EP603 Microwave Devices

Size: px
Start display at page:

Download "EP603 Microwave Devices"

Transcription

1 EP603 Microwave Devices TOPIC 3 MICROWAVE MEASUREMENTS

2 Lesson Learning outcomes 1. Draw the block diagram of instrument in microwave testing 2. Explain the function of each block and overall measurement process: - Frequency measurement wave meter - VSWR measurement slotted line - Power measurement - Bolometer/ Crystal Rectifier

3 Microwave Test Equipment Power Meter Microwave sources Isolator Altenuator Wave Meter Directional Coupler Terminator Tuner Slotted Section VSWR

4 Uwave source Block Function a generator or a device that produce carrier wave in microwave spectrum. Isolator To allow the wave to pass by in one direction only. The wave which travel in opposite direction will be attenuated. The purpose is to block the reflected wave produced in the system travel back to the generator/source. Attenuator To control the power level in the system to a suitable value. Wave meter To measure the frequency in the system Directional Coupler To divide the signal with certain ratio to Power meter for power measurement

5 The function.. Power meter To measure power in the system Slotted Line Used with Diode Detector to sampled the strength of the signal and sent to VSWR display. VSWR display To show the value of VSWR generated in the system Tuner To allow the correct frequency exist in the system Termination To terminate the system with match or short circuit or open circuit or complex load.

6 The types of measurement Frequency Measurement - Wave meter Power Measurement Directional coupler Measurement of VSWR Slotted section.

7 # 1 FREQUENCY MEASUREMENT Identify the value of production of the correct frequency. Measurement Methods Electromecanikal Slotted line / resonant cavities Electronic Frequency Beating Technique

8 Structure of wave meter with resonant cavity

9 Electromechanical method Using a resonant cavity is a hollow cylinder. The movement in the plunger => changes in the volume of voids =>change in the frequency of the duct cavity. Plunger displacement is measured by a micrometer. Result from the macro-meters will be used in the calibration frequency chart to get the frequency value in Hertz.

10 Electronic Methods Zero Beating Technique. A constant frequency, for example 10MHz will amplified and will be connected to the harmonic generator to produce 'Frequency Comb of standards. " Has a high accuracy. When the signal had been amplified and connected to the harmonic generator, the waveform will have distortion (harmonic distortion). Harmonic distortion of the spectrum that will generate harmonics from the original frequency.

11 #2 Power Measurement Measurement of the high level (> 1W), using a calorie meter. Measurement of medium level ( 1W), using coupling direction, attenuation and power meters. Measurement of low levels ( 10mW), the sensitivity of heating energy.

12 Measurement of low-level Bolometer divided into: -Beratter -Thermistor Using a bridge circuit with one resistor is Bolometer / Termokupel

13 BARATTER Ω THERMISTOR Ω W Conductor with a coefficient Temperature resistance when it is positive is it absorbing power, the temperature will increase and the resistance increases. W Conductor with a coefficient Temperature resistance is negative when it absorbing power, the temperature will increase and resistance decreases. Smooth strings Streamer Changes in linear barriers Semi-solid materials More durable Resistance change is not linear

14 Wheatstone bridge circuit Galvanometer / = 0, t hen Rs can be adjusted. Unbalanced currents will be measured in terms of power measurement

15 Measurement of high-power High power normally in radar system. Tools = calorimeter wattmeter. power dissipated as heat and increase of temperature will measured.

16 Measuerement of VSWR The measure voltage in line not match. (load resistance not same with a input resistence) Have a reflaction.

17 Reversal Voltage will cause a change the voltage value along the line. V Vmax Vmin t

18 VSWR V max V min VSWR = Vmax / Vmin VSWR = If fully reflection. VSWR = 1,. where no reflection occurs.

19 Measuerement of VSWR Detector Meter Source signal Pad Slotted Line Tool in testing Matched load

20 Microwave Measurement Grede There were 2 grade measurements in the microwave. Grade 1: Measurements for get values (data) that has the error <5%. Grade 2: Measurement only to see the microwave act.

21 quiz?

22 WHAT IS GRAPHIC EQUIPMENT PREVIOUSLY BEEN INTRODUCED?

23 Lesson Learning Outcomes

24 SMITH CHART Is a graphical tool for calculating the transmission line. It was proposed by PH Smith, and known as the polar impedance diagram. It includes information about the impedance, reflection coefficient and VSWR on the microwave circuit.

25 SMITH chart A network analyzer (HP 8720A) showing a Smith chart.

26 Smith circle base VSWR circle base Barrier circle

27 Smith interest Plot real value, imagine and complex something load. Get VSWR value. To find input impedance in which interior point transmission line whether with short circuit termination or open circuit.

28 Smith Chart Scale Scale A Representing resistance to flow where value conductivity = 0, located on the left.

29 Smith Chart Scale. Scale B - The susceptance place on the circle

30 Smith Chart Scale Scale C - The scale represents the greatest longdistance wave has normalized. The distance along the transmission lines can be shown by using this scale. - Distance to the load is counter-clockwise according to the distance and the generator is clockwise.

31 Scale D - Constant Resistance & Conductance - Used to put the complex impedance & help solve the problem using the smith chart. Smith Chart Scale

32 Impedance Plot To plot the complex impedance as Z = R jx then: - Normalize the first part of the real & imaginary Put the real value of the normalized on the horizontal line (scale A). Put the imagenary value that has been normalized to the constant curve reactance. (Scale D). Crosses between (iii) and (iv) is impedance place that has been normalized.

33 Example 1 ZL Zo If one lines terminated with load impedance ZL =200+j300 and the characteristic impedance value is 100, plot above CS. 200 j

34 ZL Zo 200 j

35 VSWR Plot 1. Normalize the load and plot on the Smith Chart. 2. Make a circle with a radius of 1.0 centered on the point of touching the point was made earlier. 3. Intersection of the circle with value scale A (right side) is VSWR value.

36 Example 2 Find the value of the VSWR for transmission line with load impedance ZL = 50 - j 100. Characteristic impedance of the line is 75

37 Y plot, with Z given by 1. Normalize the load and plot on the Smith Chart. 2. Plot the VSWR. 3. Draw a line from a point 1.0 until it touches circle VSWR on the part opposite direction. 4. This intersection indicates value that had been normalized.

38 Example 3 By using the Smith chart, calculate the value of a move YL from a impedance value ZL = 50 + j100. Characteristic impedance of the transmission line is 50.

39 Search input impedance in transmission line that terminated by a short open circuit.

40 Open Circuit & Short Circuit On the Smith Chart, the position of short circuit (resistance = 0) located on the left (Point A) and the position of an open circuit line (resistivity = ), is located on the right (Point B). D1

41 To determine the distance from the scale C to a point on a transmission line with impedance input + jx Normalized impedance value Plot that point in scale that outermost. From 1.0 points, draw a line that touches the point + jx Read the distance. To convert the reading in units of cm, the wavelength of a determined frequency must be known.

42 EXAMPLE 4 Find the length of transmission line terminated by a short circuit. The desired input impedance is j75 with 7Ghz operating frequency, characteristic impedance is 50.

43 Solution Normalized impedance input zl = j75/50 = j 1.5 so; D1 = = (4.29) = 0.669cm Make a straight line from 1.0 to point j1.5 With value λ = c/f = 3x10 8 / 7x10 9 = 4.29 cm

44 EXAMPLE 5 Find the input impedance at a distance of 15cm from an open circuit with characteristic impedance 50 dan frequency = 400 MHz.

45 Penyelesaian λ = c/f = 3x10 8 / 400 x10 6 = 0.75 m = 75 cm 1 λ = 75 cm? λ = 15 cm :. 15/75 = 0.2 λ Since the open circuit starting with the 0.25 λ, then; D2 = 0.25 λ λ = 0.45 λ Make a straight line from point D2 to the center of the circle and read the normalized impedance. zl = ZL /Zo = - j0.32 :. ZL = - j0.32 (50) = - j16

46 THE END READY FOR THE QUIZ 3

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A 1. What is the principle by which high power measurements could be done by

More information

MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY. Microwave and Digital Communications Lab. Department Of Electronics and Communication Engineering

MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY. Microwave and Digital Communications Lab. Department Of Electronics and Communication Engineering MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY Microwave and Digital Communications Lab Department Of Electronics and Communication Engineering MICROWAVE ENGINEERING LAB List of Experiments: 1.Reflex Klystron

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET ELECTROMAGNETIC THEORY EMF2016 MW2 IMPEDANCE MEASUREMENT AND MATCHING EM Theory Faculty of Engineering, Multimedia University 2 EXPERIMENT MW2: IMPEDANCE

More information

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 EE 458/558 Microwave Circuit Design and Measurements Lab INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 The purpose of this lab is to gain a basic understanding

More information

7. Experiment K: Wave Propagation

7. Experiment K: Wave Propagation 7. Experiment K: Wave Propagation This laboratory will be based upon observing standing waves in three different ways, through coaxial cables, in free space and in a waveguide. You will also observe some

More information

REFLECTIONS AND STANDING WAVE RATIO

REFLECTIONS AND STANDING WAVE RATIO Page 1 of 9 THE SMITH CHART.In the last section we looked at the properties of two particular lengths of resonant transmission lines: half and quarter wavelength lines. It is possible to compute the impedance

More information

Transmission lines. Characteristics Applications Connectors

Transmission lines. Characteristics Applications Connectors Transmission lines Characteristics Applications Connectors Transmission Lines Connect They allow us to conduct RF Signals between our station components, they connect: Transceivers Antennas Tuners Amplifiers

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #11 Microwave Systems 1. Objective The objective of Experiment #11 is to investigate microwave systems and associated measurement techniques. A precision

More information

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER

MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER 1 MICROWAVE AND RADAR LAB (EE-322-F) MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER RAO PAHALD SINGH GROUP OF INSTITUTIONS BALANA(MOHINDERGARH)123029 Department Of Electronics and Communication

More information

CHAPTER - 3 PIN DIODE RF ATTENUATORS

CHAPTER - 3 PIN DIODE RF ATTENUATORS CHAPTER - 3 PIN DIODE RF ATTENUATORS 2 NOTES 3 PIN DIODE VARIABLE ATTENUATORS INTRODUCTION An Attenuator [1] is a network designed to introduce a known amount of loss when functioning between two resistive

More information

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72 Transmission Lines Ranga Rodrigo January 27, 2009 Antennas and Propagation: Transmission Lines 1/72 1 Standing Waves 2 Smith Chart 3 Impedance Matching Series Reactive Matching Shunt Reactive Matching

More information

Γ L = Γ S =

Γ L = Γ S = TOPIC: Microwave Circuits Q.1 Determine the S parameters of two port network consisting of a series resistance R terminated at its input and output ports by the characteristic impedance Zo. Q.2 Input matching

More information

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 SEM: VII BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION 1. What is RF? 2. What is an RF tuner? 3. Define

More information

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY 19-1248; Rev 1; 5/98 EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #10 Microstrip Circuits and Measurements 1. Objective The objective of Experiment #8 is to investigate the application of microstrip technology. A precision

More information

EC6503 Transmission Lines and WaveguidesV Semester Question Bank

EC6503 Transmission Lines and WaveguidesV Semester Question Bank UNIT I TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines General Solution, Physicasignificance of the equations 1. Derive the two useful forms of equations for voltage and current

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

LRL Model 550B-SS Microwave Training Kit

LRL Model 550B-SS Microwave Training Kit MICROWAVES FOR EVERYONE LRL Model 550B-SS Microwave Training Kit Microwave Training Kit 5 Experiments I-95 Industrial Park 651 Winks Lane Bensalem, PA 1900 800.53.399 15.638.1100 3rd edition INITIAL SET-UP

More information

DX University: Smith Charts

DX University: Smith Charts DX University: Smith Charts 2010 August 9 Sponsored by the Kai Siwiak, ke4pt@amsat.org Ed Callaway, n4ii@arrl.org 2010 Aug 9 Kai, KE4PT; Ed, N4II 2 Source: http://www.sss-mag.com/pdf/smithchart.pdf 2010

More information

Network Analysis Basics

Network Analysis Basics Adolfo Del Solar Application Engineer adolfo_del-solar@agilent.com MD1010 Network B2B Agenda Overview What Measurements do we make? Network Analyzer Hardware Error Models and Calibration Example Measurements

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

Resonant and Nonresonant Lines. Input Impedance of a Line as a Function of Electrical Length

Resonant and Nonresonant Lines. Input Impedance of a Line as a Function of Electrical Length Exercise 3-3 The Smith Chart, Resonant Lines, EXERCISE OBJECTIVES Upon completion of this exercise, you will know how the input impedance of a mismatched line varies as a function of the electrical length

More information

Exercises for the Antenna Matching Course

Exercises for the Antenna Matching Course Exercises for the Antenna Matching Course Lee Vishloff, PEng, IEEE WCP C-160302-1 RELEASE 1 Notifications 2016 Services, Inc. All rights reserved. The and Services Inc. stylized text belongs to tech-knows

More information

Manual For Experiment

Manual For Experiment AT-RF3030 RF EDUCATION EXPERIMENT SYSTEM Manual For Experiment SHENZHEN ATTEN ELECTRONICS CO.,LTD. 1 Quality assurance SHENZHEN ATTEN ELECTRONICS Co., Ltd. offers the quality assurance for this product.

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET ELECTROMAGNETIC THEORY EMF016 MW1 MICROWAVE FREQUENCY AND SWR MEASUREMENTS EM Theory Faculty of Engineering, Multimedia University 1 EXPERIMENT MW1:

More information

10 GHz Microwave Link

10 GHz Microwave Link 10 GHz Microwave Link Project Project Objectives System System Functionality Testing Testing Procedures Cautions and Warnings Problems Encountered Recommendations Conclusion PROJECT OBJECTIVES Implement

More information

Lecture 9 - Lumped Element Matching Networks

Lecture 9 - Lumped Element Matching Networks Lecture 9 - Lumped Element Matching Networks Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 9 - Lumped Element Matching Networks

More information

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random. 4/7 Properties of the Magnetic Force 1. Perpendicular to the field and velocity. 2. If the velocity and field are parallel, the force is zero. 3. Roughly (field and vel perp), the force is the product

More information

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly

The Principle V(SWR) The Result. Mirror, Mirror, Darkly, Darkly The Principle V(SWR) The Result Mirror, Mirror, Darkly, Darkly 1 Question time!! What do you think VSWR (SWR) mean to you? What does one mean by a transmission line? Coaxial line Waveguide Water pipe Tunnel

More information

Impedance Calculations

Impedance Calculations Revisiting a T-ine With Any Termination In the general case, where a transmission line is terminated in Z, the impedance along the line is given by: Z Z j z j z e e e Z Z Z( z) Z Z j z j z e e Z Z e Z

More information

MICROWAVE EDUCATIONAL BENCH ORITEL BDH R100. Experimentation manual

MICROWAVE EDUCATIONAL BENCH ORITEL BDH R100. Experimentation manual MICROWAVE EDUCATIONAL BENCH ORITEL BDH R100 E N G L I S H Experimentation manual 1 Meaning of the symbol! : CAUTION! Consult the experimentation manual before using the bench. In this experimentation manual,

More information

Lecture 16 Microwave Detector and Switching Diodes

Lecture 16 Microwave Detector and Switching Diodes Basic Building Blocks of Microwave Engineering Prof. Amitabha Bhattacharya Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture 16 Microwave Detector

More information

Microwave Resonance in a Waveguide System. Abstract

Microwave Resonance in a Waveguide System. Abstract Microwave Resonance in a Waveguide System Peter M. Marchetto Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY Abstract A waveguide system in the microwave X-band

More information

TUTORIAL #7 Using the Smith Chart

TUTORIAL #7 Using the Smith Chart TUTORIAL #7 Using the Smith Chart. [.9 P expanded] Use the Smith chart to find the following quantities for the transmission-line circuit in the figure below. L Z0 Z j L Z in (a) The SWR on the line. (b)

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

More information

Vector Network Analyzer Application note

Vector Network Analyzer Application note Vector Network Analyzer Application note Version 1.0 Vector Network Analyzer Introduction A vector network analyzer is used to measure the performance of circuits or networks such as amplifiers, filters,

More information

Technician Licensing Class. Lesson 4. presented by the Arlington Radio Public Service Club Arlington County, Virginia

Technician Licensing Class. Lesson 4. presented by the Arlington Radio Public Service Club Arlington County, Virginia Technician Licensing Class Lesson 4 presented by the Arlington Radio Public Service Club Arlington County, Virginia 1 Quiz Sub elements T6 & T7 2 Good Engineering Practice Sub element T8 3 A Basic Station

More information

MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS

MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS. Why can t conventional tubes be used at microwave frequencies? Conventional tubes can t be used at microwave frequencies because of transit time effect.

More information

10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs

10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs 9-24; Rev 2; 2/02 EVALUATION KIT AVAILABLE 0MHz to 050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small µmax

More information

RF Devices and RF Circuit Design for Digital Communication

RF Devices and RF Circuit Design for Digital Communication RF Devices and RF Circuit Design for Digital Communication Agenda Fundamentals of RF Circuits Transmission ine Reflection Coefficient & Smith Chart Impedance Matching S-matrix Representation Amplifiers

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Understanding the Fundamental Principles of Vector Network Analysis. Application Note Understanding the Fundamental Principles of Vector Network Analysis Application Note Table of Contents Introduction... 3 Measurements in Communications Systems... 3 Importance of Vector Measurements...

More information

Impedance Matching Techniques for Mixers and Detectors. Application Note 963

Impedance Matching Techniques for Mixers and Detectors. Application Note 963 Impedance Matching Techniques for Mixers and Detectors Application Note 963 Introduction The use of tables for designing impedance matching filters for real loads is well known [1]. Simple complex loads

More information

Microwave cavities. Physics 401, Spring 2017 Eugene V. Colla

Microwave cavities. Physics 401, Spring 2017 Eugene V. Colla Microwave cavities Physics 401, Spring 2017 Eugene V. Colla Agenda Waves in waveguides Standing waves and resonance Setup Experiment with microwave cavity Comments on Bragg diffraction experiment 4/3/2017

More information

Monopole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022)

Monopole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022) Monopole Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Monopole Antenna on Infinite Ground Plane Quarter-wavelength monopole Antenna on

More information

RF Devices and RF Circuit Design for Digital Communication

RF Devices and RF Circuit Design for Digital Communication RF Devices and RF Circuit Design for Digital Communication Agenda Fundamentals of RF Circuits Transmission ine Reflection Coefficient & Smith Chart Impedance Matching S-matrix Representation Amplifiers

More information

Specification for Radiated susceptibility Test

Specification for Radiated susceptibility Test 1 of 11 General Information on Radiated susceptibility test Supported frequency Range : 20MHz to 6GHz Supported Field strength : 30V/m at 3 meter distance 100V/m at 1 meter distance 2 of 11 Signal generator

More information

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define Characteristic Impedance [M/J 2006, N/D 2006] Characteristic impedance is defined as the impedance of a transmission line measured

More information

SINGLE & DOUBLE STUB MATCHING TECHNIQUES

SINGLE & DOUBLE STUB MATCHING TECHNIQUES SINGLE & DOUBLE STUB MATCHING TECHNIQUES PROF.MADHURI MAHENDRA PATIL Department of Electronics and Telecommunication PRAVIN PATIL DIPLOMA COLLEGE, BHAYANDAR-401105 Abstract: The purpose of this paper is

More information

RF and Microwave Power Standards: Extending beyond 110 GHz

RF and Microwave Power Standards: Extending beyond 110 GHz RF and Microwave Power Standards: Extending beyond 110 GHz John Howes National Physical Laboratory April 2008 We now wish to extend above 110 GHz Why now? Previous indecisions about transmission lines,

More information

CAVITY TUNING. July written by Gary Moore Telewave, Inc. 660 Giguere Court, San Jose, CA Phone:

CAVITY TUNING. July written by Gary Moore Telewave, Inc. 660 Giguere Court, San Jose, CA Phone: CAVITY TUNING July 2017 -written by Gary Moore Telewave, Inc 660 Giguere Court, San Jose, CA 95133 Phone: 408-929-4400 1 P a g e Introduction Resonant coaxial cavities are the building blocks of modern

More information

RF and Microwave Design Solutions. Bob Alman (707)

RF and Microwave Design Solutions. Bob Alman (707) RF and Microwave Design Solutions Bob Alman (707) 529-8481 Bob@AlmanEngineering.com Santa Rosa, CA About Bob Alman Bob Alman acts as an extension of your engineering team by providing guidance, application

More information

Radiofrequency Power Measurement

Radiofrequency Power Measurement adiofrequency Power Measurement Why not measure voltage? Units and definitions Instantaneous power p(t)=v(t)i(t) DC: i(t)=i; v(t)=v P=VI=V²/=I² 1 t AC: P v( t) i( t) dt VI cos t 3 Average power 4 Envelope

More information

Amateur Extra Manual Chapter 9.4 Transmission Lines

Amateur Extra Manual Chapter 9.4 Transmission Lines 9.4 TRANSMISSION LINES (page 9-31) WAVELENGTH IN A FEED LINE (page 9-31) VELOCITY OF PROPAGATION (page 9-32) Speed of Wave in a Transmission Line VF = Velocity Factor = Speed of Light in a Vacuum Question

More information

A Stub Matched Lazy H for 17 M

A Stub Matched Lazy H for 17 M A Stub Matched Lazy H for 17 M Introduction The author has experimented with various configurations of the classic Lazy H antenna and a version optimised for operation on the 17 M band is shown in Figure

More information

ELEC4604. RF Electronics. Experiment 2

ELEC4604. RF Electronics. Experiment 2 ELEC4604 RF Electronics Experiment MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF front end of a microwave communication system it is important to appreciate that the

More information

TO 100 MHZ. Marek Matusiak, Andrzej Cader. IT Institute, Academy of Management, Lodz, Poland

TO 100 MHZ. Marek Matusiak, Andrzej Cader. IT Institute, Academy of Management, Lodz, Poland THE COMPUTER VNA ASSISTED MEASUREMENTS OF THE UTP CABLE TRANSMITTING WIDE RANGE FREQUENCY SIGNALS UP TO 100 MHZ Marek Matusiak, Andrzej Cader IT Institute, Academy of Management, Lodz, Poland marek@matusiak.net,

More information

MICROWAVE AND RADAR ENGINEERING (EE 322 F) LIST OF EXPERIMENTS. S.NO. NAME OF THE EXPERIMENT Page No.

MICROWAVE AND RADAR ENGINEERING (EE 322 F) LIST OF EXPERIMENTS. S.NO. NAME OF THE EXPERIMENT Page No. LIST OF EXPERIMENTS S.NO. NAME OF THE EXPERIMENT Page No. 1 To study wave guide components. 1-3 2 To study the characteristics of Gunn oscillator &Gun diode as 4-6 modulated source. 3 Study of wave guide

More information

Ultra High Frequency Measurements

Ultra High Frequency Measurements Ultra High Frequency Measurements Desmond Fraser desmond@rheintech.com 703.689.0368 360 Herndon Parkway Suite 1400 Herndon, VA 20170 IEEE EMC DC / N. VA Chapter 31 January 2012 Overview We ll review Millimeter

More information

VIVA-VOCE QUESTIONS MICROWAVE LAB

VIVA-VOCE QUESTIONS MICROWAVE LAB VIVA-VOCE QUESTIONS MICROWAVE LAB DAWAR PARUL EXPERIMENT NO.-2 1) How are wavelength measured? 2) How do you measure wavelength in a compression wave? 3) What is the units of measure for wavelength? 4)

More information

Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz

Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz Focus Microwaves Inc. 277 Lakeshore Road Pointe-Claire, Quebec H9S-4L2, Canada Tel 514-630-6067 Fax 514-630-7466 Product Note No 2 Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz This note

More information

Transmission Lines As Impedance Transformers

Transmission Lines As Impedance Transformers Transmission Lines As Impedance Transformers Bill Leonard N0CU 285 TechConnect Radio Club 2017 TechFest Topics Review impedance basics Review Smith chart basics Demonstrate how antenna analyzers display

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

ECEN 4634/5634, MICROWAVE AND RF LABORATORY

ECEN 4634/5634, MICROWAVE AND RF LABORATORY ECEN 4634/5634, MICROWAVE AND RF LABORATORY Final Exam December 18, 2017 7:30-10:00pm 150 minutes, closed book, 1 sheet allowed, no calculators (estimates need to be within 3dB) Part 1 (60%). Briefly answer

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Reflection charts relating to impedance matching

Reflection charts relating to impedance matching Reflection charts relating to impedance matching Harold A. Wheeler, life fellow, IEEE IEEE transactions on Microwave Theory and Techniques, Vol. MTT-32, No.9, Sept 1984 Overview Introduces reflection chart

More information

Transmission lines carry RF

Transmission lines carry RF Transmission Line asics Technical techniques: primer for transmission lines Part I n understanding of transmission lines and tips on using them as transformers and filters can help techs properly configure

More information

Experiment 12: Microwaves

Experiment 12: Microwaves MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 OBJECTIVES Experiment 12: Microwaves To observe the polarization and angular dependence of radiation from a microwave generator

More information

VSWR MEASUREMENT APPLICATION NOTE ANV004.

VSWR MEASUREMENT APPLICATION NOTE ANV004. APPLICATION NOTE ANV004 Bötelkamp 31, D-22529 Hamburg, GERMANY Phone: +49-40 547 544 60 Fax: +49-40 547 544 666 Email: info@valvo.com Introduction: VSWR stands for voltage standing wave ratio. The ratio

More information

There is a twenty db improvement in the reflection measurements when the port match errors are removed.

There is a twenty db improvement in the reflection measurements when the port match errors are removed. ABSTRACT Many improvements have occurred in microwave error correction techniques the past few years. The various error sources which degrade calibration accuracy is better understood. Standards have been

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Part Number I s (Amps) n R s (Ω) C j (pf) HSMS x HSMS x HSCH x

Part Number I s (Amps) n R s (Ω) C j (pf) HSMS x HSMS x HSCH x The Zero Bias Schottky Detector Diode Application Note 969 Introduction A conventional Schottky diode detector such as the Agilent Technologies requires no bias for high level input power above one milliwatt.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL BANK Name : MICROWAVE ENGINEERING Code : A70442 Class : IV B. Tech I

More information

Agilent ENA Series 2, 3 and 4 Port RF Network Analyzers

Agilent ENA Series 2, 3 and 4 Port RF Network Analyzers gilent EN Series 2, 3 and 4 Port RF Network nalyzers 蔡明汎 gilent EO Project Manager (07)3377603 Email:ming-fan_tsai@agilent.com OTS:0800-047866 EN 1 genda What measurements do we make? Network nalyzer Hardware

More information

Loop and Slot Antennas

Loop and Slot Antennas Loop and Slot Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Loop Antenna Loop antennas can have circular, rectangular, triangular or any

More information

Computer Controlled Microwave Trainer EMIC

Computer Controlled Microwave Trainer EMIC Computer Controlled Microwave Trainer EMIC Engineering and Technical Teaching Equipment Computer Control System 2 Control Interface Box 4 Cables and Accessories 5 Manuals 3 Software for: - Computer Control

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 11 Transmission Lines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 11.6 Some Applications of Transmission Lines Transmission

More information

RF Generators. Requirements:

RF Generators. Requirements: Requirements: RF Generators to deliver a requested forward power (adjustable) level into an RF system power level is adjusted manually, or power level is controlled by a digital or analog input signal

More information

ENE324. Microwave experiments

ENE324. Microwave experiments ENE324 Microwave experiments Gunn diodes are fabricated from a single piece of n-type semiconductor. The most common materials are gallium Arsenide, GaAs and Indium Phosphide,InP. However other materials

More information

Multi-function Gain-Phase Analyzer (Frequency Response Analyzer) Model 2505

Multi-function Gain-Phase Analyzer (Frequency Response Analyzer) Model 2505 OTHER PRODUCTS.. Multi-function Gain-Phase Analyzer ( Response Analyzer) Model 2505 Standard Configurations Gain phase analyzer response analyzer Phase Angle Voltmeter (PAV) Fast dual channel wide-band

More information

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR Technician License Course Chapter 4 Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR The Antenna System Antenna: Transforms current into radio waves (transmit) and vice versa (receive). Feed

More information

MICROWAVE ENGINEERING

MICROWAVE ENGINEERING MICROWAVE ENGINEERING SANJEEVA GUPTA B.Sc. (Electrical) Electronics Engineering DINESH ARORA B.Sc. (Electrical) Electronics Engineering SATYA BHUSHAN SARNA B.Sec. (Electrical)Electronics Engineering PRASHANT

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ECE COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ECE COURSE PLAN SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ECE COURSE PLAN Course Code : EC0206 Course Title : Transmission Lines Networks Semester

More information

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K.

Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Preliminary Users Manual for the Self Contained Return Loss and Cable Fault Test Set with Amplified Wideband Noise Source Copyright 2001 Bryan K. Blackburn Self Contained Test Set Test Port Regulated 12

More information

QPR No. 93 SOLID-STATE MICROWAVE ELECTRONICS" IV. Academic and Research Staff. Prof. R. P. Rafuse Dr. D. H. Steinbrecher.

QPR No. 93 SOLID-STATE MICROWAVE ELECTRONICS IV. Academic and Research Staff. Prof. R. P. Rafuse Dr. D. H. Steinbrecher. IV. SOLID-STATE MICROWAVE ELECTRONICS" Academic and Research Staff Prof. R. P. Rafuse Dr. D. H. Steinbrecher Graduate Students W. G. Bartholomay D. F. Peterson R. W. Smith A. Y. Chen J. E. Rudzki R. E.

More information

GHz-band, high-accuracy SAW resonators and SAW oscillators

GHz-band, high-accuracy SAW resonators and SAW oscillators The evolution of wireless communications and semiconductor technologies is spurring the development and commercialization of a variety of applications that use gigahertz-range frequencies. These new applications

More information

SEMICONDUCTOR AN548A MICROSTRIP DESIGN TECHNIQUES FOR UHF AMPLIFIERS MOTOROLA APPLICATION NOTE INTRODUCTION MICROSTRIP DESIGN CONSIDERATIONS

SEMICONDUCTOR AN548A MICROSTRIP DESIGN TECHNIQUES FOR UHF AMPLIFIERS MOTOROLA APPLICATION NOTE INTRODUCTION MICROSTRIP DESIGN CONSIDERATIONS MOTOROLA SEMICONDUCTOR APPLICATION NOTE Order this document by AN548A/D AN548A DESIGN TECHNIQUES FOR UHF AMPLIFIERS Prepared by: Glenn Young INTRODUCTION This note uses a 25 watt UHF amplifier design as

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6503 TRANSMISSION LINES AND WAVEGUIDES YEAR / SEMESTER: III / V ACADEMIC YEAR:

More information

The Smith Chart is a sophisticated graphic tool for solving transmission line problems. One of the

The Smith Chart is a sophisticated graphic tool for solving transmission line problems. One of the Chapter 28 Smith Chart Calculations The Smith Chart is a sophisticated graphic tool for solving transmission line problems. One of the simpler applications is to determine the feed-point impedance of an

More information

Smith Chart Calculations

Smith Chart Calculations The following material was extracted from earlier editions. Figure and Equation sequence references are from the 21st edition of The ARRL Antenna Book Smith Chart Calculations The Smith Chart is a sophisticated

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Description and Laboratory Evaluation of a Prototype LMR Multiband Antenna System

Description and Laboratory Evaluation of a Prototype LMR Multiband Antenna System Description and Laboratory Evaluation of a Prototype LMR Multiband Antenna System Steve Ellingson September 20, 2010 Contents 1 Introduction 2 2 Design 2 3 Performance 2 Bradley Dept. of Electrical & Computer

More information

S-parameters. Jvdtang. RFTE course, #3: RF specifications and system design (I) 73

S-parameters. Jvdtang. RFTE course, #3: RF specifications and system design (I) 73 S-parameters RFTE course, #3: RF specifications and system design (I) 73 S-parameters (II) Linear networks, or nonlinear networks operating with signals sufficiently small to cause the networks to respond

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK V SEMESTER EC6503 TRANSMISSION LINES AND WAVEGUIDES Regulation 2013

More information

EQUIPMENT AND METHODS FOR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS

EQUIPMENT AND METHODS FOR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS EQUIPMENT AND METHODS OR WAVEGUIDE POWER MEASUREMENT IN MICROWAVE HEATING APPLICATIONS John Gerling Gerling Applied Engineering, Inc. PO Box 580816 Modesto, CA 95358 USA ABSTRACT Various methods for waveguide

More information

Using the Smith Chart in an E-Learning Approach

Using the Smith Chart in an E-Learning Approach 7 Using the Smith Chart in an E-Learning Approach José R. Pereira and Pedro Pinho Universidade de Aveiro, Instituto de Telecomunicações Instituto Superior de Engenharia de Lisboa, Instituto de Telecomunicações

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information