3-in-1 Air Condition Solution

Size: px
Start display at page:

Download "3-in-1 Air Condition Solution"

Transcription

1 3-in-1 Air Condition Solution FTF-IND-F0476 Zhou Xuwei Application Engineer M A Y TM External Use

2 Agenda Abstract Application Development Sensorless PMSM FOC Timing & PFC Timing Start Up Realization of Outdoor Fan General State Machine Motor State Machine PFC State Machine Freescale Support External Use 1

3 Abstract Design HW Blocks Typical requirements System specification External Use 2

4 Design HW Blocks AC Line Interleaved PFC dc bus 3Ph. Inverter Motor 2 PMSM Fan Control Feedback 3Ph. Inverter Motor 1 PMSM Control Control Feedback Feedback Compressor Interleaved PFC Control Sensorless FOC Control Motor 1 Sensorless FOC Control Motor 2 Application Control Application S/W MC56F84xxx External Use 3

5 Hardware Input: V AC / 40 70Hz Motor W Motor 2 500W Interleaved PFC Necessary feedback for 2 PMS or BLDC motors and PFC control Over-current hardware protection PCI Express processor board Isolated communication DC bus brake resistor with an independent comparator External Use 4

6 Typical Requirements Motor 1 & 2 2x 6-channel PWM modules Parallel sampling 9-channel ADC 2x dc bus current fault to PWM modules PFC 2-channel high-precision PWM 2-channel ADC PFC current and dc bus over-voltage fault (comparators) Application 3-channel ADC for temperature measurement UART with DMA for communication Inter-peripheral cross-bar unit signals interconnection External Use 5

7 System specification Controller (DSC): MC56F84789 Motors: PWM 10kHz 10kHz fast control loop (sensorless PMSM FOC) 1kHz slow control loop (speed and ramp control) Compressor: 1500W, RPM Fan: 30W, RPM PFC: PWM 80kHz - interleaved Input V AC, 40 70Hz Output V DC 20kHz fast control loop (current, sine generation phased to input voltage) 500Hz slow control loop (voltage and ramp control) Application: Power up to 2kW Serial communication at 9600B 3 temperatures measurement Intelligent on/off and fault logic Benefits: Cost-effective (single DSC, no position sensor) High-efficiency (PMSM FOC + PFC) Low-noise (PMSM) Variable-power (FOC) External Use 6

8 Application development Field Oriented Control for PMSM Interleaved PFC External Use 7

9 Motor Control Topology Gate Driver with Isolation A B C Motor Current Feedback Position Feedback Speed/Torque Command PWM Generation Control Algorithm Feedback Processing MCU External Use 8

10 Sensorless PMSM FOC Sensorless Vector Control Algorithm External Use 9

11 Interleaved PFC Connection ~V in V out External Use 10 PWM

12 Interleaved PFC Connection External Use 11

13 Sensorless PMSM FOC timing & PFC timing Motor PWM configuration Motor 1&2 synchronization System PWM&ADC timing Motor 1 (Compressor): PWMA sub module0~2 Motor 2 (Fan): PWMB sub module0~2 PFC (interleaved): PWMA sub module3 Phase shift between PWMA and PWMB as well as the synchronization between PWM&ADC has to be carefully designed External Use 12

14 Motor PWM Configuration RELOAD VAL1 ($1387) VAL3 VAL0 ($0000) VAL2 INIT ($EC78) PWM_T PWM_B Trigger output FOC FOC FOC FOC FOC Current offset Current External Use 13

15 180 ship between two Motors PWM INIT VAL1 RELOAD RELOAD Top Motor 1 Bottom RELOAD RELOAD Top Motor 2 Bottom INIT VAL1 INIT External Use 14

16 System synchronization and Timing VAL0 RELOAD INIT RELOAD VAL1 Top Motor 1 Bottom RELOAD RELOAD Top Motor 2 Bottom Ipfc1 INIT M2 current INIT INIT M1 offset M1 current M2 offset RELOAD RELOAD RELOAD RELOAD RELOAD Ipfc1 PWMA_S3A PWMA_S3B Trigger output Ipfc2 Ipfc2 PWM CMP interrupt EOS interrupt ISRs PFC control External Use 15 M2 fast current control M2 PWM update M1 slow speed control M1 fast current control M1 PWM update M2 slow speed control

17 PWMA to ADC Triggers PWMA SM1 PWMA SM2 SM1 Val4 TRG0 TRG1 TRG0 TRG1 XBAR B OR OR AOI AND AND AND OR XBAR A ADC SM2 Val0 SM2 Val4 SM1 Val AND SM2 Val1 SM2 Val5 External Use 16

18 12-bit ADC Configuration DCBus Voltage M1 Current Rectified Voltage M2 Offset Rectified Voltage M2 Current M1 Offset Sample ANA A5 A6 A0 A7 A5 A6 A7 A0 Sync PFC1 Current Sample x x x x x x PFC2 Current PFC1 Current PFC2 Current ANB B5 B6 B0 B2 B5 B6 B2 B0 Trigger output PWM CMP interrupt EOS interrupt ISRs PFC1 calc M1 fast current control M1 PWM update M2 slow speed control PFC2 calc M2 fast current control M2 PWM update M1 slow speed control External Use 17

19 System Control Loop 20kHz PMWA SM1 CMP ISR On Val0 for PFC1 On Val1 for PFC2 10kHz PWMA SM0 CMP on VAL4 ISR 10kHz ADC12 EOS ISR Level 3 Level 2 Level 2 Read PFC two currents, Read input voltage, PFC fast current control loop PFC slow voltage control loop Read M1 phase currents Read M2 current offsets Read DCBus voltage M1 fast current control loop M2 slow speed control loop ADC reconfiguration for M1 Read M2 phase currents Read M1 current offsets Read DCBus voltage M2 fast current control loop M1 Torque self-study M1 slow speed control loop ADC reconfiguration for M2 External Use 18

20 Start up of outdoor fan Anti-wind start up Start up from standstill Start up from high speed due to inertia External Use 19

21 Start Fan in the rotation condition All inverter legs are turned off until the currents are attenuated to zero; All bottom legs of the inverter are turned on ; The legs are kept on and short-circuited for duration ; Repeat above steps after short-circuit interval ; Initial rotor position and speed are estimated by a three-phase short-circuit current vector. T sh External Use 20

22 External Use 21 Start Fan in the rotation condition Stator voltage equations on the d,q-axis coordinates 1 0 f q d q m d q d m q d i i pl R L L pl R v v Assuming and, and all bottom legs are short-circuited sh m q T R L / 0 R m f q d q d q d i i pl L L pl Assuming and is constant. Transform measured 3-phase shortcircuit phase currents into components and the phase angle of is i 0 0) ( sh q f sh d f sh q sh d T T L T L T i T i i sh sin ) cos (1 ) ( ) ( ) (, i i, I i i I arctan ( sh ) T i

23 Speed estimate e T I 2 sh I1 12 (a) First short circuit. (b) Second short circuit. External Use 22

24 External Use 23 Position estimate sh q f sh d f sh q sh d T T L T L T i T i i sh sin ) cos (1 ) ( ) ( ) ( i i I arctan sin tan tan (1 cos ) sin tan (1 cos ) f e sh q q f d e sh d d e sh q e sh T i L i T L L T L T

25 Position estimate (Cont) e I 0 External Use 24

26 Fan Startup from Still or at Low Speed Get initial rotor still position for sensorless PMSM Align to D-axis by applying non-zero Id current with zero Iq Signal Injection Methods Other methods Get initial rotor position at low speed Method discussed in previous slides External Use 25

27 Fan Startup from Still or at Low Speed q q q* ω e θ L =90 i q* q* d i q θ L i q* d ω r θ d* ω e d* d* A-axis Synchronous rotating reference frame d*q* is set to be lagging the real rotor dq frame by 90 electrical degrees. Fixing the i q* Ramping the speed ω e to V, Integrating speed to get the predicted position. Ramping down i q* External Use 26

28 Fan Startup from Still or at Low Speed Current ramp down Max speed Ramp is doubled Speed and position observers enabled Predicted position is close enough to estimated position of observer, switch to speed close loop. External Use 27

29 Start Fan from high Speed All bottom legs of the inverter are turned on ; Measure the short-circuited currents of three-phase; Enable BEMF observer and Tracking Observer for a while to initialize the observers internal states; Switch to the spin state with both close speed control loop and current control loop. External Use 28

30 General state-machine External Use 29

31 State Machine Fault -> Init SM_CTRL_FAULT_CLEAR Init -> Fault INIT SM_CTRL_FAULT RESET SM_CTRL_INIT_DONE Init -> Stop FAULT Run -> Fault SM_CTRL_FAULT SM_CTRL_START STOP Run -> Fault Stop -> Run Run -> Stop SM_CTRL_STOP_ACK SM_CTRL_FAULT SM_CTRL_RUN_ACK RUN SM_CTRL_STOP External Use 30

32 State Machine Functions State machine functions: Fault system faced a fault condition Init variables initialization Stop system initialized, waiting for the Run command Run system is running; this state has user sub-states State machine transition functions: Init -> Stop initialization done, entering the Stop state Stop -> Run the Run command applied, entering the Run state if Run acknowledged Run -> Stop the Stop command applied, entering the Stop state if Stop acknowledged Fault -> Init fault clearance, entering the Init state Init, Stop, Run -> Fault fault condition occurred, entering the Fault state External Use 31

33 Main Application State Machine Functions State machine functions: Fault - system faced a fault condition temperatures and dc bus voltage measured fault flags checked motors and PFC forced to Stop Relay off LED flashing quickly Init variables initialization Stop system initialized, out by the Run command or fault conditions temperatures and dc bus voltage measured fault flags checked motors forced to Stop Relay off LED flashing quickly Run system is running; out by the Stop command or fault conditions PFC voltage command set; PFC running Motor 1 and 2 are run if the conditions are accomplished temperatures and dc bus voltage measured fault flags checked Relay on LED flashing the Smoke on the Water main riff External Use 32

34 Main Application State Machine Stop/Run States Init -> Stop Switch ON STOP Relay off Relay on Turn on PFC PFC voltage command Relay OFF PFC OFF Motors OFF PFC not running Run -> Stop Stop -> Run Turn off PFC PFC output voltage good Turn off Motor 2 M1 not running M2 not running RUN Relay ON PFC ON Motors ON External Use 33 Switch OFF Turn off Motor 1 Hot-side temperature good

35 Main Application State Machine Run/Fault States Stop -> Run FAULT Relay off Run -> Fault RUN PFC not running Fault condition Turn off Motor 1 Hot-side temperature good Turn off Motor 2 M1 not running M2 not running Turn off PFC External Use 34

36 Motor sub state-machine External Use 35

37 Motors State Machine Run Sub-States Stop -> Run CALIB Calibration time passed Calib -> Ready READY FREEWHEEL Spin -> Freewheel Speed command == 0 & Speed < min speed Speed command == 0 Speed command!= 0 Startup -> Freewheel Freewheel -> Ready Align -> Ready Freewheel -> Align Speed command == 0 Speed command!= 0 Ready -> Align ALIGN SPIN Startup fail Alignment time passed Startup -> Spin Startup ok STARTUP Align -> Startup External Use 36

38 Motors Run Sub-State Functions Run Sub-State functions: Calib ADC offset calibration; entered when switched from Stop to Run Ready motor is ready to run; entered when the calibration time passed Align motor is aligned; entered when applied a non-zero speed command Startup motor is started up in open-loop; entered when the alignment time passed Spin motor is running; entered when the start-up was successful Freewheel rotor is rotating by inertia, PWM is tri-stated; entered when zero-speed command applied in Spin, or if the start-up failed; if start-up failed many times the fault flag is generated and the application goes from Run to Fault Run Sub-State transition functions: Calib -> Ready calibration done, entering the Ready state Ready -> Align non-zero speed command; entering the Align state Align -> Ready zero speed command; entering the Ready state Align -> Startup alignment done; entering the Startup state Startup -> Spin start-up successful; entering the Spin state Startup -> Freewheel start-up failed; entering the Freewheel state Spin -> Freewheel zero speed command; entering the Freewheel state Freewheel -> Ready zero-speed command; entering the Ready state Freewheel -> Align non-zero speed command; entering the Align state External Use 37

39 PFC sub state-machine External Use 38

40 PFC State Machine Run Sub-States Stop -> Run CALIB Calibration time passed Calib -> Ready READY Voltage command!= 0 Run -> Ready Voltage command == 0 Ready -> Run RUN External Use 39

41 PFC Run Sub-State Functions Run Sub-State functions: Calib phasing to power line voltage; entered when switched from Stop to Run Ready PFC is phased and ready to run; entered when the phasing time passed Run PFC is running; entered when applied a non-zero voltage command Run Sub-State transition functions: Calib -> Ready phasing done, entering the Ready state Ready -> Run non-zero voltage command; entering the Run state Run -> Ready zero voltage command; entering the Ready state External Use 40

42 Freescale support Dual PMSM Vector Control Demo with PFC Application based on C-callable library functions (GFLIB, MCLIB, GDFLIB, ACLIB) Application software in C (CodeWarrior ) FreeMASTER visualization tool 3-in-1 high voltage power stage Application support from Freescale motor control experts External Use 41

43 Designing with Freescale Tailored live, hands-on training in a city near you 2014 seminar topics include QorIQ product family update Kinetis K, L, E, V series MCU product training freescale.com/dwf External Use 42

44 Freescale Semiconductor, Inc. External Use

Use of PWM and ADC on MC56F84789 to Drive Dual PMS Motor FOC

Use of PWM and ADC on MC56F84789 to Drive Dual PMS Motor FOC Freescale Semiconductor Document Number:AN4608 Application Note Rev. 0, 10/2012 Use of PWM and ADC on MC56F84789 to Drive Dual PMS Motor FOC by: Jaroslav Musil 1 Introduction With the computation power

More information

Sensorless Sinusoidal Vector Control of BLDC Ceiling Fan on MC56F8006

Sensorless Sinusoidal Vector Control of BLDC Ceiling Fan on MC56F8006 Freescale Semiconductor Document Number:AN4612 Application Note Rev. 0, 10/2012 Sensorless Sinusoidal Vector Control of BLDC Ceiling Fan on MC56F8006 by: Xuwei Zhou 1 Introduction The first ceiling fan

More information

Single Phase Two-Channel Interleaved PFC Operating in CrM Using the MC56F82xxx Family of Digital Signal Controllers

Single Phase Two-Channel Interleaved PFC Operating in CrM Using the MC56F82xxx Family of Digital Signal Controllers Freescale Semiconductor Application Note Document Number: AN4836 Rev. 1, 07/2014 Single Phase Two-Channel Interleaved PFC Operating in CrM Using the MC56F82xxx Family of Digital Signal Controllers by Freescale

More information

Automated PMSM Parameter Identification

Automated PMSM Parameter Identification Freescale Semiconductor Document Number: AN4986 Application Note Rev 0, 10/2014 Automated PMSM Parameter Identification by: Josef Tkadlec 1 Introduction Advanced motor control techniques, such as the sensorless

More information

Low Cost PMSM Sensorless Field-Oriented Control Based on KE02

Low Cost PMSM Sensorless Field-Oriented Control Based on KE02 NXP Semiconductors Document Number: AN5294 Application Note Rev. 1, 05/2017 Low Cost PMSM Sensorless Field-Oriented Control Based on KE02 1. Introduction This application note describes the design of a

More information

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE NXP Semiconductors Document Number: AN5237 Application Note Rev. 3, 10/2016 Sensorless PMSM Field-Oriented Control on Kinetis KV and KE By: Josef Tkadlec 1. Introduction This application note describes

More information

Sensorless PMSM Control on MKV46F256 Using Kinetis SDK

Sensorless PMSM Control on MKV46F256 Using Kinetis SDK Freescale Semiconductor, Inc. Application Note Document Number: AN5004 Rev. 1, 03/2015 Sensorless PMSM Control on MKV46F256 Using Kinetis SDK by: Marek Zeman 1 Introduction This application note represents

More information

Sensorless Vector Control and Implementation: Why and How

Sensorless Vector Control and Implementation: Why and How Sensorless Vector Control and Implementation: Why and How Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit

More information

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES Lukáš Pohl Doctoral Degree Programme (2), FEEC BUT E-mail: xpohll01@stud.feec.vutbr.cz Supervised by: Petr Blaha E-mail: blahap@feec.vutbr.cz Abstract: This

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training 2013 Texas Instruments Motor Control Training Series -V th InstaSPIN Training How Do You Control Torque on a DC Motor? Brush DC Motor Desire Current + - Error Signal PI Controller PWM Power Stage Texas

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

MC56F84789 Peripherals Synchronization for Interleaved PFC Control

MC56F84789 Peripherals Synchronization for Interleaved PFC Control Freescale Semiconductor Document Number:AN4583 Application Note Rev. 0, 09/2012 MC56F84789 Peripherals Synchronization for Interleaved PFC Control by: Jaroslav Musil Automotive and Industrial Solutions

More information

1 Introduction. Freescale Semiconductor Application Note. Document Number: AN4386 Rev. 0, 01/2012

1 Introduction. Freescale Semiconductor Application Note. Document Number: AN4386 Rev. 0, 01/2012 Freescale Semiconductor Application Note Document Number: AN4386 Rev. 0, 01/2012 Implementing on the MC56F8257 A Single Phase Two-Channel Interleaved Critical Conduction Mode by: Petr Frgal System Application

More information

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China STM32 PMSM FOC SDK v3.2 蒋建国 MCU Application Great China Agenda 2 1 st day Morning Overview Key message Basics Feature Performance Hardware support Tools STM32 MC Workbench SDK components Architectural

More information

RL78 Motor Control. YRMCKITRL78G14 Starter Kit. Renesas Electronics Europe. David Parsons Application Engineering Industrial Business Group.

RL78 Motor Control. YRMCKITRL78G14 Starter Kit. Renesas Electronics Europe. David Parsons Application Engineering Industrial Business Group. RL78 Motor Control YRMCKITRL78G14 Starter Kit Renesas Electronics Europe David Parsons Application Engineering Industrial Business Group July 2012 Renesas MCU for 3-phase Motor Control Control Method Brushless

More information

DSC MC56F84xxx in the motor control application

DSC MC56F84xxx in the motor control application Freescale Semiconductor Document Number:AN4625 Application Note Rev. 0, 10/2012 DSC MC56F84xxx in the motor control application by: Arendarik Stanislav 1 Introduction 3-phase high voltage or low voltage

More information

Hands-on Workshop: Motor Control Part 4 - Brushless DC Motors Made Easy

Hands-on Workshop: Motor Control Part 4 - Brushless DC Motors Made Easy November, 2008 Hands-on Workshop: Motor Control Part 4 - Brushless DC Motors Made Easy PZ104 Derek Liu of Freescale Semiconductor, Inc. All other product or service names are the property of their respective

More information

RX23T inverter ref. kit

RX23T inverter ref. kit RX23T inverter ref. kit Deep Dive October 2015 YROTATE-IT-RX23T kit content Page 2 YROTATE-IT-RX23T kit: 3-ph. Brushless Motor Specs Page 3 Motors & driving methods supported Brushless DC Permanent Magnet

More information

Motor Control Solutions

Motor Control Solutions Motor Control Solutions EUF-IND-T0590 Radim Visinka MCU SW Libs Manager J U N E. 2 0 1 4 TM External Use Agenda Key Motor Control Technologies Freescale Motor Control Microcontrollers DSC and Kinetis V

More information

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM January 2017 1 PSIM supports TI s InstaSPIN FOC sensorless motor control algorithm in simulation and SimCoder auto code generation.

More information

Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family

Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family Freescale Semiconductor Document Number: AN4863 Application Note Rev 0, June Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family by: Petr Konvicny 1 Introduction One

More information

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson 2014 Texas Instruments Motor Control Training Series -V th Evolution of Sensorless Drive Technology March, 2013 InstaSPIN-FOC Saliency Tracking Direct Torque Control Sliding Mode Observers Linear Observers

More information

Dual FOC Servo Motor Control on i.mx RT

Dual FOC Servo Motor Control on i.mx RT NXP Semiconductors Document Number: AN12200 Application Note Rev. 0, 06/2018 Dual FOC Servo Motor Control on i.mx RT 1. Introduction This application note describes the dual servo demo with the NXP i.mx

More information

Interleaved PFC Average Current Control

Interleaved PFC Average Current Control NXP Semiconductors Document Number: AN5355 Application Note Rev. 0, 11/016 Interleaved PFC Average Current Control Implementation using MKV46F56VLx16 on High Voltage Motor Control Platform 1. Introduction

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

DRM100 Designer Reference Manual. Devices Supported: 56F801X

DRM100 Designer Reference Manual. Devices Supported: 56F801X DRM100 Designer Reference Manual Devices Supported: 56F801X Document Number: DRM100 Rev. 0 06/2008 Contents Chapter 1 Introduction 1.1 Introduction... 9 1.2 Freescale Digital Signal Controller Advantages

More information

3-phase Sensorless Single-Shunt Current- Sensing PMSM Motor Control Kit with MagniV MC9S12ZVM

3-phase Sensorless Single-Shunt Current- Sensing PMSM Motor Control Kit with MagniV MC9S12ZVM NXP Semiconductor Document Number: AN5327 Application Notes Rev. 0, 08/2016 3-phase Sensorless Single-Shunt Current- Sensing PMSM Motor Control Kit with MagniV MC9S12ZVM Featuring Motor Control Application

More information

PMSM Sensorless FOC for a Fan Using the Kinetis KV10

PMSM Sensorless FOC for a Fan Using the Kinetis KV10 Freescale Semiconductor, Inc. Application Note Document Number: AN4935 Rev. 1, 09/2014 PMSM Sensorless FOC for a Fan Using the Kinetis KV10 1 Introduction This application note represents an addendum to

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

Motor Control using NXP s LPC2900

Motor Control using NXP s LPC2900 Motor Control using NXP s LPC2900 Agenda LPC2900 Overview and Development tools Control of BLDC Motors using the LPC2900 CPU Load of BLDCM and PMSM Enhancing performance LPC2900 Demo BLDC motor 2 LPC2900

More information

AN Sensorless single-shunt FOC on LPC2900. Document information. LPC2900, FOC, SVPWM, SMC, current observer, PMSM, single shunt DC-link

AN Sensorless single-shunt FOC on LPC2900. Document information. LPC2900, FOC, SVPWM, SMC, current observer, PMSM, single shunt DC-link Sensorless single-shunt Rev. 01 16 December 2009 Application note Document information Info Keywords Abstract Content LPC2900, FOC, SVPWM, SMC, current observer, PMSM, single shunt DC-link This application

More information

Sensorless BLDC Motor Control Using FRDM-KE02Z Based on Tower Board

Sensorless BLDC Motor Control Using FRDM-KE02Z Based on Tower Board Freescale Semiconductor Document Number: AN4796 Application Note Rev. 1, 11/2013 Sensorless BLDC Motor Control Using FRDM-KE02Z Based on Tower Board by: Zhen Liu, Howard Liu, and Binbin Zhang 1 Introduction

More information

BLDC Sensorless Reference Design Using MC56F8006 Devices Supported: MC56F8006

BLDC Sensorless Reference Design Using MC56F8006 Devices Supported: MC56F8006 BLDC Sensorless Reference Design Using MC56F8006 Devices Supported: MC56F8006 Document Number: DRM108 Rev. 0 04/2009 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe

More information

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms ISSUE: February 2017 A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms by Ken Johnson, Teledyne LeCroy, Chestnut Ridge, N.Y. Part 12 began the explanation of

More information

Three-Phase BLDC Sensorless Motor Control Using the MKV4x In Quadcopter Application

Three-Phase BLDC Sensorless Motor Control Using the MKV4x In Quadcopter Application Freescale Semiconductor, Inc. Document Number: AN5169 Application Note Rev. 0, 07/2015 Three-Phase Sensorless Motor Control Using the MKV4x In Quadcopter Application By: Zbynek Mynar 1. Introduction This

More information

Low Voltage Solutions for DC & BLDC Motors in Industrial Applications

Low Voltage Solutions for DC & BLDC Motors in Industrial Applications Low Voltage Solutions for DC & BLDC Motors in Industrial Applications Agenda n Introduction o Technical Requirements o DC vs BLDC Motors n Infineon Solutions for DC & BLDC n Infineon Support n Summary

More information

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DR8312 EM October 2017 1 Simulation and Code Generation of TI InstaSPIN Using DR8312 EM PSIM supports TI s InstaSPIN-FOC sensorless motor control

More information

Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU

Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU MultiMotor Series Application Note Vector Control of a 3-Phase PMSM Using the ZNEO Z16FMC MCU AN039402-0816 Abstract Brushed DC machines are widely popular due to their simplicity, ease of control and

More information

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its main features and the application benefits of leveraging

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

Sistemi per il controllo motori

Sistemi per il controllo motori Sistemi per il controllo motori TALENTIS 4ª SESSIONE - 28 MAGGIO 2018 Speaker: Ing. Giuseppe Scuderi Automation and Motion control team Central Lab Prodotti ST per il controllo motori 2 Applicazioni e

More information

TUTORIAL Simulation and Code Generation with TI InstaSPIN Block

TUTORIAL Simulation and Code Generation with TI InstaSPIN Block TUTORIAL Simulation and Code Generation with TI InstaSPIN Block November 2016 1 PSIM supports TI s InstaSPIN FOC sensorless motor control algorithm in simulation and SimCoder auto code generation. With

More information

Sensorless Vector Control with RL78G14

Sensorless Vector Control with RL78G14 Sensorless Vector Control with RL78G14 John Pocs, Applications Engineering Manager Class ID: 7L02I Renesas Electronics America Inc. John Pocs Sr. Application Engineering Manager Application focus: motor

More information

Using the HCS08 TPM Module In Motor Control Applications

Using the HCS08 TPM Module In Motor Control Applications Pavel Grasblum Using the HCS08 TPM Module In Motor Control Applications Designers can choose from a wide range of microcontrollers to provide digital control for variable speed drives. Microcontrollers

More information

Sensorless Vector Control with RL78G14

Sensorless Vector Control with RL78G14 Sensorless Vector Control with RL78G14 Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit 1200 DMIPS, Superscalar

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

BLDC Motor Control on Z8FMC16 Series MCUs Using Sensored Sinusoidal PWM Modulation

BLDC Motor Control on Z8FMC16 Series MCUs Using Sensored Sinusoidal PWM Modulation MultiMotor Series BLDC Motor Control on Z8FMC16 Series MCUs Using Sensored Sinusoidal PWM Modulation AN036102-0114 Abstract This application note discusses the control of a 3-phase brushless BLDC motor

More information

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g Brushless 5 click PID: MIKROE 3032 Weight: 25 g Brushless 5 click is a 3 phase sensorless BLDC motor controller, with a soft-switching feature for reduced motor noise and EMI, and precise BEMF motor sensing,

More information

Options & Accessories

Options & Accessories 75 mm (2.95-inch) BLDC Motor with Integrated Sensorless Digital Drive Allied Motion s Gen III EnduraMax 75s series motors are 75 mm (2.95 in) diameter brushless DC motors that incorporate integrated drive

More information

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS 2.1 Introduction The PEBBs are fundamental building cells, integrating state-of-the-art techniques for large scale power electronics systems. Conventional

More information

Motor control using FPGA

Motor control using FPGA Motor control using FPGA MOTIVATION In the previous chapter you learnt ways to interface external world signals with an FPGA. The next chapter discusses digital design and control implementation of different

More information

Using FTM, PDB, and ADC on KE1xF to Drive Dual PMSM FOC and PFC

Using FTM, PDB, and ADC on KE1xF to Drive Dual PMSM FOC and PFC NXP Semiconductors Document Number: AN5380 Application Note Rev. 0, 11/2016 Using FTM, PDB, and ADC on KE1xF to Drive Dual PMSM FOC and PFC 1. Introduction This application note describes the design for

More information

HPVFP High Performance Full Function Vector Frequency Inverter

HPVFP High Performance Full Function Vector Frequency Inverter Advanced User Manual HPVFP High Performance Full Function Vector Frequency Inverter HP VER 1.00 1. HPVFP Parameter Set Overview...3 1.1. About this section...3 1.2. Parameter Structure Overview...3 1.3.

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Options & Accessories

Options & Accessories 75 mm (2.95-inch) BLDC Motor with Integrated Sensorless Digital Drive Allied Motion s Gen III EnduraMax 75s series motors are 75 mm (2.95 in) diameter brushless DC motors that incorporate integrated drive

More information

VORAGO Timer (TIM) subsystem application note

VORAGO Timer (TIM) subsystem application note AN1202 VORAGO Timer (TIM) subsystem application note Feb 24, 2017, Version 1.2 VA10800/VA10820 Abstract This application note reviews the Timer (TIM) subsystem on the VA108xx family of MCUs and provides

More information

crio Resolver Simulation crio RVDT Simulation Manual V3.0

crio Resolver Simulation crio RVDT Simulation Manual V3.0 crio Resolver Simulation crio RVDT Simulation Manual V3.0 Page 1 / 25 Content 1. General... 3 1.1 Revision history... 3 1.2 Abbreviations... 3 1.3 Purpose... 3 1.4 Annexes... 4 1.5 List of tables... 4

More information

Low Cost Motor Control Family

Low Cost Motor Control Family Low Cost Motor Control Family 2011 Microchip Technology Incorporated. All Rights Reserved. Comparator with blanking and filtering Slide 1 Welcome to the Low Cost Motor Control Family web seminar. My Name

More information

PMSM Field-Oriented Control on MIMXRT1050 EVK

PMSM Field-Oriented Control on MIMXRT1050 EVK NXP Semiconductors Document Number: AN12169 Application Note Rev. 0, 05/2018 PMSM Field-Oriented Control on MIMXRT1050 EVK 1 Introduction This application note describes the implementation of the sensor

More information

IRT Mini Evo. Technical Manual. quality IN MOTION. quality IN MOTION

IRT Mini Evo. Technical Manual. quality IN MOTION.   quality IN MOTION IRT quality IN MOTION www.irtsa.com 2000 Mini Evo Technical Manual IRT quality IN MOTION Contents 1. INTRODUCTION 3 2. DESCRIPTION 5 3. TECHNICAL DATA 7 3.1 GENERAL DATA FOR ALL TYPES 7 3.2 SPECIFIC DATA

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

imotion Solution Platform Dedicated to Motor Control

imotion Solution Platform Dedicated to Motor Control imotion Solution Platform Dedicated to Motor Control Christian Daniel - Head of Product Marketing Marco Palma imotion Technical Marketing - restricted - We are driving for right-fit products and highest

More information

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly!

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly! InstaSPIN-BLDC Lab Introduction For this lab we are using the DRV8312 Low Voltage, Low Current Power Stage (the DRV8301/2 Kit can also be used) with Piccolo F28035 controlcard to run the sensorless InstaSPIN-BLDC

More information

Demonstration. Agenda

Demonstration. Agenda Demonstration Edward Lee 2009 Microchip Technology, Inc. 1 Agenda 1. Buck/Boost Board with Explorer 16 2. AC/DC Reference Design 3. Pure Sinewave Inverter Reference Design 4. Interleaved PFC Reference

More information

STM32 motor control firmware library. STM32 FOC PMSM SDK v3.0.

STM32 motor control firmware library. STM32 FOC PMSM SDK v3.0. STM32 motor control firmware library STM32 FOC PMSM SDK v3.0 Contents STM32 FOC PMSM SDK v3.0 overview The FOC (field oriented control) algorithm STM32 with FOC Motor control and electric motor offer FOC

More information

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions National Infotech A way to Power Electronics and Embedded System Solutions Electrical Drive Trainers In every industry there are industrial processes where electrical motors are used as a part of process

More information

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TRINAMIC Motion Control GmbH & Co. KG Sternstraße 67 D 20357 Hamburg GERMANY www.trinamic.com

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

Digital Control of Permanent Magnet Synchronous Motor

Digital Control of Permanent Magnet Synchronous Motor Digital Control of Permanent Magnet Synchronous Motor Jayasri R. Nair 1 Assistant Professor, Dept. of EEE, Rajagiri School Of Engineering and Technology, Kochi, Kerala, India 1 ABSTRACT: The principle

More information

Eduardo Viramontes A P R External Use

Eduardo Viramontes A P R External Use Hands-On Workshop: Motor Control, Part 2: Efficient and Easy Motor Control with New Kinetis KVxx Family of Microcontrollers for Motor Control FTF-IND-F0015 Eduardo Viramontes A P R. 2 0 1 4 TM External

More information

Variable Frequency Drive / Inverter (0.4 ~ 280kW)

Variable Frequency Drive / Inverter (0.4 ~ 280kW) Variable Frequency Drive / Inverter (0.4 ~ 280kW) & Standard Features Configuration Comparison Comparison Table Enclosure IP00 IP20 NEMA 1 Rating Single phase 0.4 2.2kW 0.4 1.5kW Three phase 0.4 4kW Constant

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

Single Phase Two-Channel Interleaved PFC Converter Using MC56F8006

Single Phase Two-Channel Interleaved PFC Converter Using MC56F8006 Freescale Semiconductor Application Note Document Number: AN3843 Rev. 0, 04/2009 Single Phase Two-Channel Interleaved PFC Converter Using MC56F8006 by: Richy Ye Freescale Semiconductor, Inc. Shanghai,

More information

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Introduction to BLDC Motor Control Using Freescale MCU Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Agenda Introduction to Brushless DC Motors Motor Electrical and Mechanical Model

More information

maxon motor maxon motor control 1-Q-EC Amplifier DEC 24/1 Order numbers , , , ,

maxon motor maxon motor control 1-Q-EC Amplifier DEC 24/1 Order numbers , , , , maxon motor control 1-Q-EC Amplifier DEC 24/1 Order numbers 249630, 249631, 249632, 318305, 381510 September 2009 edition The DEC (Digital EC Controller) is a 1-quadrant amplifier for controlling electronically

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

1. Introduction. Benefits and Applications Enabled by 56F8000 Digital Signal Controllers. Contents. Freescale Semiconductor White Paper. 1.

1. Introduction. Benefits and Applications Enabled by 56F8000 Digital Signal Controllers. Contents. Freescale Semiconductor White Paper. 1. Freescale Semiconductor White Paper WP8000 Rev. 1.0, 05/2005 Benefits and Applications Enabled by 56F8000 Digital Signal Controllers Bill Hutchings 1. Introduction 1.1 Overview This paper will first review

More information

AP CANmotion. Evaluation Platform with BLDC Motor featuring XC886CM Flash Microcontroller Version 2007/10. Microcontrollers

AP CANmotion. Evaluation Platform with BLDC Motor featuring XC886CM Flash Microcontroller Version 2007/10. Microcontrollers Application Note, V1.0, April 2007 AP08060 CANmotion Evaluation Platform with BLDC Motor featuring XC886CM Flash Microcontroller Version 2007/10 Microcontrollers Edition 2007-04 Published by Infineon Technologies

More information

{Speed_limit} Position_Error. {P_pos/quadcounts} max. Speed_command. z.o.h. Radians/sec. clk. Clamp min. Clk1 V22. {-Speed_limit} VELOCITY OBSERVER

{Speed_limit} Position_Error. {P_pos/quadcounts} max. Speed_command. z.o.h. Radians/sec. clk. Clamp min. Clk1 V22. {-Speed_limit} VELOCITY OBSERVER Co-Owner Kappa Electronics www.kappaiq.com Counts V14 Clk0 z.o.h. PULSE(-1 1 0 0 0 {T_aperture} {1/Fs_pos} 100000) V7 Position_Command {2*pi/quadcounts} E18 i_sampled Pos_encoder POSITION REGULATOR VELOCITY

More information

A Modified Sychronous Current Regulator for Brushless Motor Control

A Modified Sychronous Current Regulator for Brushless Motor Control A Modified Sychronous Current Regulator for Brushless Motor Control Shane Colton Graduate Student, Department of Mechanical Engineering Massachusetts Institute of Technology Rev0 - Doctoral

More information

Application - Power Factor Correction (PFC) with XMC TM. XMC microcontrollers July 2016

Application - Power Factor Correction (PFC) with XMC TM. XMC microcontrollers July 2016 Application - Power Factor Correction (PFC) with XMC TM XMC microcontrollers July 2016 Agenda 1 Key features 2 Specification 3 System block diagram 4 Software overview 5 Highlight MCU features 6 CCM PFC

More information

TECO F510 Inverter. Quick Start Guide. Step 1. Supply & Motor connection

TECO F510 Inverter. Quick Start Guide. Step 1. Supply & Motor connection Quick Start Guide TECO F510 Inverter This guide is to assist you in installing and running the inverter and verify that it is functioning correctly for it s main and basic features. For detailed information

More information

Power Factor Correction in Digital World. Abstract. 1 Introduction. 3 Advantages of Digital PFC over traditional Analog PFC.

Power Factor Correction in Digital World. Abstract. 1 Introduction. 3 Advantages of Digital PFC over traditional Analog PFC. Power Factor Correction in Digital World By Nitin Agarwal, STMicroelectronics Pvt. Ltd., India Abstract There are various reasons why power factor correction circuit is used in various power supplies in

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

3-phase Sensorless PMSM Motor Control Kit with S32K144

3-phase Sensorless PMSM Motor Control Kit with S32K144 NXP Semiconductors Document Number:AN12235 Application Notes Rev. 0, 08/2018 3-phase Sensorless PMSM Motor Control Kit with S32K144 Featuring Motor Control Application Tuning (MCAT) Tool by: NXP Semiconductors

More information

MB9BF568R Series FM4 PMSM Servo Motor Speed Control User Manual

MB9BF568R Series FM4 PMSM Servo Motor Speed Control User Manual MB9BF568R Series FM4 PMSM Servo Motor Speed Control User Manual Doc. No. 002-04466 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): +1 408.943.2600

More information

Overview of the STM32F103xx ACIM and PMSM motor control software libraries release 2.0

Overview of the STM32F103xx ACIM and PMSM motor control software libraries release 2.0 TN0063 Technical note Overview of the STM32F103xx ACIM and PMSM motor control software libraries release 2.0 Introduction The purpose of this technical note is to provide an overview of the main features

More information

Free Programmable Signal Processing inside a High Performance Servo Amplifier

Free Programmable Signal Processing inside a High Performance Servo Amplifier 1 Free Programmable Signal Processing inside a High Performance Servo Amplifier J. O. Krah S. Geiger G. Jaskowski Seidel Servo Drives / Kollmorgen 40489 Düsseldorf Abstract The availability of digital

More information

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU Application Note Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU AN026002-0608 Abstract This application note describes a controller for a 200 W, 24 V Brushless DC (BLDC) motor used to power

More information

Sensorless Trapezoidal Control of BLDC Motors using BEMF Integration (InstaSPIN TM -BLDC)

Sensorless Trapezoidal Control of BLDC Motors using BEMF Integration (InstaSPIN TM -BLDC) Sensorless Trapezoidal Control of BLDC Motors using BEMF Integration (InstaSPIN TM -BLDC) Jon Warriner D3 Engineering Abstract This application note presents a solution for sensorless control of Brushless

More information

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller.

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller. Application Note, V1.0, Oct 2006 AP08019 XC866 Using Infineon 8-bit XC866 Microcontroller Microcontrollers Edition 2006-10-20 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies

More information

A Complete Implementation Procedure for State Estimation in Induction Machines on the ezdsp F2812. Ali M. Bazzi and Philip T.

A Complete Implementation Procedure for State Estimation in Induction Machines on the ezdsp F2812. Ali M. Bazzi and Philip T. A Complete Implementation Procedure for State Estimation in Induction Machines on the ezdsp F2812 Ali M. Bazzi and Philip T. Krein Grainger Center for Electric Machinery and Electromechanics Department

More information

Speed Control of Brushless DC Motors-Block Commutation With Hall Sensors. User s Guide

Speed Control of Brushless DC Motors-Block Commutation With Hall Sensors. User s Guide Speed Control of Brushless DC Motors-Block Commutation With Hall Sensors User s Guide 2 Table of Contents Introduction... 5 Brushless DC Motor Control Theory... 7 More on PolePairs... 9 Commutation Logic

More information

Drives 101 Lesson 3. Parts of a Variable Frequency Drive (VFD)

Drives 101 Lesson 3. Parts of a Variable Frequency Drive (VFD) Drives 101 Lesson 3 Parts of a Variable Frequency Drive (VFD) This lesson covers the parts that make up the Variable Frequency Drive (VFD) and describes the basic operation of each part. Here is the basics

More information

10 Error Code List. Motion Control SW. NTI AG / LinMot User Manual Motion Control SW/ Page 87/94

10 Error Code List. Motion Control SW. NTI AG / LinMot User Manual Motion Control SW/ Page 87/94 Motion Control SW L i n M o t 10 List Code Description Actions to take 0000h No Error No error is pending. 0001h X4 Logic Supply Too Low The logic supply voltage has been too low. The minimal logic supply

More information