In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

Size: px
Start display at page:

Download "In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random."

Transcription

1 4/7 Properties of the Magnetic Force 1. Perpendicular to the field and velocity. 2. If the velocity and field are parallel, the force is zero. 3. Roughly (field and vel perp), the force is the product of charge, vel, and field. 4. Force on negative charge is opposite the force on a positive charge. Electric Fields apply forces to electric charges. We know that electric charges produce electric fields. Magnetic Fields apply forces to electric currents. Do electric currents produce magnetic fields? Yes!!! Oersted connected the following circuit and placed a compass over the wire. North is toward the top of the diagram, which means that the compass points in that direction. When the switch is closed, a current I is produced as shown, and the compass needle swings from north to west. The current produces a magnetic field! The magnetic field around a long straight wire carrying current is in circles around the wire given by the right-hand rule. Point the thumb of your right hand in the direction of the current your fingers wrap around the wire in the direction of the magnetic field produced by the current. If magnetic monopoles don t exist, then all magnetic fields are produced by electric currents. What about a permanent magnet? Due to electron motion in atoms. Consider a loop --- like an electron orbiting a nucleus. In a ferromagnetic substance --- such as iron --- exchange forces between adjacent atoms tend to keep the magnetic fields of the atoms aligned. In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

2 Place a strong magnetic field on the iron, and those domains with fields in the direction of the external field will grow at the expense of neighboring domains that aren t. Remove the external field, and there will still be more domains with fields in the direction of the external field --- get a permanent magnet. Note the similarity between the magnetic field of a bar magnet (on the left) and that due to solenoid coil (on the right). The Electric Motor Put a coil of wire carrying a current into a magnetic field. The current is into the page on top with the magnetic field directed upward. By the right-hand rule, the magnetic force is as shown. Since the current in the bottom part is opposite, so is the force. Torque on the coil produced by the magnetic forces causes the coil to rotate. The top shows the same configuration as the figure above but edge on. As the loop rotates, it becomes horizontal where the torque has become zero. As it rotates past horizontal, the torque reverses direction. Problem --- once the coil has passed horizontal, the torque reverses and the coil flips back --- oscillates. We need to get the current into the coil and we need to reverse the current --- use a commutator as shown below right. A voltage source such as a battery is connected to brushes that rub against the commutator, which is the small cylinder in the figure. The tan part of the commutator is an insulator with the grey parts being conductors. Note that there is a gap between the conductors. As shown, current travels in on the right and out on the left. The coil is connected to the conductors. As the coil rotates, the brushes slide over the commutator. Once the brushes pass a gap, the direction of the current is reversed in the coil. This maintains the same direction of torque on the coil, and it continues to rotate. Chapter 25 Electromagnetic Induction Almost all electrical power is produced by electromagnetic induction. Governed by Faraday s Law roughly a changing magnetic field will produce an electric field.

3 If a conductor is located where the electric field is located, a current will be produced. For power production need to consider magnetic flux. The flux of the magnetic field through an area is roughly how much magnetic field gets through the area. Roughly, the magnetic flux is the product of the magnetic field and the area. If we change the magnetic flux over the interior of a conducting loop, a current will be induced in the loop. Three ways to change the magnetic flux through the interior of the loop: 1. Change the magnetic field in the top figure, the magnetic field increases with the area staying the same, which means that the flux increases 2. Change the area in the middle figure, the area decreases with the magnetic field remaining the same, which means that the flux decreases. 3. Change the orientation of the loop relative to the direction of the magnetic field in the bottom figure, the loop rotates so that the plane of the area and the magnetic field are parallel, which means the flux decreases because the final flux is zero. No practical application of #2, there are for 1 and 3. Almost all of our electricity is generated using number 3. Number 3 is the basic principle behind the electric generator. Cause the loop to continuously rotate in a magnetic field and a current is continuously produced in the loop. We need to get the current out of the loop. Use a system similar to an electric motor. Here we attach the leads from the coil to slip rings that brushes slide over. Wires connect the brushes to a light bulb. Note that some agency is causing the coil to rotate. Number 1 is the reason we have alternating current coming out of the wall. Number 1 is the idea behind the electrical transformer. The electrical transformer is used to increase or decrease alternating current voltages. Two coils wound on top of each other or around a common iron core. Note that the picture at right is just representation of a transformer. In fact, the transformer has a third vertical bar extending from center

4 of the top part to the center of the bottom part, and both coils are wound around this third bar. If we feed ac into one coil the primary coil we will get ac from the other side secondary--- due to the varying magnetic flux produced by the varying magnetic field produced by the ac primary current. If the number of turns in the secondary is greater than the number of turns in the primary, the secondary voltage is greater than the primary voltage step-up transformer. If the number of turns in the secondary is less than the number in the primary, the secondary voltage is less than the primary voltage step-down transformer. We want to transmit electrical power at high voltage and low current to reduce loss of energy in transmission. We transmit power at high voltages tens of thousands up to 100,000 V but use a transformer in each neighborhood to lower the voltage to the more safe 110 V available from electrical receptacles in our homes. If the number of turns in both sides are the same, used for isolation. If the circuit on the primary side is grounded, there is no path to this ground from the secondary side. This is why the fat plug ac adapters are not polarized. We don t get something for nothing electric power current voltage in is the same as electric power out. When voltage is stepped up, current is stepped down by the same factor. And vice versa. Note, too, that every electronic device in our homes operates on direct current. Each device has a circuit called a rectifier that converts ac to dc. The heart of a rectifier is a diode, which only allows current in one direction. Putting ac through a diode produces pulsating dc. This pulsating dc is put through a filter that removes high frequencies and can produce smooth direct current. In the figure, the arrow objects are diodes that only allow current in the direction of the arrow. When a crest comes in, the top junction is positive relative to the right-hand junction, and a positive pulse is created in the output. When a trough comes in, the bottom junction is positive relative to the right-hand junction, and again, a positive pulse is created in the output. This type of rectifier is called a full-wave rectifier. Maxwell s Equations Made up of four equations: 1. Gauss Law electric charge causes electric fields. 2. Gauss Law for Magnetism magnetic monopoles don t exist. 3. Faraday s Law varying electric fields are produced by varying magnetic fields. 4. Ampere s Law magnetic fields are produced by electric currents and by time varying electric fields.

5 These equations predict the existence of electromagnetic waves. They predict the speed of these waves to be the speed of light. This means that light is a type of electromagnetic wave. Radio, Television, and Cell Phones Take an electromagnetic wave and encode it with information send it out it is received by a receiver which decodes the signal. Two methods for encoding the signal. 1. FM frequency modulation 2. AM amplitude modulation The sequence of events that produces a radio signal: 1. An electronic oscillator produces a carrier wave at the frequency of the radio station. 2. Some device microphone modulates the carrier wave with a signal that it produces. The wave third from the top shows amplitude modulation; the bottom one shows frequency modulation. 3. Goes to the transmitter amplifies the signal to the allowed power for the station. 4. The transmitter drives the antenna cause current to slosh up and down in the antenna producing a time varying magnetic field that produces a time varying electric field that produces a time varying a magnetic field an electromagnetic wave. 5. When the wave gets to the radio, it causes current in the antenna of the radio that replicates the current in the broadcast antenna but is, of course, much smaller. 6. In the radio, a circuit resonates at the frequency of the radio station and rejects frequencies from other stations. 7. In an AM radio, the bottom half of the signal is removed using a diode leaving the amplitude variation of the top half of the signal, which is amplified and sent to the speaker. 8. In an FM radio, a signal is generated that has the same frequency as the carrier. Combined with the signal from the radio station produces beats. These beats form the signal that is amplified and sent to the speaker. Chapter 26 Properties of light. The Electromagnetic Spectrum Goes from radio waves at one end to gamma rays at the other.

6 In terms of wavelength Radio Waves 10 cm and up Microwaves 10 cm to 0.1 mm Infrared 0.1 mm to 700 nm (nm is one-billionth of a meter) visible 700 nm to 400 nm Ultraviolet 400 nm to 10 nm X Rays 10 nm to 0.1 nm Gamma Rays 0.1 nm and down

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

Electromagnet Motor Generator

Electromagnet Motor Generator Magnetism and Electromagnetic Induction Study Guide Chapter 36 & 37 Key Terms: Magnetic Pole Magnetic Field Magnetic Domain Electromagnet Motor Generator Electromagnetic Induction Faraday s Law Transformer

More information

California State University, Bakersfield. Signals and Systems. Luis Medina,

California State University, Bakersfield. Signals and Systems. Luis Medina, Luis Medina, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 9 (Intro, History and Background) July 29 th, 2013 1 Electric Fields An electric field surrounds

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

10 Electromagnetic Interactions

10 Electromagnetic Interactions Lab 10 Electromagnetic Interactions What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. A changing magnetic field can create an electric field

More information

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law.

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law. Electromagnetic Induction and Electromagnetic Waves Topics: Electromagnetic induction Lenz s law Faraday s law The nature of electromagnetic waves The spectrum of electromagnetic waves Electromagnetic

More information

Lecture PowerPoints. Chapter 22 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 22 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 22 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

CHAPTER 8: ELECTROMAGNETISM

CHAPTER 8: ELECTROMAGNETISM CHAPTER 8: ELECTROMAGNETISM 8.1: MAGNETIC EFFECT OF A CURRENT-CARRYING CONDUCTOR Electromagnets 1. Conductor is a material that can flow.. 2. Electromagnetism is the study of the relationship between.and..

More information

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW 1. This question is about electric circuits. (a) (b) Define (i) (ii) electromotive force

More information

Lecture Presentation Chapter 25 EM Induction and EM Waves

Lecture Presentation Chapter 25 EM Induction and EM Waves Lecture Presentation Chapter 25 EM Induction and EM Waves Suggested Videos for Chapter 25 Prelecture Videos Electromagnetic Induction Faraday s Law and Lenz s Law Electromagnetic Waves Class Videos Faraday

More information

Questions on Electromagnetism

Questions on Electromagnetism Questions on Electromagnetism 1. The dynamo torch, Figure 1, is operated by successive squeezes of the handle. These cause a permanent magnet to rotate within a fixed coil of wires, see Figure 2. Harder

More information

CHAPTER 6 ALTERNATING CURRENT

CHAPTER 6 ALTERNATING CURRENT HDR102 PHYSICS FOR RADIOGRAPHERS 1 CHAPTER 6 ALTERNATING CURRENT PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCES LEARNING OUTCOMES At the end of the lesson,

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. The four areas in Figure 20.34 are in a magnetic field.

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

PHYS 1442 Section 004 Lecture #15

PHYS 1442 Section 004 Lecture #15 PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442-004, Dr. Andrew Brandt Announcements HW8 on Ch 21-22 will be

More information

I p = V s = N s I s V p N p

I p = V s = N s I s V p N p UNIT G485 Module 1 5.1.3 Electromagnetism 11 For an IDEAL transformer : electrical power input = electrical power output to the primary coil from the secondary coil Primary current x primary voltage =

More information

Name: Per: Date: Ms. Yanuck. Study Guide - Unit Test Waves, Magnetism and Electricity

Name: Per: Date: Ms. Yanuck. Study Guide - Unit Test Waves, Magnetism and Electricity Name: Per: Date: Ms. Yanuck Study Guide - Unit Test Waves, Magnetism and Electricity Write the correct answer on the line: Word Bank: long short waves longitudinal transverse compressions or rarefactions

More information

Chapter 24. Alternating Current Circuits

Chapter 24. Alternating Current Circuits Chapter 24 Alternating Current Circuits Objective of Lecture Generators and Motors Inductance RL Circuits (resistance and inductance) Transformers AC REMINDER: WORK ON THE EXAMPLES Read physics in perspective

More information

Magnetism Quiz. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Magnetism Quiz. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Magnetism Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Electric current can best be induced in a wire by a. stretching

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Chapter 25 Electromagnetic Waves Units of

More information

4. The circuit in an appliance is 3A and the voltage difference is 120V. How much power is being supplied to the appliance?

4. The circuit in an appliance is 3A and the voltage difference is 120V. How much power is being supplied to the appliance? 1 Name: Date: / / Period: Formulas I = V/R P = I V E = P t 1. A circuit has a resistance of 4Ω. What voltage difference will cause a current of 1.4A to flow in the 2. How many amperes of current will flow

More information

Electromagnetism - Grade 11

Electromagnetism - Grade 11 OpenStax-CNX module: m32837 1 Electromagnetism - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Today: Finish Chapter 24. Begin Chapter 25 (Magnetic Induction)

Today: Finish Chapter 24. Begin Chapter 25 (Magnetic Induction) Today: Finish Chapter 24 Begin Chapter 25 (Magnetic Induction) Next Homework posted, due next Fri Dec 11 Electromagnetic Induction Voltage can be induced (created) by a changing magnetic field. C.f. last

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 11: MAGNETISM AND ELECTROMAGNET INDUCTION This lecture will help you understand: Magnetic Poles Magnetic Fields Magnetic Domains Electric Currents and Magnetic Fields

More information

Topic 4: Waves 4.2 Traveling waves

Topic 4: Waves 4.2 Traveling waves Crests and troughs Compare the waves traveling through the mediums of rope and spring. CREST TROUGH TRANSVERSE WAVE COMPRESSION RAREFACTION LONGITUDINAL WAVE Wave speed and frequency The speed at which

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Static electricity 2 Repulsion and attraction 3 Electric circuits 4 Circuit symbols 5 Currents 6 Resistance 7 Thermistors and light dependent resistors 8 Series circuits

More information

Physics 102: Lecture 14 Electromagnetic Waves

Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14, Slide 1 Review: Phasors & Resonance At resonance Z is minimum (=R) I max is maximum (=V gen,max /R) V gen is in phase with I X L =

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

12. Electromagnetic Induction

12. Electromagnetic Induction Leaving Cert Physics Long Questions: 2017-2002 12. Electromagnetic Induction Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Contents Electromagnetic

More information

Electrical Engineering / Electromagnetics

Electrical Engineering / Electromagnetics Electrical Engineering / Electromagnetics. Plot voltage versus time and current versus time for the circuit with the following substitutions: A. esistor B. Capacitor C. Inductor t = 0 A/B/C A. I t t B.

More information

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. PHY054 Spring 009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. 7, 009 Exam 3 Solutions 1. Two coils (A and B) made out of the same wire are in a uniform magnetic field with the coil axes

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

Chapter 25. Electromagnetic Induction

Chapter 25. Electromagnetic Induction Lecture 28 Chapter 25 Electromagnetic Induction Electromagnetic Induction Voltage is induced (produced) when the magnetic field changes near a stationary conducting loop or the conductor moves through

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

PHYS 1444 Section 003 Lecture #19

PHYS 1444 Section 003 Lecture #19 PHYS 1444 Section 003 Lecture #19 Monday, Nov. 14, 2005 Electric Generators DC Generator Eddy Currents Transformer Mutual Inductance Today s homework is homework #10, due noon, next Tuesday!! 1 Announcements

More information

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced Announcements Today: Induction & transformers Wednesday: Finish transformers, start light Reading: review Fig. 26.3 and Fig. 26.8 Recall: N/S poles (opposites attract) Moving electrical charges produce

More information

22-1 (SJP, Phys 2020, Fa '01)

22-1 (SJP, Phys 2020, Fa '01) 22-1 (SJP, Phys 2020, Fa '01) Ch. 22: Electromagnetic waves. We ve seen some of the ideas/discoveries of Ampere, Faraday, and others. So far, E & B seem different but somehow related. In what is perhaps

More information

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017 PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

Inductance, capacitance and resistance

Inductance, capacitance and resistance Inductance, capacitance and resistance As previously discussed inductors and capacitors create loads on a circuit. This is called reactance. It varies depending on current and frequency. At no frequency,

More information

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours X rays X-ray properties X-rays are part of the electromagnetic spectrum. X-rays have a wavelength of the same order of magnitude as the diameter of an atom. X-rays are ionising. Different materials absorb

More information

Magnetic Field of the Earth

Magnetic Field of the Earth Magnetic Field of the Earth Name Section Theory The earth has a magnetic field with which compass needles and bar magnets will align themselves. This field can be approximated by assuming there is a large

More information

CHAPTER 22: Electromagnetic Waves. Answers to Questions

CHAPTER 22: Electromagnetic Waves. Answers to Questions CHAPTR : lectromagnetic Waves Answers to Questions. If the direction of travel for the M wave is north and the electric field oscillates east-west, then the magnetic field must oscillate up and down. For

More information

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 25, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Turn off all electronic devices

Turn off all electronic devices Radio 1 Radio 2 Observations about Radio Radio It can transmit sound long distances wirelessly It involve antennas It apparently involves electricity and magnetism Its reception depends on antenna positioning

More information

IR Remote Control. Jeffrey La Favre. January 26, 2015

IR Remote Control. Jeffrey La Favre. January 26, 2015 1 IR Remote Control Jeffrey La Favre January 26, 2015 Do you have a remote control for your television at home? If you do, it is probably an infrared remote (IR). When you push a button on the IR remote,

More information

Experiment 12: Microwaves

Experiment 12: Microwaves MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 OBJECTIVES Experiment 12: Microwaves To observe the polarization and angular dependence of radiation from a microwave generator

More information

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism.

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism. Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment 1. When a sound wave travels through a medium, what is being transmitted in the direction of the movement of the wave? density mass energy velocity 2. An iron rod changes colors when heated in a hot flame.

More information

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 25 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e;

Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e; Electromagnetism Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e; Base Concepts Conveyed: Moving charges make magnetic fields.

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity Investigation 1-Part 1: Investigating Magnets and Materials Force: a push or a pull Magnet: an object that sticks to iron Magnetism: a specific kind of force Attract: when magnets

More information

Chapter 18 The Electromagnetic Spectrum

Chapter 18 The Electromagnetic Spectrum Pearson Prentice Hall Physical Science: Concepts in Action Chapter 18 The Electromagnetic Spectrum 18.1 Electromagnetic Waves Objectives: 1. Describe the characteristics of electromagnetic waves in a vacuum

More information

Magnetism. Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1

Magnetism. Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1 Magnetism Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1 B=μ 0 I/(2πr) µ0 = 4π 10-7 Tm/A *measured in Teslas Review of Concepts -The magnetic field in the Earth is created by the rotation of the

More information

Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial

Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial Cornerstone Electronics Technology and Robotics I Week 17 Magnetism Tutorial Administration: o Prayer o Voltage Divider Review: Divide +9 V source in half using 1K resistors. Solve for current. Electricity

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

How Radio Works by Marshall Brain

How Radio Works by Marshall Brain How Radio Works by Marshall Brain "Radio waves" transmit music, conversations, pictures and data invisibly through the air, often over millions of miles -- it happens every day in thousands of different

More information

Producing Electric Current

Producing Electric Current Electromagnetic Induction Working independently in 181, Michael Faraday in Britain and Joseph Henry in the United States both found that moving a loop of wire through a magnetic field caused an electric

More information

MRI SYSTEM COMPONENTS Module One

MRI SYSTEM COMPONENTS Module One MRI SYSTEM COMPONENTS Module One 1 MAIN COMPONENTS Magnet Gradient Coils RF Coils Host Computer / Electronic Support System Operator Console and Display Systems 2 3 4 5 Magnet Components 6 The magnet The

More information

DC SOURCES. 1.1 LIST the four ways to produce a DC voltage. 1.2 STATE the purpose of a rectifier.

DC SOURCES. 1.1 LIST the four ways to produce a DC voltage. 1.2 STATE the purpose of a rectifier. When most people think of DC, they usually think of batteries. In addition to batteries, however, there are other devices that produce DC which are frequently used in modern technology. 1.1 LIST the four

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum The electromagnetic radiation covers a vast spectrum of frequencies and wavelengths. This includes the very energetic gamma-rays radiation with a wavelength range from 0.005 1.4

More information

Radios and radiowaves

Radios and radiowaves Radios and radiowaves Physics 1010: Dr. Eleanor Hodby Day 26: Radio waves Reminders: HW10 due Monday Nov 30th at 10pm. Regular help session schedule this week Final: Monday Dec 14 at 1.30-4pm Midterm 1

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L Faraday s Discovery (P.588-591) Faraday s Discovery In 1819, when Oersted demonstrated the ability of a steady current to produce a steady magnetic field,

More information

James Clerk Maxwell. Electric and Magnetic Fields

James Clerk Maxwell. Electric and Magnetic Fields L 30 Electricity and Magnetism [7] Electromagnetic Waves Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Hertz made the experimental

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION NAME SCHOOL INDEX NUMBER DATE ELECTROMAGNETIC INDUCTION 1. 1995 Q5 P2 (a) (i) State the law of electromagnetic induction ( 2 marks) (ii) Describe an experiment to demonstrate Faraday s law (4 marks) (b)

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Types of waves 2 Describing waves 3 Wave equation 4 Reflection of waves 5 Refraction 6 Diffraction 7 Light waves (reflection) 8 Total internal reflection 9 - Optical fibres

More information

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW OVERVIEW Wave behaviour explains a great many phenomena, both natural and artificial, for all waves have properties in common. The first topic introduces a basic vocabulary for describing waves. Reflections

More information

RLC Circuits Building An AM Radio

RLC Circuits Building An AM Radio RLC Circuits Building An AM Radio (Left) An AM radio station antenna tower; (Right) A circuit that tunes for AM frequencies. You will build this circuit in lab to receive AM transmissions from towers such

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012 SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid 6.7 Describe the method to measure the speed of sound in air and the speed of ripples on the water surface 7.5 Link the properties of EM waves to their practical application (triple 7.6 Apply knowledge

More information

Electromagnetic Induction - A

Electromagnetic Induction - A Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

More information

How Radio Works By Marshall Brain

How Radio Works By Marshall Brain How Radio Works By Marshall Brain Excerpted from the excellent resource http://electronics.howstuffworks.com/radio.htm Radio waves transmit music, conversations, pictures and data invisibly through the

More information

Chapter 16: Mutual Inductance

Chapter 16: Mutual Inductance Chapter 16: Mutual Inductance Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Mutual Inductance When two coils are placed close to each

More information

EC-5 MAGNETIC INDUCTION

EC-5 MAGNETIC INDUCTION EC-5 MAGNETIC INDUCTION If an object is placed in a changing magnetic field, or if an object is moving in a non-uniform magnetic field in such a way that it experiences a changing magnetic field, a voltage

More information

M.Shrimali Physics Classes-Mock Test Physics Mock Test Physics(042) Time allowed: 3 hours Maximum Marks: 70

M.Shrimali Physics Classes-Mock Test Physics Mock Test Physics(042) Time allowed: 3 hours Maximum Marks: 70 Mock Test 2016-17 Physics(042) Time allowed: 3 hours Maximum Marks: 70 General Instruction: 1. All questions are compulsory 2. There is no overall choice. However, an internal choice has been provided

More information

DEMONSTRATIONS Fall 2007 WEEK# MON SEP 3 WED SEP 5 D1 D2 D11 CLASS DATE. Holiday 1 ) Amber and Glass Rods with Tinsel 2 )

DEMONSTRATIONS Fall 2007 WEEK# MON SEP 3 WED SEP 5 D1 D2 D11 CLASS DATE. Holiday 1 ) Amber and Glass Rods with Tinsel 2 ) 1 MON SEP 3 Holiday WED SEP 5 Amber and Glass Rods with Tinsel Amber and Glass Rods with HE-Filled Balloons D1 D2 Deflection of a Compass Needle with a Magnet G1 Magnet and Nail on a String G3 Charged

More information

GraspIT AQA GCSE Magnetism and Electromagnetism - ANSWERS

GraspIT AQA GCSE Magnetism and Electromagnetism - ANSWERS A. Permanent and Induced Magnetism, Magnetic Forces and Fields 1. The following question is about magnets. a. Iron is a magnetic material. Name two other magnetic elements. (2) Cobalt (1) Nickel (1) b.

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A30203 Class : II B. Tech I Semester Branch

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

1 (a) State two properties which distinguish electromagnetic waves from other transverse waves [2] lamp eye

1 (a) State two properties which distinguish electromagnetic waves from other transverse waves [2] lamp eye 1 (a) State two properties which distinguish electromagnetic waves from other transverse waves............. [2] (b) (i) Describe what is meant by a plane polarised wave.... [2] (ii) Light from a filament

More information

Physics of the Electric Guitar

Physics of the Electric Guitar Physics of the Electric Guitar Connections in Electricity and Magnetism First discovered by Michael Faraday, electromagnetic induction is the process of using magnetic fields to produce voltage, and in

More information

Introduction. Inductors in AC Circuits.

Introduction. Inductors in AC Circuits. Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head Magnetic and Electromagnetic Microsystems 1. Magnetic Sensors 2. Magnetic Actuators 3. Electromagnetic Sensors 4. Example: magnetic read/write head (C) Andrei Sazonov 2005, 2006 1 Magnetic microsystems

More information

Exercise 4: Electric and magnetic fields

Exercise 4: Electric and magnetic fields Astronomy 102 Name: Exercise 4: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces

More information