Signal Propagation. Jie Gao 01/27/2010

Size: px
Start display at page:

Download "Signal Propagation. Jie Gao 01/27/2010"

Transcription

1 Signal Propagaion Jie Gao /7/

2 Signal Signal are generae as physial represenaions o aa A signal is a union o ime an loaion ieal igial signal a speial ype o signal, sine waves, also alle harmonis: s() = A sin( + ϕ) wih requeny, perio T=/, ampliue A, phase shi ϕ

3 FourierTransorm: Every Signal Can be Deompose as a Colleion o Harmonis g( ) = + n= a n sin(n) + n= b n os(n) ieal perioial igial signal eomposiion The more harmonis use, he smaller he approximaion error. 3

4 4

5 Time Domain v.s. Frequeny Domain Time omain Frequeny omain Knowing one an reover he oher. 5

6 Inererene Signalsa up Apply Fourier ransorm 6

7 Funamenal Quesion: Why No Sen Digial Signal in Wireless Communiaions? ieal igial signal 7

8 Funamenal Quesion: Why No Sen Digial Signal in Wireless Communiaions? May ause inererene suppose igial rame lengh T, hen signal eomposes ino requenies a /T, /T, 3/T, le T = ms, generaes raio waves a requenies o KHz, KHz, 3 KHz, 8

9 Banwih 9

10 Frequenies or Communiaions wise pair oax able opial ransmission Mm 3 Hz km 3 khz m 3 MHz m 3 MHz mm 3 GHz µm 3 THz µm 3 THz VLF LF MF HF VHF UHF SHF EHF inrare visible ligh UV VLF = Very Low Frequeny LF = Low Frequeny MF = Meium Frequeny HF = High Frequeny VHF = Very High Frequeny Frequeny an wave lengh: UHF = Ulra High Frequeny SHF = Super High Frequeny EHF = Exra High Frequeny UV = Ulraviole Ligh λ = / wave lengh λ, spee o ligh 3x 8 m/s, requeny

11 Sperum

12 Frequenies an Regulaions ITU-R hols auions or new requenies, manages requeny bans worlwie (WRC, Worl Raio Conerenes) Europe USA Japan Cellular Phones Corless Phones Wireless LANs Ohers GSM , /46-467, , 89-95/935-96, 7-785/85-88 UMTS (FDD) 9-98, - 9 UMTS (TDD) 9-9, - 5 CT , CT DECT 88-9 IEEE HIPERLAN , RF- Conrol 7, 8, 48, 433, 868 AMPS, TDMA, CDMA , TDMA, CDMA, GSM 85-9, PACS 85-9, PACS -UB I EEE , RF- Conrol 35, 95 PDC 8-86, , , PHS JCT IEEE RF- Conrol 46, 868

13 Anennas an Signal Propagaion

14 Anennas: Isoropi Raiaor Isoropi raiaor: a single poin equal raiaion in all ireions (hree imensional) only a heoreial reerene anenna Raiaion paern: measuremen o raiaion aroun an anenna y z x z y x ieal isoropi raiaor Q: how oes power level erease as a union o, he isane rom he ransmier o he reeiver? 4

15 Real Anennas Real anennas are no isoropi raiaors Some simple anennas: quarer wave λ/4 on ar roos or hal wave ipole λ/ size o anenna proporional o wavelengh or beer ransmission/reeiving λ/4 λ/ Q: Assume requeny Ghz, λ=? 5

16 Dipole: Raiaion Paern o a Dipole hp:// hp://en.wikipeia.org/wiki/dipole_anenna 6

17 Why No Digial Signal (revisie) No goo or sperum usage/sharing The wavelengh an be exremely large o buil porable evies e.g., T = us -> =/T = MHz -> wavelengh = 3x 8 / 6 = 3m 7

18 Free-Spae Isoropi Signal Propagaion P P r = G r G P: r reeive power P : ransmie power λ 4 G r, G : reeiver an ransmier anenna gain λ(=/): wave lengh In ree spae, reeiving power proporional o /² ( = isane beween ransmier an reeiver) The oal raiaion power remains onsan, bu he surae area o a sphere wih raius r inreases like r. Someime we wrie pah loss in log sale: Lp= log(p) log(pr) 8

19 Signal Propagaion Reeiving power aiionally inluene by shaowing (e.g. hrough a wall or a oor) reraion epening on he ensiy o a meium releion a large obsales saering a small obsales iraion a eges iraion shaow aing reraion releion saering 9

20 Signal Propagaion: Senarios Deails o signal propagaion are very ompliae We wan o unersan he key haraerisis ha are imporan o our objeive

21 Reason I: Shaowing Signal srengh loss aer passing hrough obsales Some sample numbers i.e. reues o ¼ o signal log(/4) = -6.

22 Disane power relaionship in praie Reeive power ereases proporional o / r where r varies rom o 6. Long orrior, big inoor environmen: r= Mealli builing: r=6. Slow aing

23 Reason II: Mulipah Signal an ake many ieren pahs beween sener an reeiver ue o releion, saering, iraion 3

24 Mulipah Can Reue Signal Srengh Example: releion rom he groun: reeive power ereases proporional o / 4 insea o /² ue o he esruive inererene beween he ire signal an he signal relee rom he groun groun For eail, see page 9: hp:// 4

25 Mulipah Faing Due o onsruivean esruiveinererene o muliple ransmie waves, signal srengh may vary wiely as a union o reeiver posiion Lisen o raio on a ar. 5

26 Mulipah Ee (ixe reeiver loaion) Channel haraerisis hange over loaion, requeny example os( ) phase ierene: α ( [ ) os ] ( ) + = + = + λ α ( [ ) os ] 6

27 Mulipah (ixe reeiver loaion) Suppose a - he wo waves oally esru. (wha oes i mean?) λ = = ineger Q: an we in plaes where he wo waves onsru? + = + λ 7

28 Opion : Change Loaion I reeiver moves o he righ by λ/4: = + λ/4; = - λ/4; ' ' λ = λ = λ -> + λ / ( λ / 4) λ + By moving a quarer o wavelengh, esruive urns ino onsruive. 8

29 Opion : Change Frequeny ' ± = Change requeny: 9 The hange epens on elay sprea λ + = +

30 Mulipah Faing: A Simple Two-pah Example reeiver -Wavelengh is abou.3 m or GHz ellular 3

31 Mulipah Faing wih Mobiliy: A Simple Two-pah Example r r() = r + v, assume ransmier sens ou signal os( ) More eail see page 6 Eqn. (.3): hp:// 3

32 Mulipah Ee (moving reeiver) Channel haraerisis hange over ime (loaion) example os( ) Suppose =r +v =-r -v α ( [ ) os ] α ( [ ) os ] 3

33 Derivaion ]) [ ])sin( [ sin( ) )sin( sin( ]) [ os( ]) [ os( ) ( ] [ ] [ ] [ ] [ v r v r v r v r v r v r v r v r v r v r = = ]) [ ])sin( [ sin( ]) [ ])sin( [ sin( ]) [ ])sin( [ sin( ]) [ ])sin( [ sin( ) ( v r v v r v r v r v r v r v r = = = = See hp:// or os(u)-os(v)

34 Reeive Waveorm ms v r sin( [ ])sin( [ v ]) eep ae v = 65 miles/h, = GHz: v/ = 9 * 3 / 3x 8 = Hz Why is as mulipah aing ba? 34

35 Small-Sale Faing 35

36 Mulipah Can Sprea Delay signal a sener Time ispersion: signal is isperse over ime LOS pulse mulipah pulses signal a reeiver LOS: Line O Sigh 36

37 Delay Sprea RMS: roo-mean-square 37

38 Mulipah Can Cause ISI isperse signal an ause inererene beween neighbor symbols, Iner Symbol Inererene (ISI) Assume 3 meers elay sprea, he arrival ime ierene is 3/3x 8 = ms i symbol rae > Ms/se, we will have serious ISI LOS pulse signal a sener mulipah pulses In praie, raional ISI an alreay subsanially inrease loss rae signal a reeiver LOS: Line O Sigh 38

39 Summary: Wireless Channels Channel haraerisis hange over loaion, ime, an requeny Reeive Signal Power (B) pah loss power Large-sale aing log (isane) small-sale aing ime requeny 39

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude demodulation requency shiting 09/6/202 2 Admin First assignment to be posted by this

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Frequenies or ommuniaion wised pair oa able opial ransmission Mobile Communiaions Chaper : Wireless Transmission Frequenies Signals Anenna Signal propagaion Mulipleing Spread sperum Modulaion Cellular

More information

Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/6/2012 Outline Admin and recap Frequency domain examples Basic concepts of modulation Amplitude modulation Amplitude demodulation frequency

More information

Wireless Transmission Basics

Wireless Transmission Basics Areas o researh in mobile ommuniaion Wireless Transmission Basis Frequenies Signals Anenna Signal propagaion Mulipleing Spread sperum Modulaion Cellular sysems Wireless Communiaion ransmission qualiy (bandwidh,

More information

pair 1 Mm 300 Hz ! VLF = Very Low Frequency UHF = Ultra High Frequency ! LF = Low Frequency SHF = Super High Frequency

pair 1 Mm 300 Hz ! VLF = Very Low Frequency UHF = Ultra High Frequency ! LF = Low Frequency SHF = Super High Frequency nroduion o Wireless Neworks: proools and perormane analsis Luiano Bononi bononi@s.unibo.i Tesi onsigliai: William Sallings, Wireless Communiaions & Neworks, Prenie Hall,, SBN 348646 Johen H. Shiller, Mobile

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

Examination Mobile & Wireless Networking ( ) April 12,

Examination Mobile & Wireless Networking ( ) April 12, Page 1 of 5 Examinaion Mobile & Wireless Neworking (192620010) April 12, 2017 13.45 16.45 Noes: Only he overhead shees used in he course, 2 double-sided shees of noes (any fon size/densiy!), and a dicionary

More information

ICT 5305 Mobile Communications

ICT 5305 Mobile Communications ICT 5305 Mobile Communicaions Lecure - 2 April 2016 Dr. Hossen Asiful Musafa 2.1 Frequencies for communicaion VLF = Very Low Frequency LF = Low Frequency MF = Medium Frequency HF = High Frequency VHF =

More information

Lecture 13: Capacity of Cellular Systems

Lecture 13: Capacity of Cellular Systems Leure : apaiy of ellular Sysems Afer ha we onsidered he apaiy of a ommuniaion hannel in he erms of raffi load of daa in bis per seond and speral effiieny in erms of bi per seond per herz, le us now disuss

More information

Chapter 2 PHYSICAL AND LINK LAYER

Chapter 2 PHYSICAL AND LINK LAYER Overview Chaper 2 PHYSICAL AND LINK LAYER Mobile Compuing Summer 2004 Disribued Compuing Group Frequenies Signals Anenna Modulaion Signal propagaion Mulipleing Spread sperum CDMA Disribued Compuing Group

More information

Efficient Pathloss Model for determining Mobile Radio Link Design

Efficient Pathloss Model for determining Mobile Radio Link Design 15 IJSRSET Volume 1 Issue 3 rin ISSN : 395-199 Online ISSN : 394-499 Theme Secion: Engineering an Technology Efficien ahloss Moel for eermining Mobile Raio Link Design Alor M.O Deparmen of Elecrical/Elecronic

More information

System Theory and Technologies. What means the Nyquist Criterium for baseband transmission?

System Theory and Technologies. What means the Nyquist Criterium for baseband transmission? Chapter 3 System Theory an Tehnologies 1 Exerise What means the Nyquist Criterium or baseban transmission? What is the avantage / isavantage o a Manhester-Coe ompare to the AMI Coe? A rame with 1000 Bit

More information

dm t t A cos 2 10 t 10

dm t t A cos 2 10 t 10 T.C. OKAN ÜNİVERSİTESİ Fauly o Engineering and Arhieure Elerial and Eleroni Engineering Program EEE 3 Analog Communiaions Fall 23 In Class Work Par 4 Soluions:. Skeh he FM and PM modulaed waveorms or he

More information

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier)

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier) EE 499: Wireless & Mobile Communiaions (08) Leure : Modulaion Tehniques or Mobile Radio Dr. Wajih. bu-l-saud mpliude Modulaion Tehniques mpliude Modulaion (Full M or Double Sideband wih Carrier) The general

More information

Wireless Transmission:

Wireless Transmission: Wireless Transmission: Physical Layer Aspects and Channel Characteristics Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems 1 Frequencies for communication

More information

COMM702: Modulation II

COMM702: Modulation II COMM70: Modulaion II Leure 4 - Coheren and non-oheren inary pass-and daa ransmission Binary Digial Modulaion Sinusoidal Carrier Digial Message ASK FSK PSK Parameers o Digial Pass-and ransmission Proailiy

More information

Structure of the Lecture

Structure of the Lecture Structure of the Lecture Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

Page 1. Spreading and frequency selective fading. #4: Spread Spectrum Technology. How do we overcome limitations imposed by the radio channel?

Page 1. Spreading and frequency selective fading. #4: Spread Spectrum Technology. How do we overcome limitations imposed by the radio channel? EEC173B/ECS15C, Spring 009 How do we overome limiaions imposed by he radio hannel? Fundamenals o Wireless Communiaions #4: Spread Sperum #5: Muliplexing #6: Frequeny euse (Cellular Conep) Case Sudy: Wireless

More information

Chapter 5 Amplitude Modulation

Chapter 5 Amplitude Modulation Chaper 5 pliude Modulaion 68 nalog Couniaion Syse Inoraion Soure Signal Modulaor Propagaion Channel Signal Deodulaor Inoraion Desinaion nalog signals ay be ransied direly via arrier odulaion over he propagaion

More information

VS203B Lecture Notes Spring, Topic: Thin Film Interference

VS203B Lecture Notes Spring, Topic: Thin Film Interference VS03B Leure Noes Spring, 03 0 Topi: Thin Film Inerferene Thin Film Inerferene When ligh his a surfae, i an be absorbed, ransmied or refleed. Ligh an refle from any inerfae where here is a hange in refraive

More information

Example Message bandwidth and the transmitted signal bandwidth

Example Message bandwidth and the transmitted signal bandwidth 4.6 Bandwidh-Eiien Modulaions 4.74. We are now going o deine a quaniy alled he bandwidh o a signal. Unorunaely, in praie, here isn jus one deiniion o bandwidh. Deiniion 4.75. The bandwidh (BW) o a signal

More information

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications Laboraory #2 Speral Analysis of Digial Baseband Signals SYSC 4600 Digial Communiaions Deparmen of Sysems and Compuer Engineering Fauly of Engineering Carleon Universiy Oober 206 Deparmen of Sysems & Compuer

More information

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations Structure of the Lecture Chapter 2 Technical Basics: Laer Methods for Medium Access: Laer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

Chapter 2 PHYSICAL AND LINK LAYER

Chapter 2 PHYSICAL AND LINK LAYER Chapter 2 PHYSICAL AND LINK LAYER Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum CDMA Modulation Distributed

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO Multiplexing, Cognitive Radio Spread spectrum, modulation Cellular systems 2.1 Frequencies

More information

Lecture 11. Digital Transmission Fundamentals

Lecture 11. Digital Transmission Fundamentals CS4/MSc Compuer Neworking Lecure 11 Digial Transmission Fundamenals Compuer Neworking, Copyrigh Universiy of Edinburgh 2005 Digial Transmission Fundamenals Neworks consruced ou of Links or ransmission

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO

More information

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II ECE 405 - ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II FALL 2005 A.P. FELZER To do "well" on his invesigaion you mus no only ge he righ answers bu mus also do

More information

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Introduction: Analog Communication: Goal: Transmit a message from one location to another. ECE-5 Phil Schnier January 6, 8 Inroducion: Goal: Transmi a rom one locaion o anoher When is coninuous waveorm analog comm (eg, FM radio), sequence o numbers digial comm (eg, mp ile), hough he sequence

More information

Technology Trends & Issues in High-Speed Digital Systems

Technology Trends & Issues in High-Speed Digital Systems Deailed comparison of dynamic range beween a vecor nework analyzer and sampling oscilloscope based ime domain reflecomeer by normalizing measuremen ime Sho Okuyama Technology Trends & Issues in High-Speed

More information

The Impact of Different Radio Propagation Models for Mobile Ad hoc NETworks (MANET) in Urban Area Environment

The Impact of Different Radio Propagation Models for Mobile Ad hoc NETworks (MANET) in Urban Area Environment The Impac of Differen Raio Propagaion Moels for Mobile A hoc NETworks (MANET) in Urban Area Environmen Ibrahim Khier Elahir Communicaion Sofware an Swich Cener,Dep of Elecronic an Informaion Sysems Huazhong

More information

weight: amplitude of sine curve

weight: amplitude of sine curve Joseph Fourier s claim: all signals are sums of sinusoids of differen frequencies. weighed sine curves weigh: ampliude of sine curve all : no exacly bu doesn maer for us in pracice Example: 3 sin() + sin(*)

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Modulation and Demodulation Yang (Richard) Yang Computer Science Department Yale University 208A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

Mobile Ad Hoc Networks

Mobile Ad Hoc Networks Mobile Ad Hoc Networks Dr. Lokesh Chouhan Assistant Professor Computer Science and Engineering (CSE) Department National Institute of Technology (NIT) Hamirpur (H.P.) INDIA Website: http://nith.ac.in/newweb/computer-science-engineering/

More information

VS203B Lecture Notes Spring, Topic: Diffraction

VS203B Lecture Notes Spring, Topic: Diffraction VS03B Lecure Noes Spring, 013 011 Topic: Diffracion Diffracion Diffracion escribes he enency for ligh o ben aroun corners. Huygens principle All poins on a wavefron can be consiere as poin sources for

More information

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature! Lecure 4 EITN75 2018 Chaper 12, 13 Modulaion and diversiy Receiver noise: repeiion Anenna noise is usually given as a noise emperaure! Noise facors or noise figures of differen sysem componens are deermined

More information

Mobile Communications

Mobile Communications Mobile Communications Semester B, Mandatory modules, ECTS Units: 3 George Pavlides http://georgepavlides.info Book: Jochen H. Schiller, Mobile Communications Second Edition, Addison- Wesley, Pearson Education

More information

A FMCW-FSK Combined Waveform for Multi-Target Detection in FMCW Radar

A FMCW-FSK Combined Waveform for Multi-Target Detection in FMCW Radar 217 2 n Inernaional Conerence on Compuer Engineering, Inormaion Science an Inerne Technology (CII 217) ISBN: 978-1-6595-54-9 A FMCW-FSK Combine Waveorm or Muli-Targe Deecion in FMCW Raar TAO SHEN, WENQUAN

More information

Lecture #7: Discrete-time Signals and Sampling

Lecture #7: Discrete-time Signals and Sampling EEL335: Discree-Time Signals and Sysems Lecure #7: Discree-ime Signals and Sampling. Inroducion Lecure #7: Discree-ime Signals and Sampling Unlike coninuous-ime signals, discree-ime signals have defined

More information

Wireless Transmission Rab Nawaz Jadoon

Wireless Transmission Rab Nawaz Jadoon Wireless Transmission Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication Frequency Spectrum Note: The figure shows

More information

Generating Polar Modulation with R&S SMU200A

Generating Polar Modulation with R&S SMU200A Rohde & Schwarz producs: SMU00 Generaing Polar Modulaion wih R&S SMU00 Polar modulaion is a mehod where digial modulaion is realized as a combinaion of phase and ampliude modulaion, raher han using an

More information

Mobile Communications Chapter 3 : Media Access

Mobile Communications Chapter 3 : Media Access Moivaion Can we apply media access mehods from fixed neworks? Mobile Communicaions Chaper 3 : Media Access Moivaion SDMA, FDMA, TDMA Aloha Reservaion schemes Collision avoidance, MACA Polling CDMA SAMA

More information

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity Wrap Up Fourier ransorm Sampling, Modulaion, Filering Noise and he Digial Absracion Binary signaling model and Shannon Capaciy Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Wrap Up, Slide

More information

WIRELESS TRANSMISSION

WIRELESS TRANSMISSION COMP 635: WIRELESS NETWORKS WIRELESS TRANSMISSION Jasleen Kaur Fall 205 Outline Frequenc Spectrum Ø Usage and Licensing Signals and Antennas Ø Propagation Characteristics Multipleing Ø Space, Frequenc,

More information

Signal Characteristics

Signal Characteristics Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1

More information

Transmission Lines. Transmission Lines :: Topics. Introduction Wave Propagation Termination Reflections Summary. Introduction.

Transmission Lines. Transmission Lines :: Topics. Introduction Wave Propagation Termination Reflections Summary. Introduction. Transmission Lines Digial Design and Compuer Archiecure David Money Harris and Sarah L. Harris Transmission Lines :: Topics Inroducion Wave Propagaion Terminaion Reflecions Summary TL- TL- Inroducion

More information

New Standards for Wireless LANs

New Standards for Wireless LANs New Standards for Wireless LANs Summer Term 2014 Dr.-Ing. Andreas Könsgen Dr.-Ing. Koojana Kuladinithi Communication Networks TZI University of Bremen Organisational Issues How to reach us? Andreas Könsgen

More information

Communication Systems. Communication Systems

Communication Systems. Communication Systems Communicaion Sysems Analog communicaion Transmi and receive analog waveforms Ampliude Modulaion (AM Phase Modulaion (PM Freq. Modulaion (FM Quadraure Ampliude Modulaion (QAM Pulse Ampliude Modulaion (PAM

More information

Lecture 19: Lowpass, bandpass and highpass filters

Lecture 19: Lowpass, bandpass and highpass filters Leure 9: Lowpass, bandpass and higass filers UHTXHQF\6HOHFLYH LOHUV Ideal frequeny-seleive filers are filers ha le frequeny omponens over a given frequeny band (he passband pass hrough undisored, while

More information

Mm- Wave Propaga-on: Fundamentals and Models

Mm- Wave Propaga-on: Fundamentals and Models Mm- Wave Propaga-on: Fundamentals and Models Hajime Suzuki 7 April 2014 CSIRO Computa-onal Informa-cs CSIRO Radio Physics Laboratory Advanced Wireless Broadband Communica:ons in Rural Areas Page 2 Coded

More information

Mobile Communications I Chapter 1: Introduction and History

Mobile Communications I Chapter 1: Introduction and History Mobile Communications I Chapter 1: Introduction and History Mobile communication Two aspects of mobility: user mobility: users communicate (wireless) anytime, anywhere, with anyone device mobility (portability):

More information

Review Exercises for Chapter 10

Review Exercises for Chapter 10 60_00R.q //0 :8 M age 756 756 CHATER 0 Conics, arameric Equaions, an olar Coorinaes Review Eercises for Chaper 0 See www.calccha.com for worke-ou soluions o o-numbere eercises. In Eercises 6, mach he equaion

More information

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission This book ocuses on higher layer aspecs o mobile communicaions, he compuer science elemens raher han on he radio and ransmission aspecs, he elecrical engineering par. This chaper inroduces only hose undamenal

More information

Sound so far: 10/13/2013. Sound and stringed instruments

Sound so far: 10/13/2013. Sound and stringed instruments 0/3/203 Sound and ed insrumens Sound so far: Sound is a pressure or densiy flucuaion carried (usually) by air molecules sound wae is longdiudinal Wha is he difference beween a hud and a musical noe? ecure

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleraion Wha You Need To Know: The Physics In he previous lab you learned ha he velociy of an objec can be deermined by finding he slope of he objec s posiion vs. ime graph. x v ave. = v ave.

More information

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University Signals and he requency domain ENGR 40M lecure noes July 3, 07 Chuan-Zheng Lee, Sanord Universiy signal is a uncion, in he mahemaical sense, normally a uncion o ime. We oen reer o uncions as signals o

More information

Feedback interferometry with frequency modulation

Feedback interferometry with frequency modulation Feedbak inerferomery wih frequeny modulaion ior. obolev, Galina A. Kashheeva Insiue of Auomaion and Eleromery (IAE) iberian Branh of he Russian Aademy of ienes (B RA) 1, Kopuga prospe, Novosibirsk, 639,

More information

Key Issue. 3. Media Access. Hidden and Exposed Terminals. Near and Far Terminals. FDD/FDMA General Scheme, Example GSM. Access Methods SDMA/FDMA/TDMA

Key Issue. 3. Media Access. Hidden and Exposed Terminals. Near and Far Terminals. FDD/FDMA General Scheme, Example GSM. Access Methods SDMA/FDMA/TDMA Key Issue Can we apply media access mehods from fixed neworks? 3. Media Access SDMA, FDMA, TDMA Aloha and Reservaion Schemes Avoidance and Polling MACA, CDMA, SAMA Example CSMA/CD: Carrier Sense Muliple

More information

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 40 Digial Proceing Pro. Mark Fowler Noe Se #3 Baic Sampling heory Reading Aignmen: Sec. 6. o Proaki & Manolaki /9 Sampling i Key o Much o oday echnology Analog Elecronic ADC DSP Compuer DAC C- C- Syem

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

Notes on the Fourier Transform

Notes on the Fourier Transform Noes on he Fourier Transform The Fourier ransform is a mahemaical mehod for describing a coninuous funcion as a series of sine and cosine funcions. The Fourier Transform is produced by applying a series

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGIAL COMMUNICAIONS SYSEMS MSc in Electronic echnologies and Communications Scheme o a communication system Spectrum o electromagnetic requencies Wavelength c Speed o light 3. km/s Frequency Audio khz

More information

Multipath. Introduction. Theory. Multipath 7.1

Multipath. Introduction. Theory. Multipath 7.1 Mulipa 7. Mulipa Inroducion Tere are wo caracerisics o radio cannels a presen serious diiculies or elecommunicaion sysems. One is e remendous dynamic range a mus be accommodaed due o e large cange in pa

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

THE OSCILLOSCOPE AND NOISE. Objectives:

THE OSCILLOSCOPE AND NOISE. Objectives: -26- Preparaory Quesions. Go o he Web page hp://www.ek.com/measuremen/app_noes/xyzs/ and read a leas he firs four subsecions of he secion on Trigger Conrols (which iself is a subsecion of he secion The

More information

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University Priniples of ouniaions Leure 3: nalog Modulaion Tehniques 1 hih-wei Liu 劉志尉 Naional hiao Tung Universiy wliu@wins.ee.nu.edu.w Oulines Linear Modulaion ngle Modulaion Inerferene Feedbak Deodulaors nalog

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

2. Wireless Transmission. Frequencies for Communication (1)

2. Wireless Transmission. Frequencies for Communication (1) 2. Wireless Transmission Frequencies and Signals Muliplexing Modulaion and Spread Specrum 2005 Burkhard Siller and Jochen Schiller FU Berlin M2 2 Frequencies or Communicaion (1) wised pair coax cable opical

More information

The Influence of Propagation Environment in a Live GSM Network

The Influence of Propagation Environment in a Live GSM Network The Influence of Propagaion Environmen in a ive GSM Nework Yu-Huei Tseng, Wen-Shyang Hwang, *Ce-Kuen Shieh Deparmen of Elecrical Engineering, Naional Kaohsiung Universiy of Applied Sciences, Kaohsiung,

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Basics of Wireless and Mobile Communications

Basics of Wireless and Mobile Communications Basics of Wireless and Mobile Communications Wireless Transmission Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems Media Access Schemes Motivation

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #8 C-T Sysems: Frequency-Domain Analysis of Sysems Reading Assignmen: Secion 5.2 of Kamen and Heck /2 Course Flow Diagram The arrows here show concepual

More information

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1 Passand Daa ransmission II Reerences Frequency-shi keying Chaper 6.5, S. Haykin, Communicaion Sysems, Wiley. H. Inroducion Inroducion PSK and QAM are linear modulaion FSK is a nonlinear modulaion Similar

More information

MODEL: M6SXF1. POWER INPUT DC Power R: 24 V DC

MODEL: M6SXF1. POWER INPUT DC Power R: 24 V DC Tension-Clamp Ulra-Slim Signal Condiioners M6S Series FUNCTION MODULE (PC programmable) Funcions & Feaures Mainenance-free ension clamp connecion Single inpu filer and funcion module 12 ypes of funcions

More information

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents ree-wheeling diode Turn-off power dissipaion: off/d = f s * E off/d (v d, i LL, T j/d ) orward power dissipaion: fw/t = 1 T T 1 v () i () d Neglecing he load curren ripple will resul in: fw/d = i Lavg

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

Ultrawideband Normalized Radar Cross Sections of Distributed Clutter

Ultrawideband Normalized Radar Cross Sections of Distributed Clutter Ulrawideband Normalized Radar Cross Secions o Disribued Cluer Ram M. Narayanan Deparmen o Elecrical Engineering The Pennsylvania Sae Universiy Universiy Park, PA 68, USA ram@engr.psu.edu Absrac Theoreical

More information

Mobile Communication-Systems II: From Cellular to Mobile Services. Prof. Dr.-Ing. Rolf Kraemer Lehrstuhl für Systeme

Mobile Communication-Systems II: From Cellular to Mobile Services. Prof. Dr.-Ing. Rolf Kraemer Lehrstuhl für Systeme Mobile Communication-Systems II: From Cellular to Mobile Services Prof. Dr.-Ing. Rolf Kraemer Lehrstuhl für Systeme Lecture Overview Quick Repetition of Basics GSM: Architecture and Features GPRS: Extended

More information

3: Microscopic imaging

3: Microscopic imaging Ouline 3: Microscopic imaging Microscope layou Three limis o resoluion Diracion Pixel size Aberraions Comparison o elescopes and microscopes Rober R. McLeod, Universiy o Colorado 35 Microscope layou Anaomy

More information

Diodes. Diodes, Page 1

Diodes. Diodes, Page 1 Diodes, Page 1 Diodes V-I Characerisics signal diode Measure he volage-curren characerisic of a sandard signal diode, he 1N914, using he circui shown below. The purpose of he back-o-back power supplies

More information

Physical Layer Issues

Physical Layer Issues Physical Layer Issues twisted pair coax cable Frequencies for communication optical transmission 1 Mm 300 Hz 10 km 30 khz 100 m 3 MHz 1 m 300 MHz 10 mm 30 GHz 100 µm 3 THz 1 µm 300 THz VLF LF MF HF VHF

More information

UNIT IV DIGITAL MODULATION SCHEME

UNIT IV DIGITAL MODULATION SCHEME UNI IV DIGIAL MODULAION SCHEME Geomeric Represenaion of Signals Ojecive: o represen any se of M energy signals {s i (} as linear cominaions of N orhogonal asis funcions, where N M Real value energy signals

More information

An Introduction to Wireless Technologies Part 1. F. Ricci

An Introduction to Wireless Technologies Part 1. F. Ricci An Introduction to Wireless Technologies Part 1 F. Ricci Content Wireless communication standards Computer Networks Simple reference model Frequencies and regulations Wireless communication technologies

More information

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN)

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN) Wireless Networks Why Wireless Networks? rate MBit/s 100.0 10.0 1.0 0.1 0.01 wired terminals WMAN WLAN CORDLESS (CT, DECT) Office Building stationary walking drive Indoor HIPERLAN UMTS CELLULAR (GSM) Outdoor

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications TELE465 Mobile and Saellie Communicaions Assignmen (Due: 4pm, Monday 7 h Ocober) To be submied o he lecurer before he beginning of he final lecure o be held a his ime.. This quesion considers Minimum Shif

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2004 Uni: Day and Time: Time Allowed: ELEC32 Communiaion Sysems (D2) Friday, 9 November 2004, 9:20 a.m. Three hours plus 0 minues reading ime. Toal Number of Quesions: SIX (6)

More information

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 4: Bandpass Digial Transmission A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper 4: Bandpass Digial Transmission Digial CW modulaion Coheren binary sysems

More information

Will my next WLAN work at 1 Gbps?

Will my next WLAN work at 1 Gbps? Will my nex WLAN work a 1 Gbps? Boris Bellala boris.bellala@upf.edu hp://www.dic.upf.edu/ bbellal/ Deparmen of Informaion and Communicaion Technologies (DTIC) Universia Pompeu Fabra (UPF) 2013 Ouline Moivaion

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals Deparmen of Elecrical Engineering Universiy of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Coninuous-Time Signals Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inroducion: wha are signals and sysems? Signals

More information

OFDMA for Access Networks: Optical Setup

OFDMA for Access Networks: Optical Setup OFDMA or Access Neworks: Opical Seup Johannes von Hoyningen-Huene Lehrsuhl ür Nachrichen- und Überragungsechnik CAU Kiel Workshop der ITG-Fachgruppe 5.3.1 Kiel, 10.2.2015 Moivaion or OFDMA in Opical Access

More information

Extra Practice 1. Name Date. Lesson 6.1: Solving Equations Using Models

Extra Practice 1. Name Date. Lesson 6.1: Solving Equations Using Models Maser 6.0 Era Pracice Lesson 6.: Solving Equaions Using Models. Use a model o solve each equaion. Verif he soluion. a) 7 = 56 b) 45 = 9 c) = 4 d) 9 =. Use a model o solve each equaion. Verif he soluion.

More information

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c Inernaional Symposium on Mechanical Engineering and Maerial Science (ISMEMS 016 Phase-Shifing Conrol of Double Pulse in Harmonic Eliminaion Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi i1, c

More information

Overview and Challenges

Overview and Challenges RF/RF-SoC Overview and Challenges Fang Chen May 14, 2004 1 Content What is RF Research Topics in RF RF IC Design/Verification RF IC System Design Circuit Implementation What is RF-SoC Design Methodology

More information

Intermediate Frequency (IF)

Intermediate Frequency (IF) Inerediae Frequeny IF Iage frequeny p. II-33 Apliude Modulaion: SSB DSB odulaion: By ixing wih a inuoidal arrier a rad/e, half of hi peral deniy i ranlaed up in frequeny and enered abou and half i ranlaed

More information

Network Performance Metrics

Network Performance Metrics Fundamenals of Compuer Neworks ECE 478/578 Lecure #3 Insrucor: Loukas Lazos Dep of Elecrical and Compuer Engineering Universiy of rizona Nework Performance Merics andwidh moun of daa ransmied per uni of

More information