Figure). Furthermore, matrix representations provide a consistent way to represent circuit properties. If you and a colleague sit down to develop sets of loop or node equations for a moderately complex circuit, your sets will probably differ they may both be right, but either or both may contain errors that wouldn t be readily apparent. If you solve the equations and get different numerical answers, you ll have no easy way of telling who, if either of you, is right. If you agree on port definitions ahead of time, however, the matrix representations you and your colleague derive should be identical. If not, you can rework your derivations until you both agree. Then, let a computer or calculator do the heavy computational lifting. Rick Nelson Clarification A reader wrote in: In Fig. 2(b) shouldn't the voltage at the right node be V sub 3 and the current be i sub 3? Rick Nelson clarifies: What I was trying to suggest here is that the arbitrary node assignments

9 made to the three-terminal circuit in Figure 1 should give way to port-specific nomenclature when that circuit is represented as a two-port network. Although it's perfectly reasonable to assign v- sub-1, v-sub-2, and v-sub-3 (with corresponding i values) in any order to the nodes of the 3- terminal circuit, the subscripts for the 2-port descriptions are most meaningful if they are arranged to correspond to the port designations: v-sub-1 and i-sub-1 for port 1, and v-sub-2 and i-sub-2 for port 2. That way, for example, in a matrix description of the network, a matrix parameter in row 2 column 1 would reflect an effect on v-sub-2 (at port 2) of an applied i-sub-1 (at port 1). I made another attempt at emphasizing the significance of node assignments in the sidebar, saying "If you and a colleague sit down to develop sets of loop or node equations for a moderately complex circuit, your sets will probably differ...if you agree on port definitions ahead of time, however, the matrix representations you and your colleague derive should be identical." It is jarring to see "v-sub-3=9.6 V" on p. 24 and then "v-sub-2=9.6 V" on p. 26. In retrospect, I wish I had: Commented explicitly on the change in subscript numbering, Swapped i-sub-2 and v-sub-2 with i-sub-3 and v-sub-3 in Figure 1 (although the quiet disappearance of v-sub-3 and i-sub-3 in Figure 2b would have de-emphasized one of the points I was trying to make), or Perhaps the best approach, used sub-a, sub-b, and sub-c to describe the voltages and currents in Figure 1.

Validation & Analysis of Complex Serial Bus Link Models

Validation & Analysis of Complex Serial Bus Link Models Validation & Analysis of Complex Serial Bus Link Models Version 1.0 John Pickerd, Tektronix, Inc John.J.Pickerd@Tek.com 503-627-5122 Kan Tan, Tektronix, Inc Kan.Tan@Tektronix.com 503-627-2049 Abstract

More information

LAB MANUAL EXPERIMENT NO. 9

LAB MANUAL EXPERIMENT NO. 9 LAB MANUAL EXPERIMENT NO. 9 Aim of the Experiment: 1. Measure the characteristics of a Directional Coupler. 2. Use of the Directional Coupler and Ratio Meter to construct a Scalar Network Analyzer for

More information

Power Flow and Directional Couplers

Power Flow and Directional Couplers Power Flow and Directional Couplers The previous laboratory introduced two important RF components: the power splitter and the directional coupler. Both of these components are concerned with the accurate

More information

Scattered thoughts on Scattering Parameters By Joseph L. Cahak Copyright 2013 Sunshine Design Engineering Services

Scattered thoughts on Scattering Parameters By Joseph L. Cahak Copyright 2013 Sunshine Design Engineering Services Scattered thoughts on Scattering Parameters By Joseph L. Cahak Copyright 2013 Sunshine Design Engineering Services Scattering parameters or S-parameters (aka Spars) are used by RF and microwave engineers

More information

Vector Network Analyzer Application note

Vector Network Analyzer Application note Vector Network Analyzer Application note Version 1.0 Vector Network Analyzer Introduction A vector network analyzer is used to measure the performance of circuits or networks such as amplifiers, filters,

More information

Two-port network - Wikipedia, the free encyclopedia

Two-port network - Wikipedia, the free encyclopedia Two-port network Page 1 of 8 From Wikipedia, the free encyclopedia A two-port network (or four-terminal network or quadripole) is an electrical circuit or device with two pairs of terminals (i.e., the

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Microwave Engineering Class / Sem: BE (ECE) / VII Subject

More information

FUN WITH OP-AMP BAND-PASS FILTERS

FUN WITH OP-AMP BAND-PASS FILTERS FUN WITH OP-AMP BAND-PASS FILTERS July 6, 5 J.L. ADJUSTABLE SINGLE OP-AMP BAND-PASS BOOSTER Two nice op-amp band-pass filter circuits came up to my knowledge recently and since I spent a decent amount

More information

Experiment 9: Microwave Directional Couplers and Hybrids

Experiment 9: Microwave Directional Couplers and Hybrids Experiment 9: Microwave Directional Couplers and Hybrids 1. Directional Couplers and Hybrids Directional couplers and hybrids are used in a variety of important applications at microwave frequencies. The

More information

EM Analysis of RFIC Transmission Lines

EM Analysis of RFIC Transmission Lines EM Analysis of RFIC Transmission Lines Purpose of this document: In this document, we will discuss the analysis of single ended and differential on-chip transmission lines, the interpretation of results

More information

RF and Microwave Network Characterization - A Concept-Map Based Tutorial -

RF and Microwave Network Characterization - A Concept-Map Based Tutorial - RF and Microwave Network Characterization - A Concept-Map Based Tutorial - K.C. Gupta, R. Ramadoss and H. Zhang Department of Electrical and Computer Engineering, University of Colorado at Boulder Boulder

More information

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

SWR/Return Loss Measurements Using System IIA

SWR/Return Loss Measurements Using System IIA THE GLOBAL SOURCE FOR PROVEN TEST SWR/Return Loss Measurements Using System IIA SWR/Return Loss Defined Both SWR and Return Loss are a measure of the divergence of a microwave device from a perfect impedance

More information

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 SEM: VII BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION 1. What is RF? 2. What is an RF tuner? 3. Define

More information

(a) The insertion loss is the average value of the transmission coefficient, S12 (db), in the passband (Figure 1 Label A)

(a) The insertion loss is the average value of the transmission coefficient, S12 (db), in the passband (Figure 1 Label A) Lab 6-1: Microwave Multiport Circuits In this lab you will characterize several different multiport microstrip and coaxial components using a network analyzer. Some, but not all, of these components have

More information

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology

Real Analog Chapter 3: Nodal & Mesh Analysis. 3 Introduction and Chapter Objectives. 3.1 Introduction and Terminology Real Analog Chapter 3: Nodal & Mesh Analysis 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store.digilent.com 3 Introduction and Chapter Objectives In Chapters 1 & 2, we introduced several tools

More information

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K.

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Blackburn Self Contained Test Set Test Port Regulated 12

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

2005 Modelithics Inc.

2005 Modelithics Inc. Precision Measurements and Models You Trust Modelithics, Inc. Solutions for RF Board and Module Designers Introduction Modelithics delivers products and services to serve one goal accelerating RF/microwave

More information

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp)

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Objectives Become familiar with an Operational Amplifier (Op Amp) electronic device and it operation Learn several basic

More information

Two-Port Measurements and S-Parameters

Two-Port Measurements and S-Parameters TwoPort Measurements and SParameters Network analyzers are the fundamental instrument for characterization of the devices and components used in RF and microwave systems Network analyzers were briefly

More information

A Novel Method for Determining the Lower Bound of Antenna Efficiency

A Novel Method for Determining the Lower Bound of Antenna Efficiency A Novel Method for Determining the Lower Bound of Antenna Efficiency Jason B. Coder #1, John M. Ladbury 2, Mark Golkowski #3 # Department of Electrical Engineering, University of Colorado Denver 1201 5th

More information

H represents the value of the transfer function (frequency response) at

H represents the value of the transfer function (frequency response) at Measurements in Electronics and Telecommunication - Laboratory 4 1 Laboratory 4 Measurements of frequency response Purpose: Measuring the cut-off frequency of a filter. The representation of frequency

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

RLC Frequency Response

RLC Frequency Response 1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Analysis of a Two-Element Array of 1-Dimensional Antennas

Analysis of a Two-Element Array of 1-Dimensional Antennas Analysis of a Two-Element Array of -Dimensional Antennas Steven J. Weiss, Senior Member, IEEE, and Walter K. Kahn, Life Fellow, IEEE Abstract adiation, reception and scattering by -dimensional antennas

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE319

University of Pennsylvania Department of Electrical and Systems Engineering ESE319 University of Pennsylvania Department of Electrical and Systems Engineering ESE39 Laboratory Experiment Parasitic Capacitance and Oscilloscope Loading This lab is designed to familiarize you with some

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE)

Dual Band Wilkinson Power divider without Reactive Components. Subramanian.T.R (DESE) 1 Dual Band Wilkinson Power divider without Reactive Components Subramanian.T.R (DESE) Abstract This paper presents an unequal Wilkinson power divider operating at arbitrary dual band without reactive

More information

Experiment 03 - Automated Scalar Reectometry Using BenchVue

Experiment 03 - Automated Scalar Reectometry Using BenchVue ECE 451 Automated Microwave Measurements Laboratory Experiment 03 - Automated Scalar Reectometry Using BenchVue 1 Introduction After our encounter with the slotted line, we are now moving to a slightly

More information

Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz

Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz Introduction Design and Demonstration of a Passive, Broadband Equalizer for an SLED Chris Brinton, Matthew Wharton, and Allen Katz Wavelength Division Multiplexing Passive Optical Networks (WDM PONs) have

More information

Microwave Devices and Circuit Design

Microwave Devices and Circuit Design Microwave Devices and Circuit Design Ganesh Prasad Srivastava Vijay Laxmi Gupta MICROWAVE DEVICES and CIRCUIT DESIGN GANESH PRASAD SRIVASTAVA Professor (Retired) Department of Electronic Science University

More information

MOST high-frequency and microwave circuit analysis

MOST high-frequency and microwave circuit analysis 770 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 2, FEBRUARY 2005 Deembedding the Effect of a Local Ground Plane in Electromagnetic Analysis James C. Rautio, Fellow, IEEE Abstract

More information

VSWR MEASUREMENT APPLICATION NOTE ANV004.

VSWR MEASUREMENT APPLICATION NOTE ANV004. APPLICATION NOTE ANV004 Bötelkamp 31, D-22529 Hamburg, GERMANY Phone: +49-40 547 544 60 Fax: +49-40 547 544 666 Email: info@valvo.com Introduction: VSWR stands for voltage standing wave ratio. The ratio

More information

AC Analyses. Chapter Introduction

AC Analyses. Chapter Introduction Chapter 3 AC Analyses 3.1 Introduction The AC analyses are a family of frequency-domain analyses that include AC analysis, transfer function (XF) analysis, scattering parameter (SP, TDR) analyses, and

More information

Application Note 5525

Application Note 5525 Using the Wafer Scale Packaged Detector in 2 to 6 GHz Applications Application Note 5525 Introduction The is a broadband directional coupler with integrated temperature compensated detector designed for

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE

Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE 140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 1, JANUARY 2009 Exact Synthesis of Broadband Three-Line Baluns Hong-Ming Lee, Member, IEEE, and Chih-Ming Tsai, Member, IEEE Abstract

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

The 2-Port Shunt-Through Measurement and the Inherent Ground Loop

The 2-Port Shunt-Through Measurement and the Inherent Ground Loop The Measurement and the Inherent Ground Loop The 2-port shunt-through measurement is the gold standard for measuring milliohm impedances while supporting measurement at very high frequencies (GHz). These

More information

Agilent AN Applying Error Correction to Network Analyzer Measurements

Agilent AN Applying Error Correction to Network Analyzer Measurements Agilent AN 287-3 Applying Error Correction to Network Analyzer Measurements Application Note 2 3 4 4 5 6 7 8 0 2 2 3 3 4 Table of Contents Introduction Sources and Types of Errors Types of Error Correction

More information

BIRD ELECTRONIC CORPORATION

BIRD ELECTRONIC CORPORATION BIRD ELECTRONIC CORPORATION Application Note Straight Talk About Directivity Application Note: Effects of Directivity on Power, VSWR and Return Loss Measurement Accuracy, / 475-APP-0404RV2 INTRODUCTION

More information

AC : RF AND MICROWAVE ENGINEERING ELECTIVE COURSE WITH A CO-REQUISITE IN THE ELECTROMAGNETICS COURSE. Ernest Kim, University of San Diego

AC : RF AND MICROWAVE ENGINEERING ELECTIVE COURSE WITH A CO-REQUISITE IN THE ELECTROMAGNETICS COURSE. Ernest Kim, University of San Diego AC 2007-2549: RF AND MICROWAVE ENGINEERING ELECTIVE COURSE WITH A CO-REQUISITE IN THE ELECTROMAGNETICS COURSE Ernest Kim, University of San Diego American Society for Engineering Education, 2007 RF and

More information

DESIGN OF MICROWAVE HYBRID COUPLERS USING INTER-COUPLED RESONATORS SHANI LU

DESIGN OF MICROWAVE HYBRID COUPLERS USING INTER-COUPLED RESONATORS SHANI LU DESIGN OF MICROWAVE HYBRID COUPLERS USING INTER-COUPLED RESONATORS by SHANI LU A thesis submitted to the University of Birmingham for the degree of MASTER OF PHILOSOPHY School of Electronic, Electrical

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Multiport Measurements using Vector Network Analyzer ZVR

Multiport Measurements using Vector Network Analyzer ZVR Multiport Measurements using Vector Network Analyzer ZVR Application Note 1EZ37_1E Subject to change 10 October 1997, Olaf Ostwald Products: ZVR with option ZVR-B8, ZVR-B14 or ZVR-B26 ZVRE with option

More information

Design of Low Noise Amplifier Using Feedback and Balanced Technique for WLAN Application

Design of Low Noise Amplifier Using Feedback and Balanced Technique for WLAN Application Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 323 331 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 1- Electronic and Electrical

More information

Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course

Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course Session 2520 Application of the Ansoft Serenade 7.0 PC Software in a Wireless Course Willie K. Ofosu Telecommunications Department Penn State Wilkes-Barre Abstract Wireless applications have experienced

More information

Experiment #3: Experimenting with Resistor Circuits

Experiment #3: Experimenting with Resistor Circuits Name/NetID: Experiment #3: Experimenting with Resistor Circuits Laboratory Outline During the semester, the lecture will provide some of the mathematical underpinnings of circuit theory. The laboratory

More information

EQUIPMENT AND METHODS FOR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS

EQUIPMENT AND METHODS FOR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS EQUIPMENT AND METHODS OR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS John Gerling Gerling Applied Engineering, Inc. PO Box 580816 Modesto, CA 95358 USA ABSTRACT Various methods for waveguide

More information

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources A Method for Gain over Temperature Measurements Using Two Hot Noise Sources Vince Rodriguez and Charles Osborne MI Technologies: Suwanee, 30024 GA, USA vrodriguez@mitechnologies.com Abstract P Gain over

More information

Network Analysis Basics

Network Analysis Basics Adolfo Del Solar Application Engineer adolfo_del-solar@agilent.com MD1010 Network B2B Agenda Overview What Measurements do we make? Network Analyzer Hardware Error Models and Calibration Example Measurements

More information

An Oscillator Puzzle, An Experiment in Community Authoring

An Oscillator Puzzle, An Experiment in Community Authoring The Designer s Guide Community downloaded from An Oscillator Puzzle, An Experiment in Community Authoring Ken Kundert Designer s Guide Consulting, Inc. Version 2, 1 July 2004 Certain oscillators have been

More information

Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column

Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column Expanded Answer: Transistor Amplifier Problem in January/February 2008 Morseman Column Here s what I asked: This month s problem: Figure 4(a) shows a simple npn transistor amplifier. The transistor has

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note Introduction to Electrical Circuit Analysis EECS 16A Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 11 11.1 Introduction to Electrical Circuit Analysis Our ultimate goal is to design systems that solve people s problems.

More information

ECE 4265/6265 Laboratory Project 7 Network Analyzer Calibration

ECE 4265/6265 Laboratory Project 7 Network Analyzer Calibration ECE 4265/6265 Laboratory Project 7 Network Analyzer Calibration Objectives The purpose of this lab is to introduce the concepts of calibration and error correction for microwave s-parameter measurements.

More information

T he noise figure of a

T he noise figure of a LNA esign Uses Series Feedback to Achieve Simultaneous Low Input VSWR and Low Noise By ale. Henkes Sony PMCA T he noise figure of a single stage transistor amplifier is a function of the impedance applied

More information

10. Introduction and Chapter Objectives

10. Introduction and Chapter Objectives Real Analog - Circuits Chapter 0: Steady-state Sinusoidal Analysis 0. Introduction and Chapter Objectives We will now study dynamic systems which are subjected to sinusoidal forcing functions. Previously,

More information

(Refer Slide Time: 2:29)

(Refer Slide Time: 2:29) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 20 Module no 01 Differential Amplifiers We start our discussion

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72 Transmission Lines Ranga Rodrigo January 27, 2009 Antennas and Propagation: Transmission Lines 1/72 1 Standing Waves 2 Smith Chart 3 Impedance Matching Series Reactive Matching Shunt Reactive Matching

More information

There is a twenty db improvement in the reflection measurements when the port match errors are removed.

There is a twenty db improvement in the reflection measurements when the port match errors are removed. ABSTRACT Many improvements have occurred in microwave error correction techniques the past few years. The various error sources which degrade calibration accuracy is better understood. Standards have been

More information

Γ L = Γ S =

Γ L = Γ S = TOPIC: Microwave Circuits Q.1 Determine the S parameters of two port network consisting of a series resistance R terminated at its input and output ports by the characteristic impedance Zo. Q.2 Input matching

More information

Hot S 22 and Hot K-factor Measurements

Hot S 22 and Hot K-factor Measurements Application Note Hot S 22 and Hot K-factor Measurements Scorpion db S Parameter Smith Chart.5 2 1 Normal S 22.2 Normal S 22 5 0 Hot S 22 Hot S 22 -.2-5 875 MHz 975 MHz -.5-2 To Receiver -.1 DUT Main Drive

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-13 Basic Characteristic of an Amplifier Simple Transistor Model, Common Emitter Amplifier Hello everybody! Today in our series

More information

Fast network analyzers also for balanced measurements

Fast network analyzers also for balanced measurements GENERAL PURPOSE Network analyzers 44297/5 FIG 1 The new Vector Network Analyzer R&S ZVB, here with four-port configuration. Vector Network Analyzers R&S ZVB Fast network analyzers also for balanced measurements

More information

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD

PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD IJRRAS 9 (3) December 20 www.arpapress.com/volumes/vol9issue3/ijrras_9_3_0.pdf PRACTICAL BROADBAND MICROSTRIP FILTER DESIGN AND IMPLEMENTATION METHOD Abdullah Eroglu, Tracy Cline & Bill Westrick Indiana

More information

Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge

Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge April, 2015 Page 1 of 7 Introduction Return loss and VSWR are a measure of the magnitude of a transmitted RF Signal

More information

S Parameter Extraction Approach to the Reduction of Dipole Antenna Measurements

S Parameter Extraction Approach to the Reduction of Dipole Antenna Measurements S Parameter Extraction Approach the Reduction of Dipole Antenna Measurements Aaron Kerkhoff, Applied Research Labs, University of Texas at Austin February 14, 2008 Modern test equipment used for antenna

More information

Laboratory Project 1: Design of a Myogram Circuit

Laboratory Project 1: Design of a Myogram Circuit 1270 Laboratory Project 1: Design of a Myogram Circuit Abstract-You will design and build a circuit to measure the small voltages generated by your biceps muscle. Using your circuit and an oscilloscope,

More information

/99/$ IEEE

/99/$ IEEE Teaching Transmission Line Transients Using Computer Animation Christopher W. Trueman Department of Electrical and Computer Engineering Concordia University Montreal, Quebec, Canada H4B 1R6 Session 12a9

More information

Application Note: Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge

Application Note: Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge : Swept Return Loss & VSWR Antenna Measurements using the Eagle Technologies RF Bridge FCT-1008A Introduction Return loss and VSWR are a measure of the magnitude of a transmitted RF Signal in relation

More information

Transmit filter designs for ADSL modems

Transmit filter designs for ADSL modems Transmit filter designs for ADSL modems 1. OBJECTIVES... 2 2. REFERENCE... 2 3. CIRCUITS... 2 4. COMPONENTS AND SPECIFICATIONS... 3 5. DISCUSSION... 3 6. PRE-LAB... 4 6.1 RECORDING SPECIFIED OPAMP PARAMETERS

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2016

ELEG 205 Analog Circuits Laboratory Manual Fall 2016 ELEG 205 Analog Circuits Laboratory Manual Fall 2016 University of Delaware Dr. Mark Mirotznik Kaleb Burd Patrick Nicholson Aric Lu Kaeini Ekong 1 Table of Contents Lab 1: Intro 3 Lab 2: Resistive Circuits

More information

Linear networks analysis

Linear networks analysis Linear networks analysis For microwave linear networks analysis is performed in frequency domain. The analysis is based on the evaluation of the scattering matrix of the n port network From S matrix all

More information

7. Experiment K: Wave Propagation

7. Experiment K: Wave Propagation 7. Experiment K: Wave Propagation This laboratory will be based upon observing standing waves in three different ways, through coaxial cables, in free space and in a waveguide. You will also observe some

More information

SHIELDING EFFECTIVENESS

SHIELDING EFFECTIVENESS SHIELDING Electronic devices are commonly packaged in a conducting enclosure (shield) in order to (1) prevent the electronic devices inside the shield from radiating emissions efficiently and/or (2) prevent

More information

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Understanding the Fundamental Principles of Vector Network Analysis. Application Note Understanding the Fundamental Principles of Vector Network Analysis Application Note Table of Contents Introduction... 3 Measurements in Communications Systems... 3 Importance of Vector Measurements...

More information

Impedance Matching Techniques for Mixers and Detectors. Application Note 963

Impedance Matching Techniques for Mixers and Detectors. Application Note 963 Impedance Matching Techniques for Mixers and Detectors Application Note 963 Introduction The use of tables for designing impedance matching filters for real loads is well known [1]. Simple complex loads

More information

Branch Current Method

Branch Current Method Script Hello friends. In this series of lectures we have been discussing the various types of circuits, the voltage and current laws and their application to circuits. Today in this lecture we shall be

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Keysight Technologies Two-port Measurements and S-Parameters. Application Note

Keysight Technologies Two-port Measurements and S-Parameters. Application Note Keysight Technologies Two-port Measurements and S-Parameters Application Note Introduction Network analyzers are the fundamental instrument for characterization of the devices and components used in RF

More information

Configuration of PNA-X, NVNA and X parameters

Configuration of PNA-X, NVNA and X parameters Configuration of PNA-X, NVNA and X parameters VNA 1. S-Parameter Measurements 2. Harmonic Measurements NVNA 3. X-Parameter Measurements Introducing the PNA-X 50 GHz 43.5 GHz 26.5 GHz 13.5 GHz PNA-X Agilent

More information

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization David Ballo Application Development Engineer Agilent Technologies Gary Simpson Chief Technology Officer

More information

EC 1402 Microwave Engineering

EC 1402 Microwave Engineering SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC 1402 Microwave Engineering

More information

Topic Suggested Teaching Suggested Resources

Topic Suggested Teaching Suggested Resources Lessons 1 to 3: Complex DC networks Suggested Teaching Time: 3.5 hours per session Learning Outcome: Understanding complex DC networks Introduction Complex DC networks Introduction to the unit: contents,

More information

Preamplifier Options for Reducing Cable-Braid Loop Error

Preamplifier Options for Reducing Cable-Braid Loop Error QuietPower columns, December 2018 Preamplifier Options for Reducing Cable-Braid Loop Error Istvan Novak, Samtec It has been known for quite some time [1] that when we measure low impedance with the Two-port

More information

Operational amplifiers

Operational amplifiers Chapter 8 Operational amplifiers An operational amplifier is a device with two inputs and one output. It takes the difference between the voltages at the two inputs, multiplies by some very large gain,

More information

Principles of Analog In-Circuit Testing

Principles of Analog In-Circuit Testing Principles of Analog In-Circuit Testing By Anthony J. Suto, Teradyne, December 2012 In-circuit test (ICT) has been instrumental in identifying manufacturing process defects and component defects on countless

More information

Fast and Accurate Simultaneous Characterization of Signal Generator Source Match and Absolute Power Using X-Parameters.

Fast and Accurate Simultaneous Characterization of Signal Generator Source Match and Absolute Power Using X-Parameters. Fast and Accurate Simultaneous Characterization of Signal Generator Source Match and Absolute Power Using X-Parameters. April 15, 2015 Istanbul, Turkey R&D Principal Engineer, Component Test Division Keysight

More information

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING ARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING Eric J Newman Sr. Applications Engineer in the Advanced Linear Products Division, Analog Devices, Inc., email: eric.newman@analog.com Optical power

More information

NATIONAL UNIVERSITY of SINGAPORE

NATIONAL UNIVERSITY of SINGAPORE NATIONAL UNIVERSITY of SINGAPORE Faculty of Engineering Electrical & Computer Engineering Department EE3104 Introduction to RF and Microwave Systems & Circuits Experiment 1 Familiarization on VNA Calibration

More information

VSWR AND ANTENNA SYSTEMS Copyright by Wayne Miller 2018 Revision 4 page 1 of 6

VSWR AND ANTENNA SYSTEMS Copyright by Wayne Miller 2018 Revision 4 page 1 of 6 VSWR AND ANTENNA SYSTEMS Wayne Miller 2018, Revision 4 BACKGROUND In the 40 years of consulting in the RF and Microwave field, I have seen so much misunderstanding about VSWR that it has prompted me to

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

THE DESIGN of microwave filters is based on

THE DESIGN of microwave filters is based on IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998 343 A Unified Approach to the Design, Measurement, and Tuning of Coupled-Resonator Filters John B. Ness Abstract The concept

More information

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter

Design of an Evanescent Mode Circular Waveguide 10 GHz Filter Design of an Evanescent Mode Circular Waveguide 10 GHz Filter NI AWR Design Environment, specifically Microwave Office circuit design software, was used to design the filters for a range of bandwidths

More information