Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (14 Pts) 2. (4 Pts) 3. (12 Pts) 4. (12 Pts) 5.

Size: px
Start display at page:

Download "Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (14 Pts) 2. (4 Pts) 3. (12 Pts) 4. (12 Pts) 5."

Transcription

1 Name Part A (25 Points) Complete on Blackboard A. (25 Pts) Part B (75 Points) 1. (14 Pts) 2. (4 Pts) 3. (12 Pts) 4. (12 Pts) 5. (15 Pts) 6. (15 Pts) 7. (3 Pts) Total Draw circuit diagrams for all problems, especially as you simplify the circuits. Be sure to fully annotate plots, even when the problem does not ask you to do this. Show all of your work At least skim through the entire quiz before you begin and then start with the problems you know best. Note that some questions involve using things you have learned in new ways and some involve some minor new information. Focusing on what you know will make the problems easier to solve. The proctor will only answer clarification questions where wording is unclear or where there may be errors/typos. No other questions will be responded to. K. A. Connor, Revised: 3 December 2015

2 Theme for 2015: Inclusion matters: access and empowerment for people of all abilities The estimated one billion people living with disabilities worldwide face many barriers to inclusion in many key aspects of society. As a result, people with disabilities do not enjoy access to society on an equal basis with others, which includes areas of transportation, employment, and education as well as social and political participation. The right to participate in public life is essential to create stable democracies, active citizenship and reduce inequalities in society. Persons with disabilities must be able to fulfil their role in society and participate on an equal basis with others. It is important to focus on the ability and not on the disability of an individual. Often, the societal image of persons with disabilities is impacted by attitudes based on stigma and discrimination, as well as archaic ideas about disability and persons with disabilities that are often the greatest barrier to their full and equal participation in society and development on an equal basis with others. It is important to note that disability is part of the human condition, and that all of us either are or will become disabled to one degree or another during the course of our lives. By promoting empowerment, real opportunities for people are created. This enhances their own capacities and supports them in setting their own priorities. Empowerment involves investing in people - in jobs, health, nutrition, education, and social protection. When people are empowered they are better prepared to take advantage of opportunities, they become agents of change and can more readily embrace their civic responsibilities. Source: UN.org K. A. Connor, Revised: 3 December 2015

3 Op-Amp Specs (Excerpts) K. A. Connor, Revised: 3 December 2015

4 K. A. Connor, Revised: 3 December 2015

5 K. A. Connor, Revised: 3 December 2015

6 Transformer Specs (Excerpts) Note: This transformer is so good that its single piece price is over $70! K. A. Connor, Revised: 3 December 2015

7 Part B (75 Points) Problem 1 (14 Points) Logic Gates This problem addresses building logic devices from a single type of device, which is shown at the right. a. (3 Pts) What kind of a logic gate is this and what is its truth table? Name the device and fill out the table below. Input A Input B Output b. (3 Pts) Assume that the two inputs are tied together to create a single input device, as shown. Name the device and fill out its truth table below. Input A 0 1 Output c. (4 Pts) Assume that two of the configurations from part b are combined with the device from part a, as shown. Name the device that matches the functionality of this combination and fill out its truth table below. Note that, unlike parts a and b, you are asked to find the values at the intermediate points, not just the inputs and output. C D Input A Input B C D Output K. A. Connor, Revised: 3 December 2015

8 d. (4 Pts) Finally, add one more configuration from part b. Name the device this combination produces and fill out its truth table. Again, you must find the values at intermediate points, not just the inputs and output. C E D Input A Input B C D E Output Q Problem 2 (4 Points) Logical Function What logic gate functionality is described by the following situations? a. You can buy a new car only if both of your parents approve. b. You can buy a new car if at least one of your parents approve. K. A. Connor, Revised: 3 December 2015

9 Problem 3 (12 Points) Operational Amplifiers The two amplifier circuits below are configured with the same op-amp and resistors. Identify Vout which type of amplifier each is and its gain G. For your calculations, assume that R1= Vin 3kΩ and R2 = 12kΩ. a. (4 Pts) The circuit a at the upper left: b. (4 Pts) The circuit b at the upper right: c. (2 Pts) If the op-amp is powered with two 9V batteries, which of the following input voltages listed below will amplifier a (upper left) be able to amplify without distortion? Circle all correct answers. a. 1V b. 2V c. 3V d. 4V e. 5V d. (2 Pts) If the op-amp is powered with two 9V batteries, which of the following input voltages listed below will amplifier b (upper right) be able to amplify without distortion? Circle all correct answers. a. 1V b. 2V c. 3V d. 4V e. 5V K. A. Connor, Revised: 3 December 2015

10 Problem 4 (12 Points) Complex Impedance a) b) Earlier this semester, we analyzed circuits using complex impedances, where the impedance of resistors is real and the impedances of inductors and capacitors are imaginary. The ability to analyze circuits like the ones shown above will be useful in a following problem involving an audio amplifier. To be prepared for the audio problem, you are to evaluate the net impedance of the two circuits at the bottom end (50Hz) and the top end (8.5kHz) of the practical audio range of frequencies. (See Problem 6 for more information.) a. (4 Pts) Evaluate the impedances for both L and C at these two frequencies and fill in the table below. That is, find ZC and ZL. Frequency 50Hz 8.5kHz ZC ZL b. (3 Pts) Find the parallel combination of R and C for both frequencies. c. (3 Pts) Find the series combination of R and L for both frequencies. d. (2 Pts) Simplify your answers to parts b and c by dropping the smaller term, if it is less than 20% of the larger term. K. A. Connor, Revised: 3 December 2015

11 Problem 5 (15 Points) Transformers Transformers also play a role in an interesting circuit you are to analyze in a following problem. Shown at the right is the symbol for an iron core transformer, like the one you built by winding magnet wires on a toroidal ferrite core. Unlike the one you made, this transformer does not have the same number of turns on the primary and the secondary. Rather it has more secondary turns than primary. Assume that the transformer has the load resistor shown (colors are brown-green-yellow). a. (1 Pt) What is the value of the load resistor? Primary 1:10 Secondary b. (2 Pts) What is the ratio of V out? V in c. (2 Pts) What is the ratio of I I out in? d. (3 Pts) What is the input impedance of the loaded transformer Z in? That is, what is V in? I in e. (3 Pts) If the RMS sinusoidal input voltage is 10V, how much power is delivered to the load resistor? f. (4 Pts) The transformer addressed in this problem, is and ideal model of the Jensen audio transformer whose datasheet is provided on page 6 of this quiz. Identify two terms from the datasheet that correspond to the answers to parts b, c or d above. Because this transformer is not ideal (e.g. coupling is not equal to 1), the agreement will not be perfect. However, the values given for the real transformer will be close. K. A. Connor, Revised: 3 December 2015

12 Problem 6 (15 Points) High Quality Microphone Preamplifier Output Impedance of Microphone INPUT AMP-IN 150kΩ The circuit above is an application found in the datasheet for the OP27 op-amp. This figure has been slightly modified to indicate that the 150Ω source is the output impedance of the microphone, which is, otherwise, not shown. This is the practical circuit that the analysis in problems 4 and 5 was done to understand its operation. The typical audio spectra shown below indicate why we chose to analyze the circuits at 50Hz and 8.5kHz, since they nicely cover the useful range of frequencies that a microphone must be sensitive to. K. A. Connor, Revised: 3 December 2015

13 a. (4 Pts) For the audio range of frequencies that you considered in problem 4, you should be able to simplify this circuit by eliminating one component. Identify this component by describing it below and drawing a circle around it in the circuit diagram above. b. (4 Pts) Now that you have simplified the circuit, identify the type of op-amp-based VOUT amplifier it is and determine its gain. V AMP IN c. (4 Pts) From the gain of the amplifier that you just determined and your answer to VOUT problem 7, determine the overall gain of the complete circuit. V IN d. (3 Pts) In the OP27 datasheet, the gain of the overall circuit is given in db, so covert your answer to part c to decibels. K. A. Connor, Revised: 3 December 2015

14 Problem 7 (3 Points) Nest Thermostat Transformer Issue Thermostats with no C-Wire (above) and with C-Wire (below) Problem continues on the next page K. A. Connor, Revised: 3 December 2015

15 One of the great new devices we have to make our homes smart is the Nest thermostat or similar smart devices from other manufacturers. Unfortunately, it is not usually straight-forward to install because the transformers we use to power the thermostats in most of our homes are missing what is called the C-Wire. The two circuit diagrams on the previous page show traditional transformers (above) and transformers for smart thermostats (below). The Bells and Whistles represent the hardware that allows the thermostat to be smart. (3 Pts) Describe what the C-Wire provides for the Bells and Whistles. Any reasonable response is acceptable. Guess if you have to. K. A. Connor, Revised: 3 December 2015

Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6.

Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6. Name Part A (25 Points) Complete on Blackboard A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6. (6 Pts) 7. (13 Pts) 8. (3 Pts) Total Annotate the circuit diagrams

More information

Name. For partial credit in some question, you may want to re-draw circuit diagrams as you simplify the circuits.

Name. For partial credit in some question, you may want to re-draw circuit diagrams as you simplify the circuits. Quiz I Fall 2017 Name Part B (80 Points) 1. (10 Pts) 2. (8 Pts) 3. (16 Pts) 5. (12 Pts) 6. (16 Pts) 7. (11 Pts) 4. (7 Pts) Total Be sure to simplify circuits into standard forms. For partial credit in

More information

Name. Draw circuit diagrams for all problems, especially as you simplify the circuits.

Name. Draw circuit diagrams for all problems, especially as you simplify the circuits. Quiz I Spring 2016 Name Part B (80 Points) 1. (10 Pts) 2. (15 Pts) 3. (10 Pts) 4. (10 Pts) 5. (5 Pts) 6. (10 Pts) 7. (16 Pts) 8. (4 Pts) Total Draw circuit diagrams for all problems, especially as you

More information

Name Section 1 (12 1:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits.

Name Section 1 (12 1:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits. Quiz I Fall 2016 Name Section 1 (12 1:50PM, Monday and Thursday) Part B (80 Points) 1. (10 Pts) 2. (16 Pts) 3. (10 Pts) 4. (5 Pts) 5. (9 Pts) 6. (10 Pts) 7. (16 Pts) 8. (4 Pts) Total Draw circuit diagrams

More information

Name Section 1 (12 1:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits.

Name Section 1 (12 1:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits. Name Section 1 (12 1:50PM, Monday and Thursday) Part B (80 Points) 1. (10 Pts) 2. (16 Pts) 3. (10 Pts) 4. (5 Pts) 5. (9 Pts) 6. (10 Pts) 7. (16 Pts) 8. (4 Pts) Total Draw circuit diagrams for all problems,

More information

Name Section 2 (4 5:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits.

Name Section 2 (4 5:50PM, Monday and Thursday) Draw circuit diagrams for all problems, especially as you simplify the circuits. Part B (80 Points) Name Section 2 (4 5:50PM, Monday and Thursday) 1. (10 Pts) 2. (10 Pts) 3. (10 Pts) 4. (30 Pts) 5. (10 Pts) 6. (10 Pts) Total Draw circuit diagrams for all problems, especially as you

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 3

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 3 EECS 16B Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 3 This homework is due September 19, 2017, at Noon. Please use radians for all angles in phasor

More information

Calibration Techniques for the Home Lab

Calibration Techniques for the Home Lab Calibration Techniques for the Home Lab Jacques Audet VE2AZX jacaudet@videotron.ca Web: ve2azx.net September 2018 ve2azx.net 1 Summary - Using a reference multimeter as a calibrator for less accurate instruments.

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

E11 Final Exam, 2003 Name: (4 pts)

E11 Final Exam, 2003 Name: (4 pts) 12/15/2003 Page 1 of 11 E11 Final Exam, 2003 Name: (4 pts) Do all four problems. All count equally towards your grade. Don t hesitate to ask if anything is unclear. If you get stuck on a section, move

More information

Inverting input R 2. R 1 Output

Inverting input R 2. R 1 Output nalogue Electronics 8: Feedback and Op mps Last lecture we introduced diodes and transistors and an outline of the semiconductor physics was given to understand them on a fundamental level. We use transistors

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive 1 The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive approximation converter. 2 3 The idea of sampling is fully covered

More information

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

Low Cost Screening Audiometer

Low Cost Screening Audiometer Abstract EE 389 EDL Report, EE Dept. IIT Bombay, submitted on Nov.2004 Low Cost Screening Audiometer Group No.: D3 Chirag Jain 01d07018 Prashant Yadav 01d07024 Puneet Parakh 01d07007 Supervisor: Prof.

More information

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

More information

ENGR-2300 Electronic Instrumentation Quiz 1 Spring 2016

ENGR-2300 Electronic Instrumentation Quiz 1 Spring 2016 ENGR-2300 Electronic Instrumentation Quiz Spring 206 On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE ALUES AND UNITS. No credit will be given for numbers that appear without justification.

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) 2. True or false: an engineer uses series-shunt

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

Lab 10: Oscillators (version 1.1)

Lab 10: Oscillators (version 1.1) Lab 10: Oscillators (version 1.1) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive equipment.

More information

A-level PHYSICS (7408/3BE)

A-level PHYSICS (7408/3BE) SPECIMEN MATERIAL A-level PHYSICS (7408/3BE) Paper 3 Section B (Electronics) Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

Name. Draw circuit diagrams for all problems, especially as you simplify the circuits.

Name. Draw circuit diagrams for all problems, especially as you simplify the circuits. Name Part A (20 Points) 1. (3 Pts) 2. (3 Pts) 3. (4 Pts) 4. (3 Pts) 5. (4 Pts) 6. (3 Pts) Part B (80 Points) 1. (10 Pts) 2. (5 Pts) 3. (10 Pts) 4. (15 Pts) 5. (10 Pts) 6. (10 Pts) 7. (15 Pts) 8. (5 Pts)

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

11. Audio Amp. LM386 Low Power Amplifier:

11. Audio Amp. LM386 Low Power Amplifier: EECE208 INTRO TO EE LAB Dr. Charles Kim 11. Audio Amp Objectives: The main purpose of this laboratory exercise is to design an audio amplifier based on the LM386 Low Voltage Audio Power Amplifier chip

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Solution. Draw circuit diagrams for all problems, especially as you simplify the circuits.

Solution. Draw circuit diagrams for all problems, especially as you simplify the circuits. Solution Part A (20 Points) 1. (3 Pts) 2. (3 Pts) 3. (4 Pts) 4. (3 Pts) 5. (4 Pts) 6. (3 Pts) Part B (80 Points) 1. (10 Pts) 2. (5 Pts) 3. (10 Pts) 4. (15 Pts) 5. (10 Pts) 6. (10 Pts) 7. (15 Pts) 8. (5

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Questions about Circuit Functionality. Fall 2004 Question 5 -- Transformers (15 points)

Questions about Circuit Functionality. Fall 2004 Question 5 -- Transformers (15 points) Questions about Circuit Functionality Fall 2004 Question 5 -- Transformers (15 points) Below is a circuit containing a transformer and an op-amp circuit you should recognize from the homework and experiment

More information

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 5 Service Manual Rev 0 9/20/96 Aleph 5 Service Manual. The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. The Aleph 5 has only two

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

ENGR-4300 Electronic Instrumentation Quiz 2 Fall 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 2 Fall 2011 Name Section ENGR-43 Quiz 2 Fall 211 ENGR-43 Electronic Instrumentation Quiz 2 Fall 211 Name Section Question I (2 points) Question II (2 points) Question III (2 points) Question I (2 points) Question (2 points) Total

More information

The Ins and Outs of Audio Transformers. How to Choose them and How to Use them

The Ins and Outs of Audio Transformers. How to Choose them and How to Use them The Ins and Outs of Audio Transformers How to Choose them and How to Use them Steve Hogan Product Development Engineer, Jensen Transformers 1983 1989 Designed new products and provided application assistance

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

Auto Harmonizer. EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012

Auto Harmonizer. EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012 Auto Harmonizer EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 26 April 2012 Team Name: Slubberdegullions Team Members: Josh Elliott and Henry Hatton, Jr. Project Abstract:

More information

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers Op Amps Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers are frequency specific i.e. they only operate

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

Model SR554 Transformer Preamplifier

Model SR554 Transformer Preamplifier Model SR554 Transformer Preamplifier Model SR554 Transformer Preamplifier 1290-D Reamwood Avenue Sunnyvale, California 94089 Phone: (408) 744-9040 Fax: (408) 744-9049 email: info@thinksrs.com www.thinksrs.com

More information

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

Unit 8 - Understanding Op-Amp Data Sheet

Unit 8 - Understanding Op-Amp Data Sheet X reviewer2@nptel.iitm.ac.in Courses» Integrated Circuits, MOSFETs, OP-Amps and their Unit 8 - Understanding Data Sheet Announcements Course Ask a Question Progress Mentor Course outline IC Technology

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NMOS transistors (or NPN transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NMOS transistors (or NPN transistors). 1 Lab 03: Differential Amplifiers (MOSFET) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm, and

More information

Low Distortion Design 4

Low Distortion Design 4 Low Distortion Design 4 TIPL 1324 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Distortion from Power Supplies Power supplies

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS

INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS INVESTIGATION AND DESIGN OF HIGH CURRENT SOURCES FOR B-H LOOP MEASUREMENTS Boyanka Marinova Nikolova, Georgi Todorov Nikolov Faculty of Electronics and Technologies, Technical University of Sofia, Studenstki

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

Development of a Low-Cost Programmable Microphone Preamp Gain Control IC for Pro Audio Applications

Development of a Low-Cost Programmable Microphone Preamp Gain Control IC for Pro Audio Applications Development of a Low-Cost Programmable Microphone Preamp Gain Control IC for Pro Audio Applications Gary Hebert, Chief Technology Officer THAT Corporation 1 Tonight s Presentation Introduction Professional

More information

STUDENT NUMBER Letter VCE VET ELECTRONICS. Written examination. Monday 31 October 2005

STUDENT NUMBER Letter VCE VET ELECTRONICS. Written examination. Monday 31 October 2005 Victorian CertiÞcate of Education 2005 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Figures Words STUDENT NUMBER Letter VCE VET ELECTRONICS Written examination Monday 31 October 2005 Reading time: 9.00 am

More information

Figure 2 shows the actual schematic for the power supply and one channel.

Figure 2 shows the actual schematic for the power supply and one channel. Pass Laboratories Aleph 3 Service Manual rev 0 2/1/96 Aleph 3 Service Manual. The Aleph 3 is a stereo 30 watt per channel audio power amplifier which operates in single-ended class A mode. The Aleph 3

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EMT 212 2009/2010 EXPERIMENT # 3 OP-AMP (OSCILLATORS) 1 1. OBJECTIVE: 1.1 To demonstrate the Wien bridge oscillator 1.2 To demonstrate the RC phase-shift

More information

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required.

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. 1 When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. More frequently, one of the items in this slide will be the case and biasing

More information

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 2 Service Manual Rev 0 2/1/96 Aleph 2 Service Manual. The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. The Aleph 2 has only

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director

Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director Ham Radio 101 SOARA Workshop 3 Stage General Purpose Amplifier By Hal Silverman WB6WXO SOARA Education Director Several months ago I started to put together a workshop where students could breadboard and

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 Signature Name (print, please) Lab section # Lab partner s name (if any) Date(s) lab was performed ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 In this lab we will demonstrate basic

More information

Lecture 16 Date: Frequency Response (Contd.)

Lecture 16 Date: Frequency Response (Contd.) Lecture 16 Date: 03.10.2017 Frequency Response (Contd.) Bode Plot (contd.) Bode Plot (contd.) Bode Plot (contd.) not every transfer function has all seven factors. To sketch the Bode plots for a generic

More information

Low Distortion Design 3

Low Distortion Design 3 Low Distortion Design 3 TIPL 1323 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Output Stage Topologies Most op amps use a Class-AB

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Designing Information Devices and Systems II Spring 2019 A. Sahai, J. Roychowdhury, K. Pister Homework 2

Designing Information Devices and Systems II Spring 2019 A. Sahai, J. Roychowdhury, K. Pister Homework 2 EECS 16B Designing Information Devices and Systems II Spring 2019 A. Sahai, J. Roychowdhury, K. Pister Homework 2 This homework is due on Wednesday, February 13, 2019, at 11:59PM. Self-grades are due on

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

ENGR-2300 Electronic Instrumentation Quiz 3 Spring Name: Solution Please write you name on each page. Section: 1 or 2

ENGR-2300 Electronic Instrumentation Quiz 3 Spring Name: Solution Please write you name on each page. Section: 1 or 2 ENGR-2300 Electronic Instrumentation Quiz 3 Spring 2018 Name: Solution Please write you name on each page Section: 1 or 2 4 Questions Sets, 20 Points Each LMS Portion, 20 Points Question Set 1) Question

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 2 Diodes and Applications 1 Diodes A diode is a semiconductor device with a single

More information

ENGR-2300 Electronic Instrumentation Quiz 4 Fall 2012 Name

ENGR-2300 Electronic Instrumentation Quiz 4 Fall 2012 Name ENGR-23 Quiz 4 Fall 212 ENGR-23 Electronic Instrumentation Quiz 4 Fall 212 Name Question I (25 points) Question II (25 points) Question III (25 points) Question IV (25 points) Total (1 points) On all questions:

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Electronic Concepts and Troubleshooting 101. Experiment 1

Electronic Concepts and Troubleshooting 101. Experiment 1 Electronic Concepts and Troubleshooting 101 Experiment 1 o Concept: What is the capacity of a typical alkaline 1.5V D-Cell? o TS: Assume that a battery is connected to a 20Ω load and the voltage across

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information