Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim

Size: px
Start display at page:

Download "Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim"

Transcription

1 Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim Abstract - This project utilized Eleven Engineering s XInC2 development board to control several peripheral devices to open a standard 40 digit combination lock using both user specified inputs and a fast algorithm to determine an unknown combination. The project consisted of a stepper motor, encoder, analog feedback servo motor, LCD screen and 16 input keypad. The device was able to successfully accept a user specified combination and attempt it on the lock. It was also able to use the fast algorithm to determine the unknown combination of a lock in under 10 hours. 3.3V 16X2 Character LCD Screen with White LED Background 3.3V 4X4 Keypad Power Supply I. INTRODUCTION The proposed project was the Lock Cracker which used a microprocessor provided by the client (XInC2). While the device functioned as a lock cracker, the main objective of the project was to present the broad capabilities of the XInC2. Having been designed and originally intended for wireless audio applications, our project showed that it could also be used for other embedded systems such as our project. The two main functions of the Lock Cracker were to accept a known combination from the user to autonomously open a lock, or to be able to use a fast algorithm to open up a lock with an unknown combination. Several hardware components were used to construct the device including a stepper motor, servo motor, encoder, a keypad, and an LCD. The stepper was used to rotate the dial of the lock while the encoder continually relayed the position of the device back to the microcontroller. The servo motor was used to pull on the shackle of the lock to attempt to open it while a comparator circuit monitored the voltage coming from the servo feedback to determine if it had opened the lock. The LCD and keypad were used to communicate with the user. The device is small enough that it is portable and runs on standard outlet electricity. Fig. 1 System Block Diagram A. XInC2 Microcontroller Some of the features that make the XInC2 unique from other type of microcontrollers is that it has a multithreaded architecture, in which it has 8 independent threads. In this way multiple hardware and firmware based peripherals are able to run concurrently. Another strength that it has is that the XInC2 is a RISC processor, thus less instructions are required to achieve a higher performance. Additionally, RTOS is not required as the multithreaded feature of the XInC2 allows for real time operations. [1] For the lock cracker, a PCB was created that can be directly mounted on top of the XInC2 Dev board, of which we have dubbed the backpack. This board enabled the ability to securely mount the peripherals to the XInC2 correctly, and with ease. The backpack s design was created such that future groups may use it to mount their own design to the XInC2. II. HARDWARE DESIGN The hardware component of this project had seven main components: XInC2 Development Board 12V, 0.4A Unipolar Double Shaft Stepper Motor 5V Absolute Binary Magnetic Encoder 5V Analog Feedback Micro Servo Fig. 2 XInC2 Backpack Schematic and PCB Layout

2 B. 12V, 0.4A Unipolar Double Shaft Stepper Motor The dial of the lock had to be turned with precision and speed because of the three day limit. Each phase of the stepper motor is driven by an N-Channel COM power MOSFET which is switched on and off by toggling the corresponding pins (P13, P15, P17, and P19) on the XinC2 Dev Board. Protection 1N4004 diodes were placed from the coils to ground in order to protect the motor from any back emf current. The toggling is done in a state driven manner to achieve full stepping with two coils of the stepper motor always being activated. The motor would draw approximately 0.8A of current when running (0.4A per phase, 2 phases on per state). Fig. 4 Encoder Circuit Schematic Fig. 3 Stepper Motor Driver Schematic C. 5V Absolute Binary Magnetic Encoder For the lock cracker to know its position on the lock, the choice was made to use an absolute encoder which made keeping track of locations simple. The encoder runs on 5V, using the same voltage that the servo motor would run on. However, by using a 5V encoder, supporting hardware is required that would allow the encoder to communicate with the XInC2. The conversion from 3.3V to 5V was done using an LM358N, a dual op-amp IC which was required because of the tight spaces on the PCB and the need for 2 signal lines. These op-amps are configured as comparators, with a threshold set at 1.80V, such that they would output 5V when a 3.3V signal is presented. For the conversion from 5V to 3.3V, a simple voltage divider was implemented, bring the 5V down to 3.23V. D. 5V Analog Feedback Servo Motor In order to open the lock, a 5V servo was used to pull on the shackle. This servo motor not only needed to have sufficient torque to open the shackle but also needed to be fast to open the lock as quickly as possible. In order to mitigate the noise produced by the servo, a 0.1 μf capacitor was used, connected from the 5V line to ground and located as close as possible to the servo. Fig. 5 Servo Motor Schematic The feedback from the servo motor was an analog signal ranging from 0.6V to 2.6V when the servo was at 60 to 150 respectively. Using this, a comparator circuit using a LM311N was implemented, that outputs a low signal when the servos feedback drops below a threshold value set by the potentiometer and thus indicating that the lock has been opened.

3 used to adjust the stepper motor and pause the system while running. Fig. 6 Servo Feedback Comparator Schematic E. 3.3V 16X2 Character LCD Screen with White LED Background The LCD screen that was used for this device utilized the common ST7066/HD44780 parallel interface. This device has 2 lines which can display 16 characters per line and runs on 3.3V. A potentiometer was used to adjust the contrast of the display in order to get an optimal resolution. Pins 1 and 2 were used to power the LED backlight of the screen. Pin 3 was used to adjust the contrast of the LCD. Pins 4 is the data/instruction select bit. Pin 5 is the read/write bit which tells the LCD if it is reading or writing to the display. Pin 6 is the enable bit. Pins 7-14 were the data connection pins. Fig. 8 Keypad Schematic G. Power Supply The main source for the project was a 12V, 3A wall adapter, which fed the stepper motor and a second 5V, 3A DC-DC converter. This 5V converter would provide the necessary power for the servo, encoder and the XInC2. The XInC2 Dev board would then step down the 5V to 3.3V, required for its own operation and to power the LCD and keypad. Fig. 7 LCD Schematic F. 3.3V 4X4 Keypad To allow users to input information into the device, a 4x4 keypad was implemented using 1K Ω pull-down resistors. The choice to use a 4x4 keypad over a standard 4x3 was made so that an extra set of keys could be used to simplify the user interface. These extra keys included up/down arrows, 2nd, and help buttons that would be Fig. 9 Power Supply Schematic A. Peripherals III. SOFTWARE DESIGN Initialization: It is important to note that an initialization function was written for each peripheral. In these functions the correct pins and polarities were assigned to each component, including any other

4 initialization requirements specified by the corresponding data sheets. Keypad: The keypad was the only source of user input, allowing the user to input menu options and integer values. This was accomplished by writing a basic getkeypress function which polled the keypad for inputs. To improve the functionality of the keypad we wrote a getsinglekeypress function which polled the keypad but also waited for the button to be released before returning a value. Finally, a checkkeypress function was used to check if the user was pressing anything on the keypad. LCD: The LCD was the most useful tool for prompting and relaying information to the user. To access the many functions of the LCD a universal WriteToLCD function written used to set the necessary pin configurations. In addition a StringToLCD function was used to allow messages to more easily be printed to the screen. This was further improved by a NumToString function which converted multi-digit integers to strings. Servo: The servo motor operated on a pulse width modulated signal with a period of 20 ms. The degree that the servo motor would move was decided by varying the duty cycle of the PWM signal. The generation of this signal was done by using timera from the XInC2 microcontroller. The timera configuration was set to prescale down the input system frequency so that it could generate a signal of 20 ms. For our purposes the boundaries of the servo were set between 30 to a maximum of 150. Then the compare module was configured to set the duty cycle of the PWM signal based on the input angle. Stepper: A rotation function was written to accept an integer and direction to cycle the poles on the stepper that many times and in the correct sequence. This sequence involves keeping 2 phases on at a time, and switching inverted pairs on and off. Furthermore, when the stepper is required to travel for rotations greater than 90, a speed curve is implemented by slowly reducing the frequency of the switching, holding it constant, and finally increasing it again at the end. This created a smooth acceleration and deceleration, used to maintain accuracy and nearly eliminate under and overshoot. Encoder: To accurately use the encoder a function was needed to assign output ranges to dial values. In this way we could tell which digit the lock was turned to by reading the encoder and comparing it against the generated array, which is exactly how EncoderRead worked. When combined with the stepper a more robust rotation function was written ( movement ) that allowed us to simply input a dial number to be rotated to with a specified direction and number of additional full rotations. B. User Specified Input The first step in the design was to accept a known combination from a user to autonomously open the lock. This was easily accomplished by using the functions specified above. The user was prompted to input the combination, one value at a time, until a valid combination was given. From there the device would do three clockwise rotations to the first number, two rotations counter clockwise to the second number, and one final clockwise rotation to the final number. The servo was then used to raise the shackle. If opened, the LCD would return the user to the main menu. If for some reason the lock didn t open the dial would rotate three times clockwise to reset the lock and would then prompt the user to enter another combination. C. Fast Algorithm The implementation of the algorithm used to open a lock with an unknown combination was done using a brute force approach as required by the client, but done in such a way to reduce the number of rotations. This was done by observing the internal design of the lock tumblers, incrementing one tumbler at a time, instead of resetting them with each combination attempt. This idea is more evident when observing Fig.10. Each of the tumblers in the image are separate dials with interlocking tabs, where each change in the rotational direction (from clockwise to counter clockwise or vice versa) frees a tab, preventing the tumbler from changing while the others are moved.

5 IV. RESULTS Initial testing was conducted on the individual components at a breadboard stage using the lab supplied equipment. Fig. 10 Inner Workings of a Lock [2] The mechanisms of a single dial lock presented above shows that regardless of how a lock combination is specified, that is in CW-CCW-CW or CCW-CW-CCW, every lock has a combination corresponding to both schemes. Therefore designing the algorithm for either one scheme will open all locks and the only difference will be that the output combination will be in reference to the chosen scheme. The fast algorithm developed based on the above theory resulted in the reduction of a total of 384,000 rotations down to about 72,000 rotations. As the flowchart below presents, once the device made the rotations for the first two digits, instead of repeating the first five rotations every single time 40 times for each of the third digit number, the device simply attempted to pull the lock as the lock decremented from 0 down to 1. Once all 40 digits were tested, the second digit of the lock was decremented one digit below, and the same procedure was repeated. A. Individual Components Stepper Motor/Encoder: The initial function was able to successfully activate each phase of the stepper motor to turn it in a full step manner. The stepper motor initially was not accurate when moving quickly, which was rectified by implementing a step speed curve which would slowly ramp up or ramp down the speed if the stepper had to move through a large rotation. The stepper motor also was getting very hot during its operation which was fixed by cutting the current when it was not in operation. The movement function was able to take advantage of output of the encoder and the stepper control function to move the stepper to the exact number on the face of the dial. Servo Motor: The initial function utilized pulse width modulation using a process known as bit bashing. While this process worked when testing the servo individually, it did not work when running other processes due to changes in the timing. This was fixed by using the onboard timer on the XinC2. This gave a reliable way to control the servo motor. LCD: The potentiometer was able to successfully adjust the contrast of the LCD screen. After determining the correct initialization sequence the screen would be turned on and characters would be displayed. However the characters that were being displayed were not the correct ones, because the data pins were mirrored. Once this was rectified the LCD screen was able to successfully display characters as needed. Fig. 11 Unknown Combination Algorithm Flowchart Keypad: The polling circuit was able poll four lines while simultaneously reading the four perpendicular lines in order to determine which button was being pressed. The keypad was initially shown to work y having an LED flash for a number of times corresponding to the button that was pushed.

6 B. User Accepted Combinations Consolidating the components together provided a net set of challenges. On the first attempt of using the LCD screen at the same time as the stepper motor the stepper motor would start vibrating instead of rotating as expected. At 4mA, the XinC2 was not providing enough current to the pins to toggle the pins of the LCD to send characters and to toggle the pins of the stepper driver circuit to turn on the MOSFETs. This was fixed by increasing the output of the XinC2 to 16mA. After this the user input combination function was able to accept the combinations specified by the user and opened the lock. This was tested with several different locks and worked for every one. REFERENCES [1] 11:: Eleven Engineering Incorporated [Online], [Online]. Available: [Accessed: 15- Nov- 2015]. [2] Woodengears, tabs [Online image]. Available: [Accessed: 15- Nov- 2015]. C. Fast Algorithm After solving the problems that accumulated when writing the user specified input function, the algorithm went much smoother. Since the algorithm worked by decrementing the first number from 40, a lock with a combination that started at 37 was used to verify our design worked as intended. The device was able to open the lock in less than 2500 attempts. V. CONCLUSION In conclusion the project completed all requirements that were set by our client in the initial design stage. The device was able to take user specified inputs and test them on the lock. It was also able to determine the combination of a lock using our fast algorithm. The comparator circuit worked as expected and was able to stop the process once the lock was opened. For future directions, the coupling for the lock could be changed so that different brands of locks could be used without having to make a new coupler each time. Furthermore, the algorithm could be improved so that if a user knows part of their combination, they could be able to input a digit or two and the device would attempt to open the lock from the rest of the combinations. Additional improvements to the algorithm would include eliminating impossible combinations such as A-A-A, or A-(A+1)- (A+2), due to the nature of the tumblers. While the client allotted us 72 hours to break a lock, our design would require only 10 hours to attempt all combinations. Overall the project was a success.

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors Assembly Language Topic 14 Motion Control Stepper and Servo Motors Objectives To gain an understanding of the operation of a stepper motor To develop a means to control a stepper motor To gain an understanding

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK Team Members: Andrew Blanford Matthew Drummond Krishnaveni Das Dheeraj Reddy 1 Abstract: The goal of the project was to build an interactive and mobile

More information

School of Engineering Mechatronics Engineering Department. Experim. ment no. 1

School of Engineering Mechatronics Engineering Department. Experim. ment no. 1 University of Jordan School of Engineering Mechatronics Engineering Department 2010 Mechatronics System Design Lab Experim ment no. 1 PRINCIPLES OF SWITCHING Copyrights' are held by : Eng. Ala' Bata &

More information

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore)

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Laboratory 14 Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Required Components: 1x PIC 16F88 18P-DIP microcontroller 3x 0.1 F capacitors 1x 12-button numeric

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

MOSFET as a Switch. MOSFET Characteristics Curves

MOSFET as a Switch. MOSFET Characteristics Curves MOSFET as a Switch MOSFET s make very good electronic switches for controlling loads and in CMOS digital circuits as they operate between their cut-off and saturation regions. We saw previously, that the

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control EEE34 Microcontroller Applications Department of Electrical Engineering Lecture Motor Control Week 3 EEE34 Microcontroller Applications In this Lecture. Interface 85 with the following output Devices Optoisolator

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ EE 331 Design Project Final Report θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ

More information

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer Purpose: Minimum Parts Required: Laboratory Assignment Number 3 for Mech 143 Due by 5:00 pm on Thursday, February 11, 1999 Pre-Lab Due by 5:00pm on Tuesday, February 9, 1999 This lab is intended to acquaint

More information

Project Name: SpyBot

Project Name: SpyBot EEL 4924 Electrical Engineering Design (Senior Design) Final Report April 23, 2013 Project Name: SpyBot Team Members: Name: Josh Kurland Name: Parker Karaus Email: joshkrlnd@gmail.com Email: pbkaraus@ufl.edu

More information

FRIDAY, 18 MAY 1.00 PM 4.00 PM. Where appropriate, you may use sketches to illustrate your answer.

FRIDAY, 18 MAY 1.00 PM 4.00 PM. Where appropriate, you may use sketches to illustrate your answer. X036/13/01 NATIONAL QUALIFICATIONS 2012 FRIDAY, 18 MAY 1.00 PM 4.00 PM TECHNOLOGICAL STUDIES ADVANCED HIGHER 200 marks are allocated to this paper. Answer all questions in Section A (120 marks). Answer

More information

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives ECE 5670/6670 Project Brushless DC Motor Control with 6-Step Commutation Objectives The objective of the project is to build a circuit for 6-step commutation of a brushless DC motor and to implement control

More information

Hitachi P1 Closed Loop Hoist Basic Instruc on Manual

Hitachi P1 Closed Loop Hoist Basic Instruc on Manual Hitachi P1 Closed Loop Hoist Basic Instruc on Manual DH Firmware V.18 DETROIT HOIST AND CRANE LLC, CO. 6650 STERLING DRIVE NORTH STERLING HEIGHTS MICHIGAN 48312 Introduction This manual only applies to

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) International Journal of Advanced Research in Electrical, Electronics Device Control Using Intelligent Switch Sreenivas Rao MV *, Basavanna M Associate Professor, Department of Instrumentation Technology,

More information

PreLab 6 PWM Design for H-bridge Driver (due Oct 23)

PreLab 6 PWM Design for H-bridge Driver (due Oct 23) GOAL PreLab 6 PWM Design for H-bridge Driver (due Oct 23) The overall goal of Lab6 is to demonstrate a DC motor controller that can adjust speed and direction. You will design the PWM waveform and digital

More information

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TRINAMIC Motion Control GmbH & Co. KG Sternstraße 67 D 20357 Hamburg GERMANY www.trinamic.com

More information

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

Wireless Bluetooth Controller for DC Motor

Wireless Bluetooth Controller for DC Motor Wireless Bluetooth Controller for DC Motor ECE 445 Final Report May 1, 2007 Team Members: Abhay Jain Reid Vaccari TA: Brian Raczkowski Professor Gary Swenson TABLE OF CONTENTS 1. INTRODUCTION...3 1.1 Motivation...3

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

Software User Manual

Software User Manual Software User Manual ElectroCraft CompletePower Plus Universal Servo Drive ElectroCraft Document Number: 198-0000021 2 Marin Way, Suite 3 Stratham, NH 03885-2578 www.electrocraft.com ElectroCraft 2018

More information

DC1000 (120VAC) Theory of Operations

DC1000 (120VAC) Theory of Operations DC1000 (120VAC) Theory of Operations The DC1000 is a dynamic DC treadmill designed for a wide range of applications that vary from the medical market to the sports performance market. This theory of operation

More information

Built-in soft-start feature. Up-Slope and Down-Slope. Power-Up safe start feature. Motor will only start if pulse of 1.5ms is detected.

Built-in soft-start feature. Up-Slope and Down-Slope. Power-Up safe start feature. Motor will only start if pulse of 1.5ms is detected. Thank You for purchasing our TRI-Mode programmable DC Motor Controller. Our DC Motor Controller is the most flexible controller you will find. It is user-programmable and covers most applications. This

More information

EDC Quick Start Guide

EDC Quick Start Guide EDC Quick Start Guide BASIC FUNCTIONS This guide will familiarize the user with the basic functions of the EDC Servo Drive and assist with start up. The guide will cover the following: 1. Restoring Parameters

More information

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr. INTEGRATED CIRCUITS Author: Lester J. Hadley, Jr. 1988 Dec Author: Lester J. Hadley, Jr. ABSTRACT The purpose of this paper is to demonstrate the use of integrated switched-mode controllers, generally

More information

Experiment#6: Speaker Control

Experiment#6: Speaker Control Experiment#6: Speaker Control I. Objectives 1. Describe the operation of the driving circuit for SP1 speaker. II. Circuit Description The circuit of speaker and driver is shown in figure# 1 below. The

More information

EASY STEP User Guide

EASY STEP User Guide EASY STEP 3000 User Guide Document Control Information This Document Release Date: 3 rd December 2008 This Document Version: 1.05 Compatible with: Easy Step 3000 Module Firmware 1V30 Easy Step 3000 Module

More information

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC Laboratory 11 Pulse-Width-Modulation Motor Speed Control with a PIC Required Components: 1 PIC16F88 18P-DIP microcontroller 3 0.1 F capacitors 1 12-button numeric keypad 1 NO pushbutton switch 1 Radio

More information

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular Embedded Control Applications II MP10-1 Embedded Control Applications II MP10-2 week lecture topics 10 Embedded Control Applications II - Servo-motor control - Stepper motor control - The control of a

More information

The NMIH-0050 H-Bridge

The NMIH-0050 H-Bridge The NMIH-0050 H-Bridge Features: 5 A continuous, 6 A peak current Supply voltages from 5.3V up to 40V Terminal block for power / motor Onboard LEDs for motor operation/direction Onboard LED for motor supply

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

PS2-SMC-06 Servo Motor Controller Interface

PS2-SMC-06 Servo Motor Controller Interface PS2-SMC-06 Servo Motor Controller Interface PS2-SMC-06 Full Board Version PS2 (Playstation 2 Controller/ Dual Shock 2) Servo Motor Controller handles 6 servos. Connect 1 to 6 Servos to Servo Ports and

More information

Chapter 2: Your Boe-Bot's Servo Motors

Chapter 2: Your Boe-Bot's Servo Motors Chapter 2: Your Boe-Bot's Servo Motors Vocabulary words used in this lesson. Argument in computer science is a value of data that is part of a command. Also data passed to a procedure or function at the

More information

Name & SID 1 : Name & SID 2:

Name & SID 1 : Name & SID 2: EE40 Final Project-1 Smart Car Name & SID 1 : Name & SID 2: Introduction The final project is to create an intelligent vehicle, better known as a robot. You will be provided with a chassis(motorized base),

More information

Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller

Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller Rahul Baranwal 1, Omama Aftab 2, Mrs. Deepti Ojha 3 1,2, B.Tech Final Year (Electronics and Communication Engineering),

More information

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd.

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd. PR10 Controlling DC Brush Motor using MD10B or MD30B Version 1.2 Aug 2008 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended

More information

Standard single-purpose processors: Peripherals

Standard single-purpose processors: Peripherals 3-1 Chapter 3 Standard single-purpose processors: Peripherals 3.1 Introduction A single-purpose processor is a digital system intended to solve a specific computation task. The processor may be a standard

More information

Micro Controller Based Ac Power Controller

Micro Controller Based Ac Power Controller Wireless Sensor Network, 9, 2, 61-121 doi:1.4236/wsn.9.112 Published Online July 9 (http://www.scirp.org/journal/wsn/). Micro Controller Based Ac Power Controller S. A. HARI PRASAD 1, B. S. KARIYAPPA 1,

More information

87000 Series Size 34 Hybrid Linear Actuators

87000 Series Size 34 Hybrid Linear Actuators 87000 Series Single Stack Stepper Motor Linear Actuators 87000 Series Hybrid Linear Actuators Our largest, most powerful linear actuator incorporates the same precision, high performance and durable patented

More information

28000 Series Size 11 Double Stack Hybrid Linear Actuators

28000 Series Size 11 Double Stack Hybrid Linear Actuators 28000 Series Double Stack Stepper Motor Linear Actuators 28000 Series Double Stack Hybrid Linear Actuators Enhanced performance in motion control The 28000 Series is available in a wide variety of resolutions

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

EasyMotion User s Manual Ver

EasyMotion User s Manual Ver EasyMotion User s Manual Ver. 3.01 2001 Applied Cybernetics Chapter 1. Introduction. Welcome to EasyM otion. This complete motion system setup program provides you with all the tools you need to test hardware

More information

Robotic Navigation Distance Control Platform

Robotic Navigation Distance Control Platform Robotic Navigation Distance Control Platform System Block Diagram Student: Scott Sendra Project Advisors: Dr. Schertz Dr. Malinowski Date: November 18, 2003 Objective The objective of the Robotic Navigation

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

EEL4914 Senior Design. Final Design Report

EEL4914 Senior Design. Final Design Report EEL4914 Senior Design Final Design Report Electric Super Bike The Best Team in the World Matt Fisher madfish@ufl.edu Richard Orr gautama@ufl.edu 21 April 2008 1 Contents Contents...2 Abstract...3 Project

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

Index. n A. n B. n C. Base biasing transistor driver circuit, BCD-to-Decode IC, 44 46

Index. n A. n B. n C. Base biasing transistor driver circuit, BCD-to-Decode IC, 44 46 Index n A Android Droid X smartphone, 165 Arduino-based LCD controller with an improved event trigger, 182 with auto-adjust contrast control, 181 block diagram, 189, 190 circuit diagram, 187, 189 delay()

More information

MSK4310 Demonstration

MSK4310 Demonstration MSK4310 Demonstration The MSK4310 3 Phase DC Brushless Speed Controller hybrid is a complete closed loop velocity mode controller for driving a brushless motor. It requires no external velocity feedback

More information

Size 23 Double Stack External Linear Size 23 Double Stack. 57M4 n n n n n n. 57L4 n n n n n n. E57M4 n n n n n n. Bipolar 5 VDC 12 VDC 2.

Size 23 Double Stack External Linear Size 23 Double Stack. 57M4 n n n n n n. 57L4 n n n n n n. E57M4 n n n n n n. Bipolar 5 VDC 12 VDC 2. HAYD: 0 756 7 57000 Series: Double Stack Stepper Motor Linear Actuator Haydon 57000 Series Double Stack hybrid linear actuators deliver greater performance in a compact size. The various patented designs

More information

Multi-Stage Power Conversion Proposal

Multi-Stage Power Conversion Proposal Multi-Stage Power Conversion Proposal Joe Driscoll, Paul Hemberger, David Yamnitsky Introduction MSPC is a three stage power converter system where each stage not only supports a useful application, but

More information

Stepping motor controlling apparatus

Stepping motor controlling apparatus Stepping motor controlling apparatus Ngoc Quy, Le*, and Jae Wook, Jeon** School of Information and Computer Engineering, SungKyunKwan University, 300 Chunchundong, Jangangu, Suwon, Gyeonggi 440746, Korea

More information

Size 11 Double Stack. Captive Shaft. Bipolar 5 VDC 12 VDC. 750 ma. 313 ma 6.7 Ω 34.8 Ω. 5.8 mh mh. 7.5 W Total gcm 2

Size 11 Double Stack. Captive Shaft. Bipolar 5 VDC 12 VDC. 750 ma. 313 ma 6.7 Ω 34.8 Ω. 5.8 mh mh. 7.5 W Total gcm 2 HAYD: 0 756 7 KERK: 60 690 8000 Series: Size Double Stack Stepper Motor Linear Actuator Haydon Size Double Stack hybrid linear actuators for enhanced performance in motion control Three designs are, captive,

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Brushed DC Motor Control. Module with CAN (MDL-BDC24)

Brushed DC Motor Control. Module with CAN (MDL-BDC24) Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) Ordering Information Product No. MDL-BDC24 RDK-BDC24 Description Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) for Single-Unit

More information

BAssist (Banjo Assist Robot) Fatemeh Gholizadeh David Hatch Shiva Khanal Gavin Philips

BAssist (Banjo Assist Robot) Fatemeh Gholizadeh David Hatch Shiva Khanal Gavin Philips BAssist (Banjo Assist Robot) Fatemeh Gholizadeh David Hatch Shiva Khanal Gavin Philips Abstract Playing musical instruments is a specialized skill requiring years of practice and dedication to master.

More information

Figure 1: Motor model

Figure 1: Motor model EE 155/255 Lab #4 Revision 1, October 24, 2017 Lab 4: Motor Control In this lab you will characterize a DC motor and implement the speed controller from homework 3 with real hardware and demonstrate that

More information

Formal Report of. Project 2: Advanced Multimeter using VHDL

Formal Report of. Project 2: Advanced Multimeter using VHDL EECE 280 & APSC 201 Formal Report of Project 2: Advanced Multimeter using VHDL Group: B7 Kelvin A Jae Yeong B Amelia C Chao J Rohit S Instructor: Dr. Joseph Yan (EECE 280) Dr. Jesus Calvino (EECE280) Mrs.

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

Houngninou 2. Abstract

Houngninou 2. Abstract Houngninou 2 Abstract The project consists of designing and building a system that monitors the phase of two pulses A and B. Three colored LEDs are used to identify the phase comparison. When the rising

More information

Lecture #19 Digital To Analog, PWM, Stepper Motors Embedded System Engineering Philip Koopman Monday, 28-March-2016

Lecture #19 Digital To Analog, PWM, Stepper Motors Embedded System Engineering Philip Koopman Monday, 28-March-2016 Lecture #19 Digital To Analog, PWM, Stepper Motors 18-348 Embedded System Engineering Philip Koopman Monday, 28-March-2016 Electrical& Computer ENGINEERING Copyright 2006-2016, Philip Koopman, All Rights

More information

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU Application Note Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU AN026002-0608 Abstract This application note describes a controller for a 200 W, 24 V Brushless DC (BLDC) motor used to power

More information

Size 23 Single Stack. Captive Shaft. 57H6 n n n n n n. 57F6 n n n n n n. E57H6 n n n n n n 12 VDC 5 VDC 1.3 A .54 A 22.2 Ω. 5.3 mh.

Size 23 Single Stack. Captive Shaft. 57H6 n n n n n n. 57F6 n n n n n n. E57H6 n n n n n n 12 VDC 5 VDC 1.3 A .54 A 22.2 Ω. 5.3 mh. HAYD: 0 756 7 Single Stack Stepper Motor Linear Actuator Haydon 57000 Series hybrid linear actuators for applications that require forces up to 00 lbs. (890 N). Single Stack External Linear The Haydon

More information

35H6 n n n n n n. 35F6 n n n n n n. E35H6 n n n n n n. Unipolar** 5 VDC 12 VDC 0.24 A 0.57 A. 30 mh. 6.5 mh 5.7 W gcm 2

35H6 n n n n n n. 35F6 n n n n n n. E35H6 n n n n n n. Unipolar** 5 VDC 12 VDC 0.24 A 0.57 A. 30 mh. 6.5 mh 5.7 W gcm 2 HAYD: 0 756 7 5000 Series: Size Single Stack Stepper Motor Linear Actuator Haydon 5000 Series Size hybrid linear actuators have been improved to provide higher force, longer life and improved performance.

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller.

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller. Application Note, V1.0, Oct 2006 AP08019 XC866 Using Infineon 8-bit XC866 Microcontroller Microcontrollers Edition 2006-10-20 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies

More information

Lab 5: Inverted Pendulum PID Control

Lab 5: Inverted Pendulum PID Control Lab 5: Inverted Pendulum PID Control In this lab we will be learning about PID (Proportional Integral Derivative) control and using it to keep an inverted pendulum system upright. We chose an inverted

More information

Series 70 Servo NXT - Modulating Controller Installation, Operation and Maintenance Manual

Series 70 Servo NXT - Modulating Controller Installation, Operation and Maintenance Manual THE HIGH PERFORMANCE COMPANY Series 70 Hold 1 sec. Hold 1 sec. FOR MORE INFORMATION ON THIS PRODUCT AND OTHER BRAY PRODUCTS PLEASE VISIT OUR WEBSITE www.bray.com Table of Contents 1. Definition of Terms.........................................2

More information

28H6 n n n n n n. 28F6 n n n n n n. E28H6 n n n n n n 12 VDC 5 VDC 0.18 A 0.42 A 68.6 Ω. 3.3 mh mh 4.2 W. Class B (Class F available)

28H6 n n n n n n. 28F6 n n n n n n. E28H6 n n n n n n 12 VDC 5 VDC 0.18 A 0.42 A 68.6 Ω. 3.3 mh mh 4.2 W. Class B (Class F available) HAYD: 0 756 7 KERK: 60 690 8000 Series: Size Single Stack Stepper Motor Linear Actuator Haydon Size hybrid linear actuators offer compact, production-proven precision in motion The various patented designs

More information

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation 6.1 Principle of Operation PART 2 - ACTUATORS 6.0 The actuator is the device that mechanically drives a dynamic system - Stepper motors are a popular type of actuators - Unlike continuous-drive actuators,

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

PIC ADC to PWM and Mosfet Low-Side Driver

PIC ADC to PWM and Mosfet Low-Side Driver Name Lab Section PIC ADC to PWM and Mosfet Low-Side Driver Lab 6 Introduction: In this lab you will convert an analog voltage into a pulse width modulation (PWM) duty cycle. The source of the analog voltage

More information

Integrated Easy Servo

Integrated Easy Servo ies 1706 Integrated Easy Servo Motor + Drive + Encoder, 18 32VDC, NEMA17, 0.6Nm Features Easy servo control technology to combine advantages of open loop stepper systems and brushless servo systems Closed

More information

Gate Drive Optimisation

Gate Drive Optimisation Gate Drive Optimisation 1. Background Driving of gates of MOSFET, IGBT and SiC/GaN switching devices is a fundamental requirement in power conversion. In the case of ground-referenced drives this is relatively

More information

Basic Microprocessor Interfacing Trainer Lab Manual

Basic Microprocessor Interfacing Trainer Lab Manual Basic Microprocessor Interfacing Trainer Lab Manual Control Inputs Microprocessor Data Inputs ff Control Unit '0' Datapath MUX Nextstate Logic State Memory Register Output Logic Control Signals ALU ff

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

ies-2309 Integrated Easy Servo

ies-2309 Integrated Easy Servo Datasheet of the integrated easy servo motor ies-09 ies-09 Integrated Easy Servo Motor + Drive + Encoder, 0-0VDC, NEMA, 0.9Nm Features Easy servo control technology to combine advantages of open-loop stepper

More information

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER A Thesis Submitted in partial Fulfillment Of the Requirements of the Degree of Bachelor of Technology In Electronics

More information

Code No: M0326 /R07 Set No. 1 1. Define Mechatronics and explain the application of Mechatronics in CNC Machine tools and Computer Integrated Manufacturing (CIM). 2. (a) What are the various Filters that

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

PWM, ALT, HALT, HAST.

PWM, ALT, HALT, HAST. CLOSED LOOP IMPLEMENTATION OF SPEED CONTROL OF A BRUSHED PMDC MOTOR OF AN X-RAY SYSTEM AND VALIDATION OF RELIABILITY OF THE CONTROLLER Mutum Meenakshi Devi 1, V Chayapathy 2 Dept. of Electrical and Electronics

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear Single-phase Variable Frequency Switch Gear Eric Motyl, Leslie Zeman Advisor: Professor Steven Gutschlag Department of Electrical and Computer Engineering Bradley University, Peoria, IL May 13, 2016 ABSTRACT

More information

Application Information

Application Information Application Information Allegro Motor Driving with Angular Sensor IC By Christophe Lutz, Andrea Foletto, Kamyar Khosravi, Masahira Kurihara, Charles Keefer, and Ryan Bradley, Allegro Microsystems France,

More information

Serial communication inverter. Lab bench scenario. Inverter Board, A/D, D/A, PWM, Filters, Encoders. Inverter board. and Dimmer introduction

Serial communication inverter. Lab bench scenario. Inverter Board, A/D, D/A, PWM, Filters, Encoders. Inverter board. and Dimmer introduction Inverter Board, A/D, D/A, PWM, Filters, Encoders and Dimmer introduction 20181004 Gunnar Lindstedt Serial communication inverter Lund University, Sweden Lab bench scenario Inverter board PC 9pole Dsub

More information

Initial Power-Up Tests

Initial Power-Up Tests Initial Power-Up Tests The signal generator will not function properly until the blank EEPROM has been programmed with a set of default values. The CPU will accomplish this task if the RxTx control line

More information

BV4112. Serial Micro stepping Motor Controller. Product specification. Dec V0.a. ByVac Page 1 of 18

BV4112. Serial Micro stepping Motor Controller. Product specification. Dec V0.a. ByVac Page 1 of 18 Product specification Dec. 2012 V0.a ByVac Page 1 of 18 SV3 Relay Controller BV4111 Contents 1. Introduction...4 2. Features...4 3. Electrical interface...4 3.1. Serial interface...4 3.2. Motor Connector...4

More information

TECO F510 Inverter. Quick Start Guide. Step 1. Supply & Motor connection

TECO F510 Inverter. Quick Start Guide. Step 1. Supply & Motor connection Quick Start Guide TECO F510 Inverter This guide is to assist you in installing and running the inverter and verify that it is functioning correctly for it s main and basic features. For detailed information

More information

Programming and Interfacing

Programming and Interfacing AtmelAVR Microcontroller Primer: Programming and Interfacing Second Edition f^r**t>*-**n*c contents Preface xv AtmelAVRArchitecture Overview 1 1.1 ATmegal64 Architecture Overview 1 1.1.1 Reduced Instruction

More information

16.2 DIGITAL-TO-ANALOG CONVERSION

16.2 DIGITAL-TO-ANALOG CONVERSION 240 16. DC MEASUREMENTS In the context of contemporary instrumentation systems, a digital meter measures a voltage or current by performing an analog-to-digital (A/D) conversion. A/D converters produce

More information

DigiSpeed DC-03. Isolated Control Voltage Generator User s Guide. PCB: DC-03 V3.0 Firmware: Ver: 3.0 Mach3: Ver: 1.84

DigiSpeed DC-03. Isolated Control Voltage Generator User s Guide. PCB: DC-03 V3.0 Firmware: Ver: 3.0 Mach3: Ver: 1.84 DigiSpeed DC-03 - Users Guide Page 1 Updated: 29. April 2009 DigiSpeed DC-03 Isolated Control Voltage Generator User s Guide PCB: DC-03 V3.0 Firmware: Ver: 3.0 Mach3: Ver: 1.84 DigiSpeed DC-03 - Users

More information

At the end of this course, students should be able to: 1 explain experimental results with theoretical expected outcome

At the end of this course, students should be able to: 1 explain experimental results with theoretical expected outcome COURSE NAME ELECTRONIC FUNDAMENTAL LABORATORY 1 COURSE CODE BENC 1711 COURSE SYNOPSIS This course covers topics in BENE 1133 Principle of Electric and BENT 2133 Electric Circuit Analysis with the following

More information

AN453_1: Connection of power drivers to TMC453

AN453_1: Connection of power drivers to TMC453 TMC453 Application notes A 1 A453_1: Connection of power drivers to TMC453 This application note describes the connection power drivers to the TMC453, especially for very high microstep resolution. A very

More information

MegaPoints Controller

MegaPoints Controller MegaPoints Controller A flexible solution and modular component for controlling model railway points and semaphore signals using inexpensive servos. User guide Revision 10c March 2015 MegaPoints Controllers

More information

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 PIC Functionality General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 General I/O Logic Output light LEDs Trigger solenoids Transfer data Logic Input Monitor

More information

Servo Indexer Reference Guide

Servo Indexer Reference Guide Servo Indexer Reference Guide Generation 2 - Released 1/08 Table of Contents General Description...... 3 Installation...... 4 Getting Started (Quick Start)....... 5 Jog Functions..... 8 Home Utilities......

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information