Moving Forward Efficiently HEV/EV Traction Motor Lab

Size: px
Start display at page:

Download "Moving Forward Efficiently HEV/EV Traction Motor Lab"

Transcription

1 Moving Forward Efficiently HEV/EV Traction Motor Lab A traction motor is an electric motor providing the primary rotational torque of a machine, usually for conversion into linear motion (traction). Renesas Electronics America Inc.

2 Renesas Technology & Solution Portfolio 2

3 Microcontroller and Microprocessor Line-up bit 8/16-bit 1200 DMIPS, Superscalar Automotive & Industrial, 65nm 600µA/MHz, 1.5µA standby 500 DMIPS, Low Power Automotive & Industrial, 90nm 600µA/MHz, 1.5µA standby 165 DMIPS, FPU, DSC Industrial, 90nm 242µA/MHz, 0.2µA standby 25 DMIPS, Low Power Industrial & Automotive, 150nm 190µA/MHz, 0.3µA standby 10 DMIPS, Capacitive Touch Industrial & Automotive, 130nm Wide Format LCDs 350µA/MHz, 1µA standby 1200 DMIPS, Performance Automotive, 40nm 500µA/MHz, 35µA deep standby 165 DMIPS, FPU, DSC Industrial, 40nm 242µA/MHz, 0.2µA standby Embedded Security, ASSP Industrial, 90nm 1mA/MHz, 100µA standby 44 DMIPS, True Low Power Industrial & Automotive, 130nm 144µA/MHz, 0.2µA standby 3

4 Microcontroller and Microprocessor Line-up bit 1200 DMIPS, Superscalar Automotive & Industrial, 65nm 600µA/MHz, 1.5µA standby 500 DMIPS, Low Power Automotive & Industrial, 90nm 600µA/MHz, 1.5µA standby 165 DMIPS, FPU, DSC 32-Bit High Performance, High Efficiency & Integration 1200 DMIPS, Performance Automotive, 40nm 500µA/MHz, 35µA deep standby 165 DMIPS, FPU, DSC Industrial, 40nm 242µA/MHz, 0.2µA standby 8/16-bit Industrial, 90nm 242µA/MHz, 0.2µA standby 25 DMIPS, Low Power Industrial & Automotive, 150nm 190µA/MHz, 0.3µA standby 10 DMIPS, Capacitive Touch Industrial & Automotive, 130nm Wide Format LCDs 350µA/MHz, 1µA standby Embedded Security, ASSP Industrial, 90nm 1mA/MHz, 100µA standby 44 DMIPS, True Low Power Industrial & Automotive, 130nm 144µA/MHz, 0.2µA standby 4

5 Production Vehicles with Traction Motors Hybrids - Millions MY = Model Year of Introduction Source: Total U.S. Vehicle Sales Mitsubishi I MiEV Cadillac Escalade Lincoln MKZ BMW X6 Kia Optima Porsche Cayenne Infiniti M VW Touareg BMW 750i Honda CR-Z Hyundai Sonata Renault Fluence Smart ED Total - Millions 18 Honda Toyota Chevy Ford Nissan BYD 0.1 Accord Highlndr Silverado Fusion Leaf e6 3 Toyota Prius Drivetrain Toyota Honda Ford Lexus Nissan Chevy Dodge Mercedes Chevy Tesla Ford Prius Civic Escape RX400 Altima Tahoe Durango ML450 Volt S Focus

6 Traction Motor Efficiency HEV/EV overall efficiency is a key metric. (35kWh / 100mi) HEV/EV all electric range is a key metric. (38 miles using pure electric) Traction motors are ~70-90% efficient Depending on RPM, other factors Convert electrical energy to mechanical energy Traction motor efficiency is a primary factor in HEV/EV performance Electrical energy storage/retrieval are ~70-80% efficient Convert electrical energy to chemical energy, and then back See DevCon presentation about battery management 6

7 Renesas Smart Society Traction Motor Control Industry s Only Integrated Algorithm Hardware Park/Clarke transformations, PI controller, Duty Cycle Calculation Completely coherent angle and current samples Industry s Only Integrated RDC Hardware Industry leading Tamagawa resolver-to-digital converter (RDC) Optimized, Flexible PWM Generation Peripheral 2 Motor Control with Single Micro Full hardware & RDC support for 2 motors on next gen micro Software Driver Generation using QuantiPhi Less Expense & Faster Development 7

8 Agenda Typical Traction Motor Subsystem Renesas Smart Society Solution IRIS Evaluation Platform Resolver & RDC Lab Software & External RDC Motor Control Lab EMU & Integrated RDC Motor Control Lab Conclusion 8

9 Typical Traction Motor Subsystem 9

10 Typical Hardware Architecture Micro 6 aligned, continuously changing PWMs (5V digital outputs) 3 x IGBT module (6 x IGBT) 3 sinusoidal current waveforms Motor Position Motor Position digital angle RDC Motor Position Resolver output: Sin/Cos depending on motor position Motor with resolver 10

11 Resolver Operation Absolute angle sensor Resolves (modulates) angle into orthogonal pieces: sine & cosine signals Essentially a rotating transformer with specifically positioned secondaries Every angle has unique combination of sine & cosine, yielding an absolute angle Excitation input: V sin ωt Cosine output: kv cos θ sin ωt k = transformation ratio Sine output: kv sin θ sin ωt Sources: Tamagawa Seiki & admotec 11

12 Resolver History $ and # mm Price ($) # Components Width (mm) Source: Tamagawa Seiki, for 52mm diameter resolver 12

13 RDC Operation Performs implicit arctangent Uses trigonometry identity: sin(θ φ) = sinθ cosφ cosθ sinφ Uses approximation: sin(θ φ) θ φ, for θ φ < ±30 To generate difference error, ε, between actual motor angle, θ, and RDC digital angle, φ ε kv (θ φ) sinωt As the difference error, ε, approaches 0, θ = φ and digital angle equals actual motor angle Provides resolution better than 0.1 Analog kv sin θ sin ωt resolver θ Vsinωt buffer kv cos θ sin ωt buffer amp * D/A * D/A + - ε cos ROM cmp Sync compare counter detection sin ROM exc. sig. generator RDC Digital φ 13

14 Motor Timer Peripheral Phase Counting The MTU-III A multi-function timer pulse unit with eight 16-bit channels Phase counting mode is used for an RDC s quadrature encoded angle signal Ch 0 Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Ch 7 RDC RDC Motor 1 Motor 2 14

15 Motor Timer Peripheral - PWM Generation Generate a periodic time interval Trigger interrupts for A/D Conversion, Angle Sample Given 3 duty cycles generate 6 PWM signals Coordination of several up/down counters and thresholds Enforce dead time to prevent shoot-through current 15

16 Motor Timer Peripheral PWM Generation The MTU-III A multi-function timer pulse unit with eight 16-bit channels Complementary PWM mode is used for motor control Ch 0 Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Ch 7 Motor 1 Motor 2 PWM Carrier Cycle Reg s MTU Comparator Ch 6, 7 Timers Comparator Match Signals Match Signals Output Controller PWM Carrier Output PWM1 H/L PWM2 H/L PWM3 H/L Coil Duty Cycle Reg s 16

17 Software Responsibilities - Traditional Trough ADC Trigger Carrier Trough ISR Motor Algo. ADC Complete ISR Angle count from MTU Current to Amps Voltage Bounds Check Call Motor Algorithm Re-Arm ADC Return from ISR Calculate Elec. Angle Return from ISR Clarke & Park Transforms Q Vector PI Control Loop D Vector PI Control Loop Inverse Transforms Duty Cycle Calculation Timer Match Calculation Write match values to Timer Return 17

18 Renesas Smart Society Solution 18

19 Renesas Smart Architecture 6 aligned, continuously changing PWMs (5V digital outputs) 1 Micro with 2 RDCs Motor 1 See DevCon presentation about IGBTs 3 x IGBT module (6 x IGBT) Motor 1 3 sinusoidal current waveforms Motor 1 Motor 2 Motor 2 Motor 2 Motor Position Motor Position Motor 1 Motor 1 No external RDCs Motor 2 Motor Position Resolver output: Sin/Cos depending on motor position 2 motors with resolvers Motor 2 19

20 Integrated RDC Performs same arctangent operation To generate difference same difference ε To make the digital angle equal actual motor angle Still provides resolution better than 0.1 Analog kv sin θ sin ωt resolver buffer kv cos θ sin ωt buffer θ Vsinωt amp * D/A * D/A + - ε cos ROM cmp Sync compare counter detection sin ROM exc. sig. generator Micro Digital φ 20

21 EMU Peripheral (Enhanced Motor Control Unit) Application Id & Iq Request Data Transfer Section Motor Control Section 3-Phase Waveform Output Section Data from ADC Data from RDC Current and Angle Manipulation Feedback Vector Transforms Duty Cycle Calculation EMU PI Control Loop Inverse Vector Transforms Conversion to Timer Counts Timer Unit PWM Outputs Carrier Timing PWMs to Motor SH72AY Trigger to ADC 21

22 Software Responsibilities Renesas Solution ADC Trigger Carrier Trough ISR Motor Algo. ADC Complete ISR Angle count from MTU EMU Complete ISR Current to Amps Voltage Bounds Check Call Motor Algorithm Re-Arm ADC Return from ISR Calculate Elec. Angle Return from ISR Re-Arm ADC Return from ISR Clarke & Park Transforms Q Vector PI Control Loop D Vector PI Control Loop Inverse Transforms Duty Cycle Calculation Timer Match Calculation Write match values to Timer Return 22

23 IRIS Evaluation Platform 23

24 IRIS Goals Provide investigation system of Renesas solution to OEMs and Tier 1s Encourage use within OEM and Tier 1 development systems Show efficiencies of Renesas integrated RDC Show performance advantages of Renesas Enhanced Motor control timer Unit (EMU) Highlight cost savings & better performance Evaluate RDC vs. resolver inter-operation Evaluate RDC performance with injected noise 24

25 IRIS Capabilities Support for 2 motors Software selectable RDC per motor 4 different external RDCs 1 internal RDC 1 FPGA simulated RDC Software selectable resolver per motor Motor resolver FPGA simulated resolver Resolver Flexibility Excitation voltage of 5V to 15V Practically any transformation ratio 2 FPGA simulated motors and resolvers, including current and voltage feedbacks Isolated, low skew (< 10ns) motor PWMs and control/status 2 x CAN, 1 x RS-232, 1 x isolated USB Robust inputs Automotive capable 6V 30V supply Most inputs protected for short to power/ground 25

26 Simplified IRIS Diagram USB USB micro debug port Control software ATI A7 Drivers Data Acq. & Micro D board Calibration Tool Micro Daughterboard Current, voltage, temp inputs Multiple RDCs & resolver circuits FPGA motor simulator CAN x 2 Power supplies LEDs, switches Control Board (ECU) harness CAN x 2 IGBTs/MOSFETs Gate drivers Volt, current sensors Temp sensors Inverter Board IGBTs/MOSFETs Gate drivers Volt, current sensors Temp sensors Motor & resolver 1 sin, cos, exc Motor & resolver 2 Inverter Board Power Supply 26

27 IRIS Control Board Block Diagram USB ATI A7 Data Acq. & Calibration Tool SH72AY micro Debug port Micro Daughterboard CAN x 2 CAN Txcvr Micro socket Motor Control Motor Control FPGA Motor Simulator Motor Feedback PWM PWM current, voltage, temp Motor Feedback current, voltage, temp Power Supply Analog Muxes AU6802 RDC AU6803 RDC AD2S1205 RDC AD2S1210 RDC Analog Muxes sin, cos exc Analog Muxes AU6802 RDC AU6803 RDC AD2S1205 RDC AD2S1210 RDC Analog Muxes sin, cos exc Control Board (ECU) 27

28 IRIS Software Architecture Motor 1 Control via EMU Motor 2 Control via Software Configuration SW Speed Control App Configuration SW Speed Control App Ext RDC ADC EMU RDC ISR1 ISR2 ADC Input Processing Coordinate Transforms PI Controller Duty Cycle Calculation IGBTs Registers MTU-III IGBTs Motor Resolver Motor Resolver User interface through AUD connection 28

29 Resolver & RDC Lab 29

30 Resolver & RDC Lab 50W motor motor coils connector resolver resolver connector sine wave excitation signal sine/cosine resolver signals Do not connect motor coils Turn motor shaft by hand Watch resolver response oscilloscope 30

31 Software & External RDC Motor Control Lab 31

32 Software & External RDC Motor Control Lab AUD resolver sine/cosine resolver signals Motor PWMs excitation signal resolver connector 50W motor Motor connector Motor Coils Inverter Board ATI VISION & A7E 32

33 EMU & Integrated RDC Motor Control Lab 33

34 EMU & Integrated RDC Motor Control Lab resolver 50W motor AUD sine/cosine resolver signals resolver connector Motor PWMs excitation signal motor connector Motor Coils Inverter Board ATI VISION & A7E 34

35 Conclusion 35

36 Smart Society Traction Motor Control Resolver-to-Digital Converters (RDCs) provide accuracy for high traction motor efficiency Integrated algorithm hardware allows for control of 2 traction motors with 1 micro Significant cost savings can be gained by RDC integration and elimination of 2 nd micro for 2 nd motor Driver generation is real, efficient, practical and even fun Renesas Electronics has a really smart, integrated solution for traction motor control It can be evaluated today 36

37 Questions? 37

38 Renesas Electronics America Inc.

Moving Forward Efficiently HEV/EV Traction Motor Lab

Moving Forward Efficiently HEV/EV Traction Motor Lab Moving Forward Efficiently HEV/EV Traction Motor Lab Mark Ramseyer, Staff Technical Application Engineer Terry Downs, Staff Technical Application Engineer A traction motor is an electric motor providing

More information

Sensorless Vector Control and Implementation: Why and How

Sensorless Vector Control and Implementation: Why and How Sensorless Vector Control and Implementation: Why and How Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit

More information

Sensorless Vector Control with RL78G14

Sensorless Vector Control with RL78G14 Sensorless Vector Control with RL78G14 Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit 1200 DMIPS, Superscalar

More information

Sensorless Vector Control with RL78G14

Sensorless Vector Control with RL78G14 Sensorless Vector Control with RL78G14 John Pocs, Applications Engineering Manager Class ID: 7L02I Renesas Electronics America Inc. John Pocs Sr. Application Engineering Manager Application focus: motor

More information

You CAN Do Digital Filtering with an MCU!

You CAN Do Digital Filtering with an MCU! You CAN Do Digital Filtering with an MCU! Kevin P King - Senior Staff Application Engineer Class ID: CC13B Renesas Electronics America Inc. Kevin P King Senior Staff Application Engineer RX DSP Library

More information

ADC Resolution: Myth and Reality

ADC Resolution: Myth and Reality ADC Resolution: Myth and Reality Mitch Ferguson, Applications Engineering Manager Class ID: CC19I Renesas Electronics America Inc. Mr. Mitch Ferguson Applications Engineering Manager Specializes support

More information

Real-time Math Function of DL850 ScopeCorder

Real-time Math Function of DL850 ScopeCorder Real-time Math Function of DL850 ScopeCorder Etsurou Nakayama *1 Chiaki Yamamoto *1 In recent years, energy-saving instruments including inverters have been actively developed. Researchers in R&D sections

More information

RX23T inverter ref. kit

RX23T inverter ref. kit RX23T inverter ref. kit Deep Dive October 2015 YROTATE-IT-RX23T kit content Page 2 YROTATE-IT-RX23T kit: 3-ph. Brushless Motor Specs Page 3 Motors & driving methods supported Brushless DC Permanent Magnet

More information

Power Factor Correction Why and How?

Power Factor Correction Why and How? Power Factor Correction Why and How? Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit 1200 DMIPS, Superscalar

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its main features and the application benefits of leveraging

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms ISSUE: February 2017 A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms by Ken Johnson, Teledyne LeCroy, Chestnut Ridge, N.Y. Part 12 began the explanation of

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

3-in-1 Air Condition Solution

3-in-1 Air Condition Solution 3-in-1 Air Condition Solution FTF-IND-F0476 Zhou Xuwei Application Engineer M A Y. 2 0 1 4 TM External Use Agenda Abstract Application Development Sensorless PMSM FOC Timing & PFC Timing Start Up Realization

More information

RL78 Motor Control. YRMCKITRL78G14 Starter Kit. Renesas Electronics Europe. David Parsons Application Engineering Industrial Business Group.

RL78 Motor Control. YRMCKITRL78G14 Starter Kit. Renesas Electronics Europe. David Parsons Application Engineering Industrial Business Group. RL78 Motor Control YRMCKITRL78G14 Starter Kit Renesas Electronics Europe David Parsons Application Engineering Industrial Business Group July 2012 Renesas MCU for 3-phase Motor Control Control Method Brushless

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

TMS320F241 DSP Boards for Power-electronics Applications

TMS320F241 DSP Boards for Power-electronics Applications TMS320F241 DSP Boards for Power-electronics Applications Kittiphan Techakittiroj, Narong Aphiratsakun, Wuttikorn Threevithayanon and Soemoe Nyun Faculty of Engineering, Assumption University Bangkok, Thailand

More information

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions National Infotech A way to Power Electronics and Embedded System Solutions Electrical Drive Trainers In every industry there are industrial processes where electrical motors are used as a part of process

More information

PAM & SAM System User s Manual

PAM & SAM System User s Manual PAM & SAM System User s Manual Part 5 - SAM Drive Technical Information Ordering Number: 9032 011 985 Issue November 14, 2000 This version replaces all previous versions of this document. It also replaces

More information

Designing with STM32F3x

Designing with STM32F3x Designing with STM32F3x Course Description Designing with STM32F3x is a 3 days ST official course. The course provides all necessary theoretical and practical know-how for start developing platforms based

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China STM32 PMSM FOC SDK v3.2 蒋建国 MCU Application Great China Agenda 2 1 st day Morning Overview Key message Basics Feature Performance Hardware support Tools STM32 MC Workbench SDK components Architectural

More information

High Frequency Inverter Design Fundamentals. Chandrashekar DR April 19, 2010

High Frequency Inverter Design Fundamentals. Chandrashekar DR April 19, 2010 High Frequency Inverter Design Fundamentals Chandrashekar DR April 19, 2010 Agenda By the End of this session we will Understand different kinds of back up systems Discuss building blocks of basic inverter

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) International Journal of Advanced Research in Electrical, Electronics Device Control Using Intelligent Switch Sreenivas Rao MV *, Basavanna M Associate Professor, Department of Instrumentation Technology,

More information

Automotive Control Solution for Brushless DC Motors

Automotive Control Solution for Brushless DC Motors Page 1 Automotive Control Solution for Brushless DC Motors TTTech provides solutions for setting up distributed systems with brushless DC motors. Today brushless DC motors are used in a variety of applications.

More information

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU Application Note Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU AN026002-0608 Abstract This application note describes a controller for a 200 W, 24 V Brushless DC (BLDC) motor used to power

More information

DC Motor and Servo motor Control with ARM and Arduino. Created by:

DC Motor and Servo motor Control with ARM and Arduino. Created by: DC Motor and Servo motor Control with ARM and Arduino Created by: Andrew Kaler (39345) Tucker Boyd (46434) Mohammed Chowdhury (860822) Tazwar Muttaqi (901700) Mark Murdock (98071) May 4th, 2017 Objective

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

LV-Link 3.0 Software Interface for LabVIEW

LV-Link 3.0 Software Interface for LabVIEW LV-Link 3.0 Software Interface for LabVIEW LV-Link Software Interface for LabVIEW LV-Link is a library of VIs (Virtual Instruments) that enable LabVIEW programmers to access the data acquisition features

More information

Demonstration. Agenda

Demonstration. Agenda Demonstration Edward Lee 2009 Microchip Technology, Inc. 1 Agenda 1. Buck/Boost Board with Explorer 16 2. AC/DC Reference Design 3. Pure Sinewave Inverter Reference Design 4. Interleaved PFC Reference

More information

Motor Control using NXP s LPC2900

Motor Control using NXP s LPC2900 Motor Control using NXP s LPC2900 Agenda LPC2900 Overview and Development tools Control of BLDC Motors using the LPC2900 CPU Load of BLDCM and PMSM Enhancing performance LPC2900 Demo BLDC motor 2 LPC2900

More information

Synchro and Resolver Conversion. Appendix F. Appendix F EFFECTS OF QUADRATURE SIGNALS ON SERVO SYSTEMS

Synchro and Resolver Conversion. Appendix F. Appendix F EFFECTS OF QUADRATURE SIGNALS ON SERVO SYSTEMS EFFECTS OF QUADRATURE SIGNALS ON SERVO SYSTEMS The usual arrangement of the Digital to Synchro converter in a control loop is shown in Chapter 4, Fig 4-38 The signal from the control transfmer is amplified

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Application - Power Factor Correction (PFC) with XMC TM. XMC microcontrollers July 2016

Application - Power Factor Correction (PFC) with XMC TM. XMC microcontrollers July 2016 Application - Power Factor Correction (PFC) with XMC TM XMC microcontrollers July 2016 Agenda 1 Key features 2 Specification 3 System block diagram 4 Software overview 5 Highlight MCU features 6 CCM PFC

More information

Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim

Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim Abstract - This project utilized Eleven Engineering s XInC2 development board to control several peripheral devices to open a standard 40 digit combination

More information

CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP

CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP 115 CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP 6.1 INTRODUCTION Digital control of a power converter is becoming more and more common in industry today because

More information

32-bit ARM Cortex-M0, Cortex-M3 and Cortex-M4F microcontrollers

32-bit ARM Cortex-M0, Cortex-M3 and Cortex-M4F microcontrollers -bit ARM Cortex-, Cortex- and Cortex-MF microcontrollers Energy, gas, water and smart metering Alarm and security systems Health and fitness applications Industrial and home automation Smart accessories

More information

Digital Control of Permanent Magnet Synchronous Motor

Digital Control of Permanent Magnet Synchronous Motor Digital Control of Permanent Magnet Synchronous Motor Jayasri R. Nair 1 Assistant Professor, Dept. of EEE, Rajagiri School Of Engineering and Technology, Kochi, Kerala, India 1 ABSTRACT: The principle

More information

A13C: Performing Digital Filtering on an MCU

A13C: Performing Digital Filtering on an MCU A13C: Performing Digital Filtering on an MCU Renesas Electronics America Inc. Kevin P King Senior Staff Applications Engineer 13 October 2010 Version 1.2 1 Kevin P King Senior Staff Application Engineer

More information

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved.

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved. Sensors Fundamentals Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Agenda Introduction Sensors fundamentals ADI sensors Sensors data acquisition ADI support for sensors applications

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES Lukáš Pohl Doctoral Degree Programme (2), FEEC BUT E-mail: xpohll01@stud.feec.vutbr.cz Supervised by: Petr Blaha E-mail: blahap@feec.vutbr.cz Abstract: This

More information

Real Time Implementation of Power Electronics System

Real Time Implementation of Power Electronics System Real Time Implementation of Power Electronics System Prof.Darshan S.Patel M.Tech (Power Electronics & Drives) Assistant Professor,Department of Electrical Engineering Sankalchand Patel College of Engineerig-Visnagar

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

Sistemi per il controllo motori

Sistemi per il controllo motori Sistemi per il controllo motori TALENTIS 4ª SESSIONE - 28 MAGGIO 2018 Speaker: Ing. Giuseppe Scuderi Automation and Motion control team Central Lab Prodotti ST per il controllo motori 2 Applicazioni e

More information

Variable Frequency AC Source

Variable Frequency AC Source Variable Frequency AC Source Functional Requirements List and Performance Specifications Students: Kevin Lemke Matthew Pasternak Advisor: Steven D. Gutschlag Date: November 15, 2013 1 Introduction: Variable

More information

Pulse Width Modulation

Pulse Width Modulation ECEn 621" Computer Arithmetic" Project Notes Week 1 Pulse Width Modulation 1 Pulse Width Modulation A method of regulating the amount of voltage delivered to a load. The average value of the voltage fed

More information

Stepping motor controlling apparatus

Stepping motor controlling apparatus Stepping motor controlling apparatus Ngoc Quy, Le*, and Jae Wook, Jeon** School of Information and Computer Engineering, SungKyunKwan University, 300 Chunchundong, Jangangu, Suwon, Gyeonggi 440746, Korea

More information

Speed Control of Three Phase Induction Motor Using Fuzzy-PID Controller

Speed Control of Three Phase Induction Motor Using Fuzzy-PID Controller Speed Control of Three Phase Induction Motor Using Fuzzy-PID Controller Mr. Bidwe Umesh. B. 1, Mr. Shinde Sanjay. M. 2 1 PG Student, Department of Electrical Engg., Govt. College of Engg. Aurangabad (M.S.)

More information

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training 2013 Texas Instruments Motor Control Training Series -V th InstaSPIN Training How Do You Control Torque on a DC Motor? Brush DC Motor Desire Current + - Error Signal PI Controller PWM Power Stage Texas

More information

Multiple Instrument Station Module

Multiple Instrument Station Module Multiple Instrument Station Module Digital Storage Oscilloscope Vertical Channels Sampling rate Bandwidth Coupling Input impedance Vertical sensitivity Vertical resolution Max. input voltage Horizontal

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

Micro Controller Based Ac Power Controller

Micro Controller Based Ac Power Controller Wireless Sensor Network, 9, 2, 61-121 doi:1.4236/wsn.9.112 Published Online July 9 (http://www.scirp.org/journal/wsn/). Micro Controller Based Ac Power Controller S. A. HARI PRASAD 1, B. S. KARIYAPPA 1,

More information

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description:

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description: Description: The Powerex is a configurable IGBT based power assembly that may be used as a converter, chopper, half or full bridge, or three phase inverter for motor control, power supply, UPS or other

More information

PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive

PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive , 23-25 October, 2013, San Francisco, USA PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive P.Srinivas and P.V.N.Prasad Abstract The Switched Reluctance Motor (SRM) drive has evolved

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

ARDUINO BASED SPWM THREE PHASE FULL BRIDGE INVERTER FOR VARIABLE SPEED DRIVE APPLICATION MUHAMAD AIMAN BIN MUHAMAD AZMI

ARDUINO BASED SPWM THREE PHASE FULL BRIDGE INVERTER FOR VARIABLE SPEED DRIVE APPLICATION MUHAMAD AIMAN BIN MUHAMAD AZMI ARDUINO BASED SPWM THREE PHASE FULL BRIDGE INVERTER FOR VARIABLE SPEED DRIVE APPLICATION MUHAMAD AIMAN BIN MUHAMAD AZMI MASTER OF ENGINEERING(ELECTRONICS) UNIVERSITI MALAYSIA PAHANG UNIVERSITI MALAYSIA

More information

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier Costas Loop Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier 0 Pre-Laboratory Reading Phase-shift keying that employs two discrete

More information

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Mr. Kanaiya G Bhatt 1, Mr. Yogesh Parmar 2 Assistant Professor, Assistant Professor, Dept. of Electrical & Electronics, ITM Vocational

More information

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 PIC Functionality General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 General I/O Logic Output light LEDs Trigger solenoids Transfer data Logic Input Monitor

More information

AutoBench 1.1. software benchmark data book.

AutoBench 1.1. software benchmark data book. AutoBench 1.1 software benchmark data book Table of Contents Angle to Time Conversion...2 Basic Integer and Floating Point...4 Bit Manipulation...5 Cache Buster...6 CAN Remote Data Request...7 Fast Fourier

More information

Switched Mode Power Supply Measurements

Switched Mode Power Supply Measurements Power Analysis 1 Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses Measurement challenges Transformer

More information

Microcontroller: Timers, ADC

Microcontroller: Timers, ADC Microcontroller: Timers, ADC Amarjeet Singh February 1, 2013 Logistics Please share the JTAG and USB cables for your assignment Lecture tomorrow by Nipun 2 Revision from last class When servicing an interrupt,

More information

A Model-Based Development Environment and Its Application in Engine Control

A Model-Based Development Environment and Its Application in Engine Control A Model-Based Development Environment and Its Application in Engine Control Shugang Jiang, Michael Smith, Charles Halasz A&D Technology Inc. ABSTRACT To meet the ever increasing requirements for engine

More information

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen

Project Proposal. Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Project Proposal Low-Cost Motor Speed Controller for Bradley ECE Department Robots L.C.M.S.C. By Ben Lorentzen Advisor Dr. Gary Dempsey Bradley University Department of Electrical Engineering December

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Technical. Application. Assembly. Availability. Pricing. Phone

Technical. Application. Assembly. Availability. Pricing. Phone 6121 Baker Road, Suite 108 Minnetonka, MN 55345 www.chtechnology.com Phone (952) 933-6190 Fax (952) 933-6223 1-800-274-4284 Thank you for downloading this document from C&H Technology, Inc. Please contact

More information

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form:

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form: 6.111 Lecture # 19 Controlling Position Servomechanisms are of this form: Some General Features of Servos: They are feedback circuits Natural frequencies are 'zeros' of 1+G(s)H(s) System is unstable if

More information

354 Facta Universitatis ser.: Elec. and Energ. vol. 13, No.3, December 2000 in the audio frequency band. There are many reasons for moving towards a c

354 Facta Universitatis ser.: Elec. and Energ. vol. 13, No.3, December 2000 in the audio frequency band. There are many reasons for moving towards a c FACTA UNIVERSITATIS (NI» S) Series: Electronics and Energetics vol. 13, No. 3, December 2000, 353-364 GENERATING DRIVING SIGNALS FOR THREE PHASES INVERTER BY DIGITAL TIMING FUNCTIONS Miroslav Lazić, Miodrag

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

3KDVH 6LQH *HQHUDWRU ZLWK 9DULDEOH3KDVH&RQWURO

3KDVH 6LQH *HQHUDWRU ZLWK 9DULDEOH3KDVH&RQWURO Digital Motor Control Library 3KDVH 6LQH *HQHUDWRU ZLWK 9DULDEOH3KDVH&RQWURO Component Name: 2-Phase Sine Generator with Variable Phase Control 2-Phase Sine Generator with Variable Phase Control 0 Inputs

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Real-Time Testing Made Easy with Simulink Real-Time

Real-Time Testing Made Easy with Simulink Real-Time Real-Time Testing Made Easy with Simulink Real-Time Andreas Uschold Application Engineer MathWorks Martin Rosser Technical Sales Engineer Speedgoat 2015 The MathWorks, Inc. 1 Model-Based Design Continuous

More information

AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC)

AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC) Research Journal of Applied Sciences, Engineering and Technology 4(19): 3740-3745, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: March 07, 2012 Accepted: March 30, 2012 Published:

More information

MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM

MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM MAXREFDES39# System Board Introduction GSR measurement detects human skin impedance under different situations. A variety of events affect the skin

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Permanent Magnet Synchronous Motor Control with Speed Feedback Using a Resolver

Permanent Magnet Synchronous Motor Control with Speed Feedback Using a Resolver Permanent Magnet Synchronous Motor Control with Speed Feedback Using a Resolver I Nagulapati Kiran, II Anitha Nair AS, III D. Sri Lakshmi I,II,III Assistant Professor, Dept. of EEE, ANITS, Visakhapatnam,

More information

Separately Excited DC Motor for Electric Vehicle Controller Design Yulan Qi

Separately Excited DC Motor for Electric Vehicle Controller Design Yulan Qi 6th International Conference on Sensor etwork and Computer Engineering (ICSCE 2016) Separately Excited DC Motor for Electric Vehicle Controller Design ulan Qi Wuhan Textile University, Wuhan, China Keywords:

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817. Features. Introduction. AVR 8-bit Microcontroller

AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817. Features. Introduction. AVR 8-bit Microcontroller AVR 8-bit Microcontroller AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817 APPLICATION NOTE Features Base setup for performing core independent brushless

More information

5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator

5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator 5 TIPS FOR GETTING THE MOST OUT OF Your Function Generator Introduction Modern function/waveform generators are extremely versatile, going well beyond the basic sine, square, and ramp waveforms. Function

More information

ISSN Vol.05,Issue.01, January-2017, Pages:

ISSN Vol.05,Issue.01, January-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.01, January-2017, Pages:0028-0032 Digital Control Strategy for Four Quadrant Operation of Three Phase BLDC Motor with Load Variations MD. HAFEEZUDDIN 1, KUMARASWAMY

More information

Wednesday 7 June 2017 Afternoon Time allowed: 1 hour 30 minutes

Wednesday 7 June 2017 Afternoon Time allowed: 1 hour 30 minutes Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level ELECTRONICS Unit 4 Programmable Control Systems Wednesday 7 June 2017 Afternoon Time

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller Sukumar Kamalasadan Division of Engineering and Computer Technology University of West Florida, Pensacola, FL, 32513

More information

Chuck Raskin P.E. Principle R&D Engineer. Blaine, MN USA

Chuck Raskin P.E. Principle R&D Engineer. Blaine, MN USA Chuck Raskin P.E. Principle R&D Engineer Chuck.Raskin@q.com CMPL-ENGINEERING.com FOR AEROSPACE & AUTOMATION SOLUTIONS Blaine, MN 55434 USA Dynamics of BLDC Motor & Drive Design 1. Control Loops & Commutation

More information

For reference only Refer to the latest documents for details

For reference only Refer to the latest documents for details STM32F3 Technical Training For reference only Refer to the latest documents for details General Purpose Timers (TIM2/3/4/5 - TIM12/13/14 - TIM15/16/17 - TIM6/7/18) TIM2/5 TIM3/4/19 TIM12 TIM15 TIM13/14

More information

DRM100 Designer Reference Manual. Devices Supported: 56F801X

DRM100 Designer Reference Manual. Devices Supported: 56F801X DRM100 Designer Reference Manual Devices Supported: 56F801X Document Number: DRM100 Rev. 0 06/2008 Contents Chapter 1 Introduction 1.1 Introduction... 9 1.2 Freescale Digital Signal Controller Advantages

More information

Developer Day. XMC technical presentation & Introduction to DAVE. Cristian Zaharia Field Application Engineering Industrial MCU June, 2014

Developer Day. XMC technical presentation & Introduction to DAVE. Cristian Zaharia Field Application Engineering Industrial MCU June, 2014 Developer Day XMC technical presentation & Introduction to DAVE Cristian Zaharia Field Application Engineering Industrial MCU June, 2014 Agenda XMC Family - XMC technical presentation Introduction to DAVE

More information

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments Electrical Machine / Power Electronics PE-5000 Power Electronics Training System The PE-5000 Power Electronics Training System consists of 28 experimental modules, a three-phase squirrel cage motor, load,

More information

AN457 APPLICATION NOTE

AN457 APPLICATION NOTE AN457 APPLICATION NOTE TWIN-LOOP CONTROL CHIP CUTS COST OF DC MOTOR POSITIONING by H. Sax, A. Salina The Using a novel control IC that works with a simple photoelectric sensor, DC motors can now compare

More information

AN AT89C52 MICROCONTROLLER BASED HIGH RESOLUTION PWM CONTROLLER FOR 3-PHASE VOLTAGE SOURCE INVERTERS

AN AT89C52 MICROCONTROLLER BASED HIGH RESOLUTION PWM CONTROLLER FOR 3-PHASE VOLTAGE SOURCE INVERTERS IIUM Engineering Journal, Vol. 6, No., 5 AN AT89C5 MICROCONTROLLER BASED HIGH RESOLUTION PWM CONTROLLER FOR 3-PHASE VOLTAGE SOURCE INVERTERS K. M. RAHMAN AND S. J. M. IDRUS Department of Mechatronics Engineering

More information

IMPLEMENTATION OF FUZZY LOGIC SPEED CONTROLLED INDUCTION MOTOR USING PIC MICROCONTROLLER

IMPLEMENTATION OF FUZZY LOGIC SPEED CONTROLLED INDUCTION MOTOR USING PIC MICROCONTROLLER Volume 118 No. 24 2018 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ IMPLEMENTATION OF FUZZY LOGIC SPEED CONTROLLED INDUCTION MOTOR USING PIC MICROCONTROLLER

More information

Peripheral Link Driver for ADSP In Embedded Control Application

Peripheral Link Driver for ADSP In Embedded Control Application Peripheral Link Driver for ADSP-21992 In Embedded Control Application Hany Ferdinando Jurusan Teknik Elektro Universitas Kristen Petra Siwalankerto 121-131 Surabaya 60236 Phone: +62 31 8494830, fax: +62

More information