User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction"

Transcription

1 User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control... 4 Field Weakening and IPM control... 5 Position and velocity estimation... 7 Start up sequencing... 8 Phase Current Measurement Control Algorithm Implementation and tuning IRMCS3041 Reference Design Tools and Application Development Next Steps Introduction The IRMCS3041 reference design platform supports development of motor drive applications in the 200W 700W power range using the IRMCF341 digital control IC and the IRAMS10UP60B IRAM power modules. The design kit includes a permanent magnet synchronous motor, a drive control board and the motor control development tools. The inclusion of a motor allows immediate use of the kit, while the motor control commissioning tools support rapid evaluation of the drive board running the target motor. 1

2 This document provides a high level description of the motor drive control algorithm, the hardware components and design tools. The IRMCS3041 Quick Start Guide provides instructions on how to set up the hardware and to start running the included motor. The IRMCx300 Application Developers Guide describes the various steps to configure and customize the design to match your motor and application requirements. The IRMCx300 Software Developers Guide describes application software development and the tools to generate code for the one time programmable version of the digital control IC. The IRMCx300 Reference Manual provides detailed descriptions of the digital control IC hardware, registers and control blocks. IRMCF341 Application Circuit A typical ac motor drive circuit, Figure 1, includes the input rectifier, three phase power inverter and the digital motor control IC. The input converter stage consists of a bridge rectifier, bus capacitor and EMI filter. The three phase power inverter uses a single IR appliance module (IRAM) and a few passive components. The IRAMS10UP60B integrates six IGBT transistors and diodes, the analog gate drive circuits and the current sensing resistor. The IRMCF341 digital IC controls the ac motor and manages application functions such as the speed profiles and load switching. It can also communicate with an external processor that handles system control functions and the user interface. This module integrates the power inverter switches and gate drive interface. The inverter protection functions include over current trip, over temperature trip and detection of gate drive voltage. The appliance control IC integrates an 8-bit microcontroller (8051 MCU), a 16-bit Motion Control Engine (MCE TM ) and an Analog Signal Engine (ASE). This IC structure allows easy partitioning of the appliance application and motor control functions as shown in Figure 2. Figure 1 IRMCF341 Application Hardware The 8051 microcontroller includes the timers, digital I/O and ports to communicate with a front panel controller. The 8051 is the master processor and has dedicated data and program memory space that loads automatically after power up from an external serial ROM. It communicates with the MCE via a dual port memory interface that allows it to set control algorithm parameters and track variables. 2

3 The Motion Control Engine implements the sensorless field oriented control algorithm that generates the inverter PWM signals based on dc bus voltage and dc link current samples. The Analog Signal Engine integrates the 12-bit A/D converter, timing circuits and buffer amplifiers needed to determine the motor voltages and currents from the dc link shunt resistor and dc bus. The only external components required for the ASE are the passive components needed to set the amplifier gains. Figure 2 IRMCF341 Application Partitioning The MCE TM implements the sensorless motor control algorithm using a hardware library of motor control modules such as vector transformations and proportional plus integral feedback compensators. The motion control sequencer schedules the execution of the library components required to implement the sensorless control algorithm. The MCE implements the algorithm in 16-bit fixed point arithmetic using a selection of macro control functions from the MCE library. A number of these block such as the PI compensator or the vector rotation (e jθ ) are common motor control functions. Other blocks such as the rotor angle and speed estimator, are macro blocks that combine a number of motor control functions. There are also hardware interface functions that combine computational elements, timing functions and analog circuits. Each block includes control registers for parameters such as proportional loop gain or the PWM switching frequency. Control variables, gains and set points are stored in the dual port RAM to allow the 8051 to change target speed and control system gains on the fly. The 8051 can also log control variables without interrupting the MCE operation. The 8051 initializes the MCE by loading the sequencer code and control parameters into the dual port memory. The MCE operates almost completely independent of the 8051 reacting only to changes in the control set point or parameters. A typical appliance controller processes the user inputs, sequences the switching of loads and generates the motor speed profile. In the example shown in Figure 3 the washing machine controller takes a user input command such as Start the Economy Wash Cycle and sequences all the functions required to execute that wash cycle. These functions will include turning on and off of external loads such as valves and pumps or checking the water level or door lock status. A variety of speed profiles is required at different parts of the wash cycle; for example, in the spin cycle there is a fast ramp to the spin speed to move through resonance points. The washing machine controller will need to check the 3

4 load imbalance status before selecting the maximum spin speed. The 8051 microcontroller executes the above tasks at a relatively slow update rate (1 20Hz). The MCE executes the motor speed and current control functions at the PWM frequency taking its sets points from the Figure 3 Appliance application control Sensorless Control Algorithm The PMSM control algorithm structure is described in Figure 4 below. The main control loops are the velocity and current control loops that vary the motor winding voltages to drive the motor at the target speed. The current controller has a field oriented control (FOC) structure that maximizes motor efficiency. The field weakening and IPM control blocks extend the torque and speed range of the drive. The feedback signal processing functions determine rotor position, velocity, and stator winding currents all from the current flowing in the power inverter dc link. The start-up sequencer controls the transition from the zero and low speed control range to sensorless operation. Velocity and Current Control The controller has a cascaded structure with inner current control loops and an outer velocity control loop. The velocity controller calculates the motor torque (T*) required to follow the target velocity (ω*) while the current loops drive the motor currents needed to generate this torque. The proportional plus integral (PI) velocity loop compensator acts on the error between the target velocity (ω*) and the actual (estimated) velocity. The integral term forces the steady state error to zero while the proportional term improves the high frequency response. The PI compensator gains are adjusted depending on the motor and load characteristics to meet the target dynamic performance. The limiting function on the output of the PI compensator prevents integral windup and maintains the motor currents within the motor and drive capability. There is also a minimum speed setting and rate limiter on the target velocity to stay within the system mechanical limits. The current loops calculate the inverter voltages to drive the motor currents needed to generate the desired torque. As in the case of the dc motor, the current magnitude determines the motor torque. However, in an ac machine the torque is also a function of 4

5 the phase alignment between the stator currents and rotor flux. A field oriented control structure correctly aligns the ac motor winding currents with the rotor flux position to maximize torque production. Field oriented control (FOC) uses the Clarke transform and a vector rotation (e -jθ ) to transform the motor winding currents into two quasi dc components, an I d component that reinforces or weakens the rotor field and an I q component that generates motor torque. Two separate regulators control the I d and I q currents and a forward vector rotation (e +jθ ) transforms the current loop V d and V q output voltages into the two phase ac components. The Space Vector Pulse Width Modulator (SVPWM) generates the three phase power inverter switching signals based on the α and β voltage inputs. Space vector modulation automatically inserts a third harmonic into the line to line voltage that maximizes bus voltage utilization using sinusoidal modulation. This FOC structure simplifies current control loop tuning by eliminating dependency on the motor electrical frequency and reducing the current loop tuning to a first order problem. Figure 4 Sensorless Field Oriented Control Algorithm Field Weakening and IPM control Typically, the I q controller input is the torque reference from the velocity controller and the I d reference current is set to zero. However, above a certain speed, known as the base speed, the inverter output voltage becomes limited by the dc bus voltage. In this situation, the field weakening controller generates a negative I d to oppose the rotor magnet field that reduces the winding back EMF. This enables operation at higher speeds but at a lower torque output. The controller includes a compensator that adjusts the I d current to maintain the motor voltage magnitude within the bus voltage limit. The compensator operates on the square of the voltage magnitude since this is easy to calculate from the sum of (V d ) 2 and (V q ) 2. 5

6 When driving an interior permanent magnet (IPM) motor the rotor saliency can generate a reluctance torque component to augment the torque produced by the rotor magnet. The motor torque function, in equation below, has a cylindrical torque term that is a function of I q and a reluctance torque term that is a function of both I d and I q. ( Ψ magnet. Iq + ( Ld Lq ). Id Iq p Torque =. ) Equation 1 2 where, p is the number of poles ψ magnet is the permanent magnet linked flux L d and L q are the direct and quadrature axis inductances When driving a surface magnet motor, there is zero saliency (L d =L q ) and I d is set to zero for maximum efficiency. In the case of IPM motor which has saliency (L d < L q ) a negative I d will produce positive reluctance torque. The most efficient operating point is when the total torque is maximized for a given current magnitude. This is found by transforming Equation 1 into a form with current magnitude (I m ) and phase advance (β) terms by substituting I d with I m.cos(β) and I q with I m.sin(β). p = Ψ 2 magnet. I m.cos( β ) + ( L L )(. I ) d q m sin. 2 ( ) 2 β Torque Equation 2 The significance of the reluctance torque increases and so the phase advance is increased with increasing current. The plot of the total torque as a function of angle and current in Figure 5, shows that the optimum angle advance can be approximated by a linear function. The IPM control block uses the optimum phase advance at rated current to define the linear approximation. 6

7 Figure 5 Motor torque as a function of current and angle advance Position and velocity estimation In a PMSM, the rotor flux is locked to the rotor position and so it can be measured directly using a shaft mounted sensors. It can also be measured indirectly from the motor back EMF since this is a function of the rotor position and speed. The position estimation algorithm, which is described in Figure 6, has two stages. The rotor flux function is first derived from a circuit model and then a phase locked loop estimates the flux angle and frequency. The two-phase stator circuit model described by Equation 3 forms the basis for the flux estimation. The two phase stator voltages are inputs to the SVPWM function and the two phase current measurements are in the current feedback path. Integration of the equation followed by simple manipulation yields the terms that are sine and cosine functions of the rotor flux angle. In the hardware implementation, the voltage integrator includes has a low frequency cut off to prevent dc saturation. v v α β = R. i S = R. i S α β diα d + LS. + dt dt diβ d + LS. + dt dt ( ψ.cos( θ )) r ( ψ.sin( θ )) r r r Equation 3 7

8 The angle and frequency phase locked loop (PLL) estimates the flux angle and speed from the rotor sine and cosine flux functions. The vector rotation calculates the error between rotor flux angle (θ r ) and the estimated angle (θ est ). The PI compensator and integrator in the closed loop path force angle and frequency estimate (ω est ) to track the angle and frequency of the rotor flux. This second order feedback loop has zero error when the rotor flux is changing at a constant frequency. The motor velocity is derived from the rotor frequency according to the number of number of rotor poles. The PLL startup function supports the motor startup sequencer. At low speeds, the back EMF signal is unreliable and so the PLL is driven in open loop at fixed frequency ramp (α start ). Once the frequency reaches a minimum threshold (ω thr ), the PLL takes its inputs from the flux estimator. Figure 6 Rotor flux estimator and rotor angle and speed PLL. Start up sequencing A special mode of operation is required for starting because the motor back EMF is swamped by circuit noise when the speed is close to zero. There are two modes in the start up sequence as described in Figure 7 below. In the first mode, known as parking, the controller applies dc current to the motor coils to align the rotor at a known rotor electrical angle. In the startup mode, the controller drives the motor at a constant current magnitude (I start ) and the rotor angle and frequency PLL runs in open loop with a fixed frequency ramp. The controller switches over to full closed loop control when the PLL reaches the switch over frequency threshold. In the closed loop mode, the motor current is driven by the velocity and current loops and reacts to changes in the command velocity input. 8

9 Figure 7 Starting sequence In the ideal setup, the PLL frequency ramp matches the motor starting acceleration, which is determined from the starting torque and the mechanical system inertia. However, when there is load friction the starting acceleration will be less than the ideal value. Setting the PLL frequency ramp lower than the ideal value compensates for the load friction. This system is self correcting since if the actual starting acceleration is higher than the frequency ramp then the rotor will advance in phase causing the generated torque to drop until the acceleration rates match. The parking process is described in Figure 8. The controller drives the stator windings at a constant current to set the stator field at a fixed angle. Any arbitrary parking angle can be selected by driving the appropriate combination of u,v and w winding currents. The rotor tends to align itself with stator field regardless of the initial position. This defines the initial values for the angle and frequency PLL to maximize the starting torque. When driving a static load, the rotor will not be correctly aligned after parking. However, the system can tolerate static loads of up to 50% of the rated torque. For example, if the static load is 50% of the parking torque then the alignment error will be 30 o electrical (cos(30 o )=0.5). In this case, the starting torque will be 87% (cos(60 o )=0.866) of the maximum value. There is a possibility of a start failure when driving static loads if the initial rotor position is almost completely misaligned with the parking angle. In this case, the initial alignment torque can be lower than the static load and the rotor will not move. This problem is overcome by adding a second parking stage with a parking angle shifted by approximately 60 o to move away from the misaligned position. 9

10 Figure 8 Parking Phase Current Measurement Direct measurement of the motor winding current requires isolation circuits to handle the high common mode voltage and switching frequency at the motor windings. The phase current reconstruction circuit avoids the isolation requirement by measuring current in the dc link. The motor winding currents are measured by synchronizing the sampling of the current in the dc link shunt with the power inverter switching. In every PWM cycle, there are two active states where the motor windings are connected between the two dc bus rails. In each active state, one dc bus rail connects to a single motor winding and the other bus rail connects to the other two motor windings. The motor flowing from the dc bus rail flows through one winding and returns from the remaining two windings via the dc link shunt. The current sampled in the dc link shunt during this period is equal to the current in the single motor winding. A second winding current is sampled during the second active PWM state. The third winding current is calculated from the sum of the first two currents since they all must sum to zero. This can be seen by examining the current flow in the power circuit in Figure 9 as it relates to the state of the power inverter switches. The first inverter state is a zero vector state where all windings are shorted to the lower dc bus rail. The second state is an active state where the U phase is connected to the positive rail and the V and W phases are connected to the negative rail. The third inverter state is also an active state but now only the W phase is connected to the negative rail. The fourth inverter state is a zero vector state where the windings are shorted to the positive rail. The second half of the PWM cycle is a mirror image of the first half of the cycle. In this complete PWM cycle, there are two states when the dc link current equals the U phase current and two states when the dc link current equals the negative W phase current. 10

11 Figure 9 Phase current reconstruction The Space vector modulator generates the PWM switching signals and the dc link current sample timing signals. The current reconstruction circuits include the A/D converter and the analog amplifier to bring the current shunt signal within the range of the converter. Successful implementation requires careful circuit board layout and fine tuning of the sample timing to avoid the significant circuit noise generated by the power device switching. This topic is covered in detail in the IRMCx300 Application Developers Guide. Control Algorithm Implementation and tuning The PMSM control algorithm described in Figure 4 is implemented by the MCE with the control variables scaled within the 16 bit fixed point data range. The control schematic in Figure 10 provides further details on the PMSM controller implementation and some of the important control parameters. A key feature of the design is the scaling of variables to avoid data overflow or excessive rounding. Hardware limitations such as the A/D converter resolution and SVPWM resolution set the data range for current samples and voltage outputs. All frequency dependant parameters such as integral gain and filter time constants need to be defined as a function of the PWM frequency that sets the sample rate. Some control blocks modify the scaling between different parts of the algorithm to maximize dynamic range. For example, the current and velocity loop controllers scale current so that 4095 represents rated drive current while the current sampling and vector rotation block must scale current where 2047 represents the maximum controllable drive current. Control registers on each of the blocks allow gain setting or feature selection for each of the blocks. Registers and input variables can be modified at any time but typically, only the target speed, drive limits and compensator gains are adjusted while the motor is running. A full description of each control block is in the IRMCx300 Reference Manual. Drive system commissioning involves the calculation of controller parameters to match the hardware configuration, motor characteristics and drive performance specifications. Control loop gain is a function of the compensator gain and the gain of all elements in the loop such the power inverter gain and the current feedback gain. Control loop tuning and drive commissioning is supported by the MCEWizard and MCEDesigner. MCEWizard is 11

12 an interactive design tool that calculates control IC parameters in digital counts based on the system specifications expressed in engineering units. It also embeds pole-zero cancellation design rules for PI loop tuning. MCEDesigner is the drive evaluation software that communicates with the digital IC and allows on the fly tuning of drive parameters. Further details on controller implementation and tuning are described in detail in the IRMCx300 Application Developers Guide. Figure 10 Control Algorithm Implementation IRMCS3041 Reference Design Tools and Application Development The IRMCS3041 reference design kit includes a permanent magnet synchronous motor a drive control board, the motor control development tools and the full set of design documentation. The supplied motor control development tools enable drive commissioning, performance evaluation and algorithm customization. The supplied design files include 8051 firmware, drive configuration files, algorithm schematics and circuit board design files. The recommended 8051 application software tools need to be purchased from third party vendors. Figure 11 describes the major tools components needed to develop the complete drive application. This process includes demonstrating the technology, evaluating the drive performance in the end application, developing appliance control software and designing of the final hardware. The reference design board serves as the initial evaluation platform and drive development tool. The MCE installation software loads the motor control design tools, design files and user documentation on to your PC. The boot EEPROM on the board is loaded with the MCEDesigner agent so the control IC is able to communicate with the MCEDesigner software running on the PC when the board is first powered up. The serial connection between the PC and the control IC is isolated so the drive control board can be connected directly to the ac line. Configuration files are included for the motor supplied with the reference design so the motor can be run right away. Details on 12

13 the set up and safe use of the hardware are described in the IRMCS3041 Quick Start Guide. The MCEWizard drive commissioning tool enables customization of motor drive parameters to match motor and system specifications. It asks a series of questions, supported by explanation and graphics, to determine the motor characteristics and system specifications. The tool checks the data for consistency and generates the full set of digital control parameters. The MCEDesigner tool imports the control parameters and downloads them to the control IC over the serial link. This tool also allows the generation of user defined speed and application control profiles to exercise the drive in the end application. The MCEDesigner plotting function allows tracing of control system variables to support system performance evaluation. The MCEWizard supports customization of the drive circuit board including changes to the input voltage, power stage, current feedback and gate drive circuits. Circuit board layout can have a significant effect on current feedback circuit performance so recommendations in the IRMCx300 Application Developers Guide should be carefully followed. Customizing the drive algorithm requires the Matlab TM Simulink tool to edit the control algorithm schematic. A web based MCECompiler tool generates the MCE algorithm executable files that define the user algorithm along with a register map. The MCEDesigner tool downloads this file to the boot EEPROM on the reference design kit. The register map enables the generation of MCEDesigner user functions to access any new control registers. Changes to the reference design blocks supplied may invalidate parameters calculated by the MCEWizard. Application software development requires the Keil TM μvision3 C and assembly tools and the FS2 TM JTAG interface to download the code to the control IC. The JTAG interface to the control IC is also isolated so the FS2 TM pod can be safely connected to the board when powered from the ac line. The IRMCx300 Software Developers Guide describes how to configure these tools for use with the controller along with the sample application code supplied with the design kit. When the user 8051 application code is complete, the MCEProgrammer tool generates binary files to program the boot EEPROM or internal OTP for the final application board. Next Steps At this stage, you should have some idea on how the digital control IC operates and how the reference design kit can help you develop your own drive system. The next step is to go to the IRMCS3041 Quick Start Guide to start running the motor supplied with your kit and become familiar with the MCEDesigner drive evaluation software. Run MCEWizard to see how you customize control parameters to match your own motor. The IRMCx300 Application Developers Guide describes the commissioning steps in detail including tips on how to test motor parameters. MCEDesigner allows you to create your own speed profiles so you can test your motor in your target application. You can use the MCEDesigner plotting tool to evaluate the performance of the drive and to help you tune 13

14 control parameters. Once you are ready to develop your own drive, you will need to purchase third party 8051 tools. The IRMCx300 Software Developers Guide describes the sample code supplied and explains how to configure the tools to work with control IC. The reference design schematics and PCB layout are supplied to support your hardware development but also refer to the hardware design section of the IRMCx300 Application Developers Guide. You may need to refer to the IRMCx300 Reference Manual from time to time as this is the source of all information on the control IC but for most of the time, the Developers guides will lead you through your design. Good luck with your project! Figure 11 IRMCS3041 Reference Design Kit 14

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER Kushal Rajak 1, Rajendra Murmu 2 1,2 Department of Electrical Engineering, B I T Sindri, (India) ABSTRACT This paper presents

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Application Developer s Guide

Application Developer s Guide IRMCx100_AppDevGuide Application Developer s Guide imotion motor control IC with additional MCU About this document Scope and purpose The IRMCx100 series motor control ICs are mixed signal devices optimized

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

Sensorless Vector Control and Implementation: Why and How

Sensorless Vector Control and Implementation: Why and How Sensorless Vector Control and Implementation: Why and How Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit

More information

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller.

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller. Application Note, V1.0, Oct 2006 AP08019 XC866 Using Infineon 8-bit XC866 Microcontroller Microcontrollers Edition 2006-10-20 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

Brushed DC Motor System

Brushed DC Motor System Brushed DC Motor System Pittman DC Servo Motor Schematic Brushed DC Motor Brushed DC Motor System K. Craig 1 Topics Brushed DC Motor Physical & Mathematical Modeling Hardware Parameters Model Hardware

More information

Upgrading from Stepper to Servo

Upgrading from Stepper to Servo Upgrading from Stepper to Servo Switching to Servos Provides Benefits, Here s How to Reduce the Cost and Challenges Byline: Scott Carlberg, Motion Product Marketing Manager, Yaskawa America, Inc. The customers

More information

Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family

Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family Freescale Semiconductor Document Number: AN4863 Application Note Rev 0, June Dead-Time Compensation Method for Vector-Controlled VSI Drives Based on Qorivva Family by: Petr Konvicny 1 Introduction One

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

3.1.Introduction. Synchronous Machines

3.1.Introduction. Synchronous Machines 3.1.Introduction Synchronous Machines A synchronous machine is an ac rotating machine whose speed under steady state condition is proportional to the frequency of the current in its armature. The magnetic

More information

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive ISSN 1 746-72, England, UK World Journal of Modelling and Simulation Vol. 9 (201) No. 2, pp. 8-88 Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive Nalin Kant

More information

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Abstract Several types

More information

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor http://dx.doi.org/10.5755/j01.eie.22.6.17216 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 6, 2016 Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous

More information

Where: (J LM ) is the load inertia referred to the motor shaft. 8.0 CONSIDERATIONS FOR THE CONTROL OF DC MICROMOTORS. 8.

Where: (J LM ) is the load inertia referred to the motor shaft. 8.0 CONSIDERATIONS FOR THE CONTROL OF DC MICROMOTORS. 8. Where: (J LM ) is the load inertia referred to the motor shaft. 8.0 CONSIDERATIONS FOR THE CONTROL OF DC MICROMOTORS 8.1 General Comments Due to its inherent qualities the Escap micromotor is very suitable

More information

High-speed and High-precision Motion Controller

High-speed and High-precision Motion Controller High-speed and High-precision Motion Controller - KSMC - Definition High-Speed Axes move fast Execute the controller ( position/velocity loop, current loop ) at high frequency High-Precision High positioning

More information

Sensorless Vector Control with RL78G14

Sensorless Vector Control with RL78G14 Sensorless Vector Control with RL78G14 Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit 1200 DMIPS, Superscalar

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

Galil Motion Control. DMC 3x01x. Datasheet

Galil Motion Control. DMC 3x01x. Datasheet Galil Motion Control DMC 3x01x Datasheet 1-916-626-0101 Galil Motion Control 270 Technology Way, Rocklin, CA [Type here] [Type here] (US ONLY) 1-800-377-6329 [Type here] Product Description The DMC-3x01x

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

BLuAC5 Brushless Universal Servo Amplifier

BLuAC5 Brushless Universal Servo Amplifier BLuAC5 Brushless Universal Servo Amplifier Description The BLu Series servo drives provide compact, reliable solutions for a wide range of motion applications in a variety of industries. BLu Series drives

More information

SVPWM Based Speed Control of Induction Motor with Three Level Inverter Using Proportional Integral Controller

SVPWM Based Speed Control of Induction Motor with Three Level Inverter Using Proportional Integral Controller SVPWM Based Speed Control of Induction Motor with Three Level Inverter Using Proportional Integral Controller Vikramarajan Jambulingam Electrical and Electronics Engineering, VIT University, India. Abstract

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

MTY (81)

MTY (81) This manual describes the option "d" of the SMT-BD1 amplifier: Master/slave electronic gearing. The general information about the digital amplifier commissioning are described in the standard SMT-BD1 manual.

More information

DC Motor Speed Control using PID Controllers

DC Motor Speed Control using PID Controllers "EE 616 Electronic System Design Course Project, EE Dept, IIT Bombay, November 2009" DC Motor Speed Control using PID Controllers Nikunj A. Bhagat (08307908) nbhagat@ee.iitb.ac.in, Mahesh Bhaganagare (CEP)

More information

Simple Methods for Detecting Zero Crossing

Simple Methods for Detecting Zero Crossing Proceedings of The 29 th Annual Conference of the IEEE Industrial Electronics Society Paper # 000291 1 Simple Methods for Detecting Zero Crossing R.W. Wall, Senior Member, IEEE Abstract Affects of noise,

More information

SERVOSTAR S- and CD-series Sine Encoder Feedback

SERVOSTAR S- and CD-series Sine Encoder Feedback SERVOSTAR S- and CD-series Sine Encoder Feedback The SERVOSTAR S and SERVOSTAR CD family of drives offers the ability to accept signals from various feedback devices. Sine Encoders provide analog-encoded

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet A Novel

More information

Switched Mode Power Supply Measurements

Switched Mode Power Supply Measurements Power Analysis 1 Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses Measurement challenges Transformer

More information

Detect stepper motor stall with back EMF technique (Part 1)

Detect stepper motor stall with back EMF technique (Part 1) Detect stepper motor stall with back EMF technique (Part 1) Learn about this method that takes advantage of constant motor parameters and overcomes limitations of traditional stall detection of current

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Smooth rotation. An adaptive algorithm kills jerky motions in motors.

Smooth rotation. An adaptive algorithm kills jerky motions in motors. Page 1 of 4 Copyright 2004 Penton Media, Inc., All rights reserved. Printing of this document is for personal use only. For reprints of this or other articles, click here Smooth rotation An adaptive algorithm

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

DC Link approach to Variable-Speed, Sensorless, Induction Motor Drive

DC Link approach to Variable-Speed, Sensorless, Induction Motor Drive National Conference On Advances in Energy and Power Control Engineering (AEPCE-2K2) DC Link approach to Variable-Speed, Sensorless, Induction Motor Drive Ch.U.Phanendra.Kumar SK.Mohiddin 2 A.Hanumaiah

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

EE POWER ELECTRONICS UNIT IV INVERTERS

EE POWER ELECTRONICS UNIT IV INVERTERS EE6503 - POWER ELECTRONICS UNIT IV INVERTERS PART- A 1. Define harmonic distortion factor? (N/D15) Harmonic distortion factor is the harmonic voltage to the fundamental voltage. 2. What is CSI? (N/D12)

More information

DC CIRCUITS Part I of III Parts. Part II installation. Part III troubleshooting

DC CIRCUITS Part I of III Parts. Part II installation. Part III troubleshooting DC CIRCUITS Part I of III Parts Part II installation Part III troubleshooting Trane ComfortSite is a user-friendly Internet site designed to save you time and it s FREE for Trane Customers. Order Equipment,

More information

B.Tech Academic Projects EEE (Simulation)

B.Tech Academic Projects EEE (Simulation) B.Tech Academic Projects EEE (Simulation) Head office: 2 nd floor, Solitaire plaza, beside Image Hospital, Ameerpet Ameerpet : 040-44433434, email id : info@kresttechnology.com Dilsukhnagar : 9000404181,

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

IMPLEMENTATION OF AC INDUCTION MOTOR CONTROL USING CONSTANT V/HZ PRINCIPLE AND SINE WAVE PWM TECHNIQUE WITH TMS320F28027

IMPLEMENTATION OF AC INDUCTION MOTOR CONTROL USING CONSTANT V/HZ PRINCIPLE AND SINE WAVE PWM TECHNIQUE WITH TMS320F28027 IMPLEMENTATION OF AC INDUCTION MOTOR CONTROL USING CONSTANT V/HZ PRINCIPLE AND SINE WAVE PWM TECHNIQUE WITH TMS320F28027 Ameya D. Chaudhary 1, M. R. Bachawad 2 1 PG student in Department of Electrical

More information

Analog Servo Drive 30A8

Analog Servo Drive 30A8 Description Power Range The 30A8 PWM servo drive is designed to drive brush type DC motors at a high switching frequency. A single red/green LED indicates operating status. The drive is fully protected

More information

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM

TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM TUTORIAL Simulation and Code Generation of TI InstaSPIN Using DRV8312 EVM January 2017 1 PSIM supports TI s InstaSPIN FOC sensorless motor control algorithm in simulation and SimCoder auto code generation.

More information

Flux-Weakening in IPM Motor Drives: Comparison of State-of-Art Algorithms and a Novel Proposal for Controller Design

Flux-Weakening in IPM Motor Drives: Comparison of State-of-Art Algorithms and a Novel Proposal for Controller Design Flux-Weakening in IPM Motor Drives: Comparison of State-of-Art Algorithms and a Novel Proposal for Controller Design Silverio Bolognani 1, Roberto Petrella 2, Sandro Calligaro 2, Filippo Pogni 1 1 Dept.

More information

DISCUSSION OF FUNDAMENTALS

DISCUSSION OF FUNDAMENTALS Unit 4 AC s UNIT OBJECTIVE After completing this unit, you will be able to demonstrate and explain the operation of ac induction motors using the Squirrel-Cage module and the Capacitor-Start Motor module.

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

Inverter Drive /Vector Drive Motors & Controls

Inverter Drive /Vector Drive Motors & Controls H2 Inverter/ Encoderless Vector Inverter Drive /Vector Drive & Controls 3/4 thru 50 180-264 VAC 3 Phase - 50/60 Hz 3/4 thru 60 340-528 VAC 3 Phase - 50/60 Hz 3/4 thru 60 515-660 VAC 3 Phase - 60 Hz HVAC

More information

Combo Hot Swap/Load Share Controller Allows the Use of Standard Power Modules in Redundant Power Systems

Combo Hot Swap/Load Share Controller Allows the Use of Standard Power Modules in Redundant Power Systems Combo Hot Swap/Load Share Controller Allows the Use of Standard Power Modules in Redundant Power Systems by Vladimir Ostrerov and David Soo Introduction High power, high-reliability electronics systems

More information

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I Three-Phase Induction Motors 1 2 3 Classification of AC Machines 1. According to the type of current Single Phase and Three phase 2. According to Speed Constant Speed, Variable Speed and Adjustable Speed

More information

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors Assembly Language Topic 14 Motion Control Stepper and Servo Motors Objectives To gain an understanding of the operation of a stepper motor To develop a means to control a stepper motor To gain an understanding

More information

Using CME 2 with AccelNet

Using CME 2 with AccelNet Using CME 2 with AccelNet Software Installation Quick Copy (with Amplifier file) Quick Setup (with motor data) Offline Virtual Amplifier (with no amplifier connected) Screen Guide Page 1 Table of Contents

More information

FUJI Inverter. Standard Specifications

FUJI Inverter. Standard Specifications FUJI Inverter o Standard Specifications Norminal applied motor The rated output of a general-purpose motor, stated in kw. That is used as a standard motor. Rated capacity The rating of an output capacity,

More information

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection.

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection. Shunt Active Power Filter Implementation Using Source Voltage and Source Current Detection Mani Ratnam Tarapatla 1, M Sridhar 2, ANVJ Raj Gopal 3 PG Scholar Department of Electrical Engineering GIET College

More information

Speed Control of DC Motor Using Microcontroller

Speed Control of DC Motor Using Microcontroller 2015 IJSRST Volume 1 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science Speed Control of DC Motor Using Microcontroller Katke S.P *1, Rangdal S.M 2 * 1 Electrical Department,

More information

MICROMASTER. Applications Handbook. User Documentation

MICROMASTER. Applications Handbook. User Documentation MICROMASTER Applications Handbook User Documentation Issue A1 IMPORTANT NOTICE Not all inverters currently have UL approval. UL listing can be determined by examining the inverter's Rating Label. For UL

More information

MTY (81)

MTY (81) This manual describes the option "e" of the SMT-BD1 amplifier: Master/slave tension control application. The general information about the digital amplifier commissioning are described in the standard

More information

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 4, Sep 2013, 1-6 Impact Journals MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

Encoderless & Predictive Control of Synchronous Machines

Encoderless & Predictive Control of Synchronous Machines Encoderless & Predictive Control of Synchronous Machines Ralph M. Kennel, Technische Universitaet Muenchen, Germany kennel@ieee.org EMAD E M A D lectrical achines nd rives Laboratories Wuppertal University

More information

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011 Design of Shunt Active Power Filter to eliminate the harmonic currents and to compensate the reactive power under distorted and or imbalanced source voltages in steady state Sangu Ravindra #1, Dr.V.C.Veera

More information

Control of a 750kW Permanent Magnet Synchronous Motor

Control of a 750kW Permanent Magnet Synchronous Motor Control of a 750kW Permanent Magnet Synchronous Motor Liping Zheng* and Dong Le Calnetix Technologies, LLC Cerritos, CA, USA * lzheng@calnetix.com Abstract- Permanent magnet synchronous motors have been

More information

Temperature Monitoring and Fan Control with Platform Manager 2

Temperature Monitoring and Fan Control with Platform Manager 2 August 2013 Introduction Technical Note TN1278 The Platform Manager 2 is a fast-reacting, programmable logic based hardware management controller. Platform Manager 2 is an integrated solution combining

More information

AxCent Servo Drive A25A100

AxCent Servo Drive A25A100 Description Power Range The A25A100 PWM servo drive is designed to drive brush type DC motors at a high switching frequency. A single red/green LED indicates operating status. The drive is fully protected

More information

9063 Data Acquisition and Control Interface

9063 Data Acquisition and Control Interface 9063 Data Acquisition and Control Interface LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 12/2017 Table of Contents General Description 2 9063 Data Acquisition and Control Interface 4 Variants

More information

Sensorless FOC of PMSM using SmartFusion2 Devices. Reference Guide

Sensorless FOC of PMSM using SmartFusion2 Devices. Reference Guide Sensorless FOC of PMSM using SmartFusion2 Devices Reference Guide Sensorless FOC of the PMSM Control using SmartFusion2 Devices Reference Guide Table of Contents Sensorless FOC of PMSM using SmartFusion2

More information

Speed control of three phase induction motor drive using SVPWM control scheme

Speed control of three phase induction motor drive using SVPWM control scheme Speed control of three phase induction motor drive using SVPWM control scheme 1 Gajjar Jahnavibahen B., 2 Mr.Ghanshyam Gajjar 1 MEPEED Student, Dept. of Electrical Engineering, MEFGI, Rajkot, 2 SR. Engineer,

More information

U I. HVDC Control. LCC Reactive power characteristics

U I. HVDC Control. LCC Reactive power characteristics Lecture 29 HVDC Control Series Compensation 1 Fall 2017 LCC Reactive power characteristics LCC HVDC Reactive compensation by switched filters and shunt capacitor banks Operates at lagging power factor

More information

Transconductance vs Voltage Amplifiers

Transconductance vs Voltage Amplifiers June-17 Transconductance vs Voltage Amplifiers The purpose of an amplifier in a motion control system is to provide a controlled amount of current or voltage to a motor based on a command signal from the

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Fong Mak, Ram Sundaram, Varun Santhaseelan, and Sunil Tandle Gannon University, mak001@gannon.edu,

More information

Electro-hydraulic Servo Valve Systems

Electro-hydraulic Servo Valve Systems Fluidsys Training Centre, Bangalore offers an extensive range of skill-based and industry-relevant courses in the field of Pneumatics and Hydraulics. For more details, please visit the website: https://fluidsys.org

More information

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

Speed control of double stator synchronous machine supplied by two independent voltage source inverters

Speed control of double stator synchronous machine supplied by two independent voltage source inverters Speed control of double stator synchronous machine supplied by two independent voltage source inverters NAZIH MOUBAYED Department of Electricity and Electronics Lebanese University El Arez Street, El-Kobbeh,

More information

Simulation and Analysis of Closed Loop Speed Control of Brushless DC Motor

Simulation and Analysis of Closed Loop Speed Control of Brushless DC Motor Simulation and Analysis of Closed Loop Speed Control of Brushless DC Motor 1 Mohammed Ismail, 2 Santanu Majumdar, 3 Syed Suhail Albadri, 4 Kruthi Jayaram. 1 B.E. 8 th Sem EEE BNMIT, Bangalore, 2 B.E. 8

More information

Lecture 6 ECEN 4517/5517

Lecture 6 ECEN 4517/5517 Lecture 6 ECEN 4517/5517 Experiment 4: inverter system Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms 60 Hz d d Feedback controller V ref

More information

AC Drives and Soft Starter Application Guide

AC Drives and Soft Starter Application Guide Feature AC Drives and Soft Starter Application Guide by Walter J Lukitsch PE, Gary Woltersdorf Jeff Theisen, and John Streicher Allen-Bradley Company Abstract: There are usually several choices for starting

More information

Figure 1 Typical Inverter Block Diagram

Figure 1 Typical Inverter Block Diagram AC Drives and Soft Starter Application Guide Walter J Lukitsch PE, Gary Woltersdorf Jeff Theisen, John Streicher Allen-Bradley Company Milwaukee, WI Abstract: There are usually several choices for starting

More information

ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM

ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM ADVANCED CONTROL TECHNIQUES IN VARIABLE SPEED STAND ALONE WIND TURBINE SYSTEM V. Sharmila Deve and S. Karthiga Department of Electrical and Electronics Engineering Kumaraguru College of Technology, Coimbatore,

More information

TUTORIAL Simulation and Code Generation with TI InstaSPIN Block

TUTORIAL Simulation and Code Generation with TI InstaSPIN Block TUTORIAL Simulation and Code Generation with TI InstaSPIN Block November 2016 1 PSIM supports TI s InstaSPIN FOC sensorless motor control algorithm in simulation and SimCoder auto code generation. With

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE

MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE D. McSwiggan (1), L. Xu (1), T. Littler (1) (1) Queen s University Belfast, UK ABSTRACT This paper studies the

More information

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 651-660 Research India Publications http://www.ripublication.com/aeee.htm Design and Simulation of Three Phase

More information

A SERIES-CONNECTED MULTILEVEL INVERTER TOPOLOGY FOR MEDIUM-VOLTAGE BLDC MOTOR DRIVE APPLICATIONS

A SERIES-CONNECTED MULTILEVEL INVERTER TOPOLOGY FOR MEDIUM-VOLTAGE BLDC MOTOR DRIVE APPLICATIONS A SERIES-CONNECTED MULTILEVEL INVERTER TOPOLOGY FOR MEDIUM-VOLTAGE BLDC MOTOR DRIVE APPLICATIONS 1 CH.BRAHMAIAH, 2 M.BABA FAKRUDDIN, 3 K.SWATHI Email:- 1 brahmaiah204@gmail.cm, 2 baba7022@yahoo.com, 3

More information

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL J.Karthikeyan* Dr.R.Dhanasekaran** * Research Scholar, Anna University, Coimbatore ** Research Supervisor, Anna

More information

Novel Hybrid Observers For A Sensorless MPPT Controller And Its Experiment Verification Using A Wind Turbine Generator Simulator

Novel Hybrid Observers For A Sensorless MPPT Controller And Its Experiment Verification Using A Wind Turbine Generator Simulator Novel Hybrid Observers For A Sensorless MPPT Controller And Its Experiment Verification Using A Wind Turbine Generator Simulator A. J. Mahdi Department of Electrical Engineering, College of Engineering,

More information

AP08022 C504 / C508. Generating sinusoidal 3-Phase- Currents for Induction Maschines with a time-optimezed algorithm for the Capture Compare Unit

AP08022 C504 / C508. Generating sinusoidal 3-Phase- Currents for Induction Maschines with a time-optimezed algorithm for the Capture Compare Unit C504 / C508 Application te, V 1.1, Feb. 2004 Generating sinusoidal 3-Phase- Currents for Induction Maschines with a time-optimezed algorithm for the Capture Compare Unit. AP08022 Microcontrollers Never

More information

32-Bit-Digital Signal Controller TMS320F2812

32-Bit-Digital Signal Controller TMS320F2812 Module 15 : C28x Digital Motor Control 32-Bit-Digital ignal Controller TM320F2812 Texas Instruments Incorporated European Customer Training Centre Uniersity of Applied ciences Zwickau (FH) 15-1 Electrical

More information

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which behaves like ADC with external analog part and configurable

More information

A HARDWARE DC MOTOR EMULATOR VAGNER S. ROSA 1, VITOR I. GERVINI 2, SEBASTIÃO C. P. GOMES 3, SERGIO BAMPI 4

A HARDWARE DC MOTOR EMULATOR VAGNER S. ROSA 1, VITOR I. GERVINI 2, SEBASTIÃO C. P. GOMES 3, SERGIO BAMPI 4 A HARDWARE DC MOTOR EMULATOR VAGNER S. ROSA 1, VITOR I. GERVINI 2, SEBASTIÃO C. P. GOMES 3, SERGIO BAMPI 4 Abstract Much work have been done lately to develop complex motor control systems. However they

More information

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS INDO-US Workshop October 2009, I.I.T. Kanpur INTRODUCTION Electric Power Systems are very large, spread over a wide geographical area

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Module 1. Introduction. Version 2 EE IIT, Kharagpur

Module 1. Introduction. Version 2 EE IIT, Kharagpur Module 1 Introduction Lesson 1 Introducing the Course on Basic Electrical Contents 1 Introducing the course (Lesson-1) 4 Introduction... 4 Module-1 Introduction... 4 Module-2 D.C. circuits.. 4 Module-3

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

MATHEMATICAL SIMULATION OF THE ASYNCHRONOUS ELECTRIC DRIVE OF PERIODIC MOVEMENT

MATHEMATICAL SIMULATION OF THE ASYNCHRONOUS ELECTRIC DRIVE OF PERIODIC MOVEMENT MATHEMATICAL SIMULATION OF THE ASYNCHRONOUS ELECTRIC DRIVE OF PERIODIC MOVEMENT Vasiliy O. Nagorniy 1, and Anatoliy V. Aristov 1,* 1 Tomsk Polytechnic University, 634050, Tomsk, Russia Abstract. The article

More information

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller Sukumar Kamalasadan Division of Engineering and Computer Technology University of West Florida, Pensacola, FL, 32513

More information

Hot Swap Controller Enables Standard Power Supplies to Share Load

Hot Swap Controller Enables Standard Power Supplies to Share Load L DESIGN FEATURES Hot Swap Controller Enables Standard Power Supplies to Share Load Introduction The LTC435 Hot Swap and load share controller is a powerful tool for developing high availability redundant

More information