dm t t A cos 2 10 t 10

Size: px
Start display at page:

Download "dm t t A cos 2 10 t 10"

Transcription

1 T.C. OKAN ÜNİVERSİTESİ Fauly o Engineering and Arhieure Elerial and Eleroni Engineering Program EEE 3 Analog Communiaions Fall 23 In Class Work Par 4 Soluions:. Skeh he FM and PM modulaed waveorms or he modulaing signal m() shown below a. = MHz, k = 2π 5, k p = π. + 2x -4 SOLUTION: FOR Frequeny Modulaion: m FM 8 5 A os 2 2 mxdx FOR Phase Modulaion: 6 2 m d 6 d 2 m d d 8 A os 2 m PM dm d PM + 2x -4

2 m + 2x -4 FM b. = MHz, k = 2π 5, k p = π/2. + SOLUTION: FOR Frequeny Modulaion: FOR Phase Modulaion: m 6 2 m FM A os 2 2 mxdx d 6 d 2 m d 2 d 8 PM A os 2 m 2 Noie ha m 2 is a phase hange o +π only a τ 2 2. A phase hange o π is hal a wavelengh.

3 dm d τ PM 2δ( τ ) 2δ( τ 3 ) τ 2 τ 3 2δ( τ 2 ) 2δ( τ 4 ) τ 4 m + FM 2. Deermine he bandwidh o he ollowing signal or PM and FM modulaion: a. = MHz, k = 2π 5 radians/se/v, k p = π. radians/v, + 2x -4 SOLUTION: FOR Frequeny Modulaion: m FM 8 5 A os 2 2 mxdx FOR Phase Modulaion: 6 2 m d 6 d 2 m d d 8 A os 2 m PM

4 For requeny modulaion, he peak ampliude o m() is, so m p =. This means ha he maximum requeny deviaion is ω = k m p =2π 5 =2π 5, and = ω/(2π) = 5 Hz = Hz = khz. Now deermine he bandwidh B o m(). For a periodi signal he Fourier series expansion is: os m Cn n n where ω is he undamenal requeny, alulaed as: The Fourier oeiiens or a periodi sawooh wave (above union) are: C n 8 n odd 2 2 n n even The harmoni ampliude dereases very quikly wih n. See he ollowing Malab ode: >> n = [:2:5] n = >> Cn = 8/pi^2./(n.^2) Cn = >> Cn./Cn() ans = Aording o he deiniion in your slides, we ould deine he bandwidh o he signal as he poin a whih he signal power drops o % o he power o he irs harmoni. So i we square hese oeiiens (o ind he power in ha harmoni). We an see ha he 3 rd index is abou 4% o he irs index. I we square his o ind heir relaive powers, we ind ha he 3 rd harmoni power is only (.4) 2 =.6 or.6 peren o he power o he irs harmoni, whih means i an be negleed. We an say ha he bandwidh o he signal m() is abou 2 imes is undamenal requeny ω = π. This means ha he bandwidh is abou 2 π. radians, whih orresponds o B = (2 π) / (2 π) = Hz = khz. This means ha he bandwidh o he FREQUENCY modulaed signal is B 2 B 2 khz khz 2 khz 22kHz. FM

5 For phase modulaion, we need o look a he bandwidh o he derivaive o he sawooh wave, whih is a square wave. The peak ampliude or he derivaive is ( ) 4 slope 2. So m 4 p = 2 4. This means ha he maximum requeny deviaion is ω = k m p =π 2 4 = 2π 5, and = ω/(2π) = 5 Hz = Hz = khz. The Fourier series or a square wave is: d m D n os n d n where ω is he undamenal requeny, is alulaed he same way as beore: The Fourier oeiiens or a periodi square wave (above union) are: D n 4 n odd n n even The harmoni ampliude dereases very quikly wih n. See he ollowing Malab ode: >> n = [:2:5] n = >> Dn = 4/pi./n Dn = >> Dn./Dn() ans = This ime he 6 h harmoni erm, is he irs erm smaller smaller han / h o he undamenal erm, whih means i is he irs erm suh ha he power o he harmonis is less han % o he irs harmoni. Based on he deiniion we alulae he bandwidh o be 5 imes he undamenal, whih means ha B = (5 π) / (2 π) = 25Hz = 25 khz. So sine neiher B nor hange rom he previous example, hen he bandwidh o he PHASE modulaed signal is B 2 B 2 25kHz khz 2 25kHz 25kHz. PM

6 3. A periodi square wave m() below (a) requeny modulaes a arrier o requeny = khz wih =khz. The arrier ampliude is A. The resuling FM signal is demodulaed, as shown in he igure (b) below. Skeh he waveorms a poins b,, d, and e. m() + T o ime a b d e FM modulaor d d Envelope deeor DC bloking Demodulaor For FM modulaion, our phase is equal o he inegral o he message. So i he message waveorm is : i.5ms i.5ms ms m i ms.5ms hen i.5ms 2ms i.5ms.5ms.5ms i.5ms ms M ms i ms.5ms.5ms.5ms i.5ms 2ms sfm A os 2 2 k m d A os 2 2 k M is skehed below.

7 Malab ode whih will skeh he waveorms: =:/e3:2e-3; m = [- -ones(,5) ones(, 5) -ones(,5) ones(, 5)] = (:5); M = [ - -.5e e-3+]; sfm=os(2*pi*e3*+2*pi*4e3*m); subplo(3,,) plo(,m) legend('m()') subplo(3,,2) plo(,m) legend('m()') subplo(3,,3) plo(,sfm) legend('s_{fm}()')

8 m() x -3 x -4 M() x -3 s FM () x -3 Waveorm a (b) The waveorm a () is ds FM d A 2 2 k msin 2 2 k m d A 2 2 k msin 2 2 k M

9 Malab ode whih will skeh he waveorms: d_sfm=-(2*pi*e3+2*pi*4e3*m).*sin(2*pi*e3*+2*pi*4e3*m); e = (2*pi*e3+2*pi*4e3*m); e_minus_d = 2*pi*4e3*m; subplo(5,,) plo(,m) legend('m()') axis([ 2e ]) ylabel('(a)') subplo(5,,2) plo(,sfm) legend('s_{fm}()') ylabel('(b)') subplo(5,,3) plo(,d_sfm) legend('ds_{fm}() / d') ylabel('()') subplo(5,,4) plo(,e) legend('envelope o ds_{fm}() / d') ylabel('(d)') subplo(5,,5) plo(,e_minus_d) legend('oupu o d bloker') ylabel('(e)')

10 (e) (d) () (b) (a) m() x -3 s FM () x 5 x -3 ds FM () / d - x x -3 envelope o ds FM () / d x 4 x -3 oupu o d bloker x -3

11 4. Le s() be an angle-modulaed signal ha a reeiver obains, 2os 2sin os s a. Find he bandwidh o his FM signal. b. I s() is sen o an (ideal) envelope deeor, ind he deeor oupu signal.. I s() is irs diereniaed beore he envelope deeor, ind he deeor oupu signal. d. Explain whih deeor oupu an be proessed o yield he message signal m() and ind he message signal m() i k = 2π radians/v/s. Soluion: a. Firs we need o ind he maximum requeny deviaion or any value o o ind ha irs alulae he insananious requeny: d i d 2sin os 2 2 os sin Looking a his, we an assume ha he maximum value will our when sin() = and sin(2π+.3π) =, in whih ase he angular requeny inreases by (4 π +3π)= 43π. So = 25Hz. The bandwidh o he message signal is aken o be he requeny o he larges signal here, so his is : 2 B max, khz 2 2 Finally inding he bandwidh : B 2 B 2 2.5kHz khz 2 3.5kHz 6.3kHz. PM b. I he oupu was sen o an ideal envelope deeor, sine he envelope o he signal is onsan a 2, he oupu would be 2 all he ime. The requeny holds he message, bu he envelope deeor will remove his.

12 . Diereniaing he signal gives us: ds 2 os 2sin os d d 2sin os d 2 os 2sin os So he oupu o he envelope deeor will be 2 2 os sin 2 22 os sin e d. Clearly he envelope o he diereniaed signal will give us inormaion abou he original message signal. Sine his was an FM signal, we know ha he inegral o he message signal was: s A os 2 2 k m d 2 os 2sin os FM Diereniaing boh sides o he phase gives us: 2 k m d 2sin os 2 k m 2 2 os sin So he message signal is: Noe: he unis o k, are saed o be radians/v, so we need o solve aordingly. k m 22 os sin 2 m 22 os sin m 2 os 2.3.5sin m 2os 2.3.5sin From par () he envelope o he diereniaed signal was 2 22 os sin e Thereore: m e 2 2 os sin 2

13 5. Consider an FM signal: sfm A os 2 2 k m d Le and 2 ( 2 > ) denoe he imes assoiaed wih wo adjaen zero rossings o x FM (). I 2 m d m hen show ha 2km where = Beween wo adjaen zero rossings, he phase should hange by π, so k m d 2 2 k m d 2 2 k m d 2 2 k m k m 2k m 2 2

14 6. The resul o he previous problem indiaes ha m() an be reovered by ouning he zero rossings in x FM (). Le N denoe he number o zero rossings in ime T. Show ha i T saisies he ondiion T where M is he bandwidh o m() in H (ω M =2π M ), hen N km 2T M Suppose ha m() is onsan over some inerval T (his requres he ondiion ha M << T. sfm A os 2 2 k m d Sine a zero rossing ours every ime he phase hanges by pi, he number o zero rossings over he inerval rom o 2 will be: 2 N k m d 2 2 k m d k m d k m 2 2 k m 2 k m2 k m N 2

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier)

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier) EE 499: Wireless & Mobile Communiaions (08) Leure : Modulaion Tehniques or Mobile Radio Dr. Wajih. bu-l-saud mpliude Modulaion Tehniques mpliude Modulaion (Full M or Double Sideband wih Carrier) The general

More information

Example Message bandwidth and the transmitted signal bandwidth

Example Message bandwidth and the transmitted signal bandwidth 4.6 Bandwidh-Eiien Modulaions 4.74. We are now going o deine a quaniy alled he bandwidh o a signal. Unorunaely, in praie, here isn jus one deiniion o bandwidh. Deiniion 4.75. The bandwidh (BW) o a signal

More information

COMM702: Modulation II

COMM702: Modulation II COMM70: Modulaion II Leure 4 - Coheren and non-oheren inary pass-and daa ransmission Binary Digial Modulaion Sinusoidal Carrier Digial Message ASK FSK PSK Parameers o Digial Pass-and ransmission Proailiy

More information

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communicaions II Lecure 5: Eecs o Noise on FM Proessor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Recap o FM FM sysem model in noise Derivaion o oupu SNR Pre/de-emphasis

More information

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First Signal Proessing Firs Leure 4 Ampliude Modulaion AM LECURE OBJECIVES Review of F properies Convoluion mulipliaion Frequen shifing Sinewave Ampliude Modulaion AM radio Frequen-division mulipleing FDM

More information

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University Priniples of ouniaions Leure 3: nalog Modulaion Tehniques 1 hih-wei Liu 劉志尉 Naional hiao Tung Universiy wliu@wins.ee.nu.edu.w Oulines Linear Modulaion ngle Modulaion Inerferene Feedbak Deodulaors nalog

More information

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II ECE 405 - ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II FALL 2005 A.P. FELZER To do "well" on his invesigaion you mus no only ge he righ answers bu mus also do

More information

Lecture 19: Lowpass, bandpass and highpass filters

Lecture 19: Lowpass, bandpass and highpass filters Leure 9: Lowpass, bandpass and higass filers UHTXHQF\6HOHFLYH LOHUV Ideal frequeny-seleive filers are filers ha le frequeny omponens over a given frequeny band (he passband pass hrough undisored, while

More information

Intermediate Frequency (IF)

Intermediate Frequency (IF) Inerediae Frequeny IF Iage frequeny p. II-33 Apliude Modulaion: SSB DSB odulaion: By ixing wih a inuoidal arrier a rad/e, half of hi peral deniy i ranlaed up in frequeny and enered abou and half i ranlaed

More information

Chapter 5 Amplitude Modulation

Chapter 5 Amplitude Modulation Chaper 5 pliude Modulaion 68 nalog Couniaion Syse Inoraion Soure Signal Modulaor Propagaion Channel Signal Deodulaor Inoraion Desinaion nalog signals ay be ransied direly via arrier odulaion over he propagaion

More information

ELG3175 Introduction to Communication Systems. VSB and Introduction to Angle Modulation

ELG3175 Introduction to Communication Systems. VSB and Introduction to Angle Modulation ELG3175 Inoduion o Communiaion Sysems and Inoduion o ngle odulaion oivaion Fo wideband inomaion signals, SSB is diiul o implemen. Fo equeny disiminaion, he ile mus have a shap uo nea he equeny so as o

More information

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Introduction: Analog Communication: Goal: Transmit a message from one location to another. ECE-5 Phil Schnier January 6, 8 Inroducion: Goal: Transmi a rom one locaion o anoher When is coninuous waveorm analog comm (eg, FM radio), sequence o numbers digial comm (eg, mp ile), hough he sequence

More information

EE (082) Chapter IV: Angle Modulation Lecture 19 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 19 Dr. Wajih Abu-Al-Saud EE 370-3 (082) Chaer IV: Angle Modulaion Lecure 19 Dr. Wajih Abu-Al-Saud Wideband and PM For he signal shown below, he value o k ay no saisy he condiion k 1, and hereore he aroxiaion used in narrowband

More information

UNIT-6 ANGLE MODULATION (FM) II

UNIT-6 ANGLE MODULATION (FM) II UNI-6 ANGLE MODULAION FM II opis: Demodulaion o FM waes, Phase Loed Loop, Non-linear Model o he phase loed loop, Linear model o he phase loed loop, FM sereo muliplexing, Nonlinear ees in FM sysems, and

More information

Modulation exercises. Chapter 3

Modulation exercises. Chapter 3 Chaper 3 Modulaion exercises Each problem is annoaed wih he leer E, T, C which sands for exercise, requires some hough, requires some concepualizaion. Problems labeled E are usually mechanical, hose labeled

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2004 Uni: Day and Time: Time Allowed: ELEC32 Communiaion Sysems (D2) Friday, 9 November 2004, 9:20 a.m. Three hours plus 0 minues reading ime. Toal Number of Quesions: SIX (6)

More information

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications Laboraory #2 Speral Analysis of Digial Baseband Signals SYSC 4600 Digial Communiaions Deparmen of Sysems and Compuer Engineering Fauly of Engineering Carleon Universiy Oober 206 Deparmen of Sysems & Compuer

More information

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall ELEC 350 Communiations Theory and Systems: I Analog Signal Transmission and Reeption ELEC 350 Fall 2007 1 ELEC 350 Fall 2007 2 Analog Modulation A large number o signals are analog speeh musi video These

More information

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity Wrap Up Fourier ransorm Sampling, Modulaion, Filering Noise and he Digial Absracion Binary signaling model and Shannon Capaciy Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Wrap Up, Slide

More information

Chapter 2 Continuous-Wave Modulation. 2.1 Introduction

Chapter 2 Continuous-Wave Modulation. 2.1 Introduction Chaper Coninuous-Wave Modulaion.1 Inroduion 1 . mpliude Modulaion os : arrier ampliude : arrier requeny 1+k a m S X.1 os The oupu o he modulaor s 1 kam os. Where m is he baseband signal, k a is he ampliude

More information

Lecture 13: Capacity of Cellular Systems

Lecture 13: Capacity of Cellular Systems Leure : apaiy of ellular Sysems Afer ha we onsidered he apaiy of a ommuniaion hannel in he erms of raffi load of daa in bis per seond and speral effiieny in erms of bi per seond per herz, le us now disuss

More information

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions 2.2-2.7 and 3.1-3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial Communicaions, 2nd ed., John iley & Sons,

More information

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications ELEG- Signal Processing and Communicaions Lecure 5 Periodic Signals, Harmonics & ime-varying Sinusoids READING ASSIGNMENS his Lecure: Chaper 3, Secions 3- and 3-3 Chaper 3, Secions 3-7 and 3-8 Lab sars

More information

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1 Passand Daa ransmission II Reerences Frequency-shi keying Chaper 6.5, S. Haykin, Communicaion Sysems, Wiley. H. Inroducion Inroducion PSK and QAM are linear modulaion FSK is a nonlinear modulaion Similar

More information

Modulation Technique:

Modulation Technique: Modulation Tehnique: There are two basi failies of ontinuous-wave odulation tehniques: 1. Aplitude odulation, in whih the aplitude of a sinusoidal arrier is varied in aordane with an inoing essage signal.

More information

Notes on the Fourier Transform

Notes on the Fourier Transform Noes on he Fourier Transform The Fourier ransform is a mahemaical mehod for describing a coninuous funcion as a series of sine and cosine funcions. The Fourier Transform is produced by applying a series

More information

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3 Laboraory # Chap 3 Objecives Linear Sysem Response: general case Undersand he difference and he relaionship beween a sep and impulse response. Deermine he limis of validiy of an approximaed impulse response.

More information

Solution of ECE 342 Test 2 S12

Solution of ECE 342 Test 2 S12 Soluion of ECE 342 Tes 2 S2. All quesions regarding superheerodyne receivers refer o his diagram. x c () Anenna B T < B RF < 2 f B = B T Oher Signals f c Mixer f Baseband x RFi RF () x RFo () () () x i

More information

Double Side Band Suppressed Carrier

Double Side Band Suppressed Carrier Leure 4 Double Side Band Suppressed Carrier Dr. Ahed El-Mahdy Double Side Band (DSB) Copare beween his equaion and he equaion o onvenional AM Dr. Ahed El-Mahdy SDSB() () S() 0 CARRIER SIGNAL 0-0 0 0.05

More information

Signal Characteristics

Signal Characteristics Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1

More information

Feedback interferometry with frequency modulation

Feedback interferometry with frequency modulation Feedbak inerferomery wih frequeny modulaion ior. obolev, Galina A. Kashheeva Insiue of Auomaion and Eleromery (IAE) iberian Branh of he Russian Aademy of ienes (B RA) 1, Kopuga prospe, Novosibirsk, 639,

More information

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop Chaper 2 Inroducion: From Phase-Locked Loop o Cosas Loop The Cosas loop can be considered an exended version of he phase-locked loop (PLL). The PLL has been invened in 932 by French engineer Henri de Belleszice

More information

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax 2.5.3: Sinusoidal Signals and Complex Exponenials Revision: June 11, 2010 215 E Main Suie D Pullman, W 99163 (509) 334 6306 Voice and Fax Overview Sinusoidal signals and complex exponenials are exremely

More information

MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION

MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION J Modern Technology & Engineering Vol2, No1, 217, pp76-81 MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION GA Rusamov 1*, RJ Gasimov 1, VG Farhadov 1 1 Azerbaijan Technical Universiy, Baku, Azerbaijan

More information

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University Signals and he requency domain ENGR 40M lecure noes July 3, 07 Chuan-Zheng Lee, Sanord Universiy signal is a uncion, in he mahemaical sense, normally a uncion o ime. We oen reer o uncions as signals o

More information

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras ECEN 44 Communicaion Theory Chaper Summary: Coninuous-Wave Modulaion.1 Modulaion Modulaion is a process in which a parameer of a carrier waveform is varied in accordance wih a given message (baseband)

More information

Principles of Communications

Principles of Communications Sae Key Lab. on ISN, Xidian Universiy Principles of Communicaions Chaper VI: Elemenary Digial Modulaion Sysem Email: ychwang@mail.xidian.edu.cn Xidian Universiy Sae Key Lab. on ISN December 13, 2013 Sae

More information

VS203B Lecture Notes Spring, Topic: Thin Film Interference

VS203B Lecture Notes Spring, Topic: Thin Film Interference VS03B Leure Noes Spring, 03 0 Topi: Thin Film Inerferene Thin Film Inerferene When ligh his a surfae, i an be absorbed, ransmied or refleed. Ligh an refle from any inerfae where here is a hange in refraive

More information

Analog/Digital Communications Primer

Analog/Digital Communications Primer for Amaeur Radio Virginia Polyechnic Insiue & Sae Universiy March 19, 2013 # include //... in main() { floa kf = 0.1f; // modulaion facor liquid_freqdem_ype ype = LIQUID_FREQDEM_DELAYCONJ;

More information

6. Amplitude Modulation

6. Amplitude Modulation 6. Amplitude Modulation Modulation is a proess by whih some parameter of a arrier signal is varied in aordane with a message signal. The message signal is alled a modulating signal. Definitions A bandpass

More information

Communications II Lecture 7: Performance of digital modulation

Communications II Lecture 7: Performance of digital modulation Communicaions II Lecure 7: Performance of digial modulaion Professor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Digial modulaion and demodulaion Error probabiliy

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 4 March 3, 6.3: Signals and Sysems Fourier Represenaions Mid-erm Examinaion # Wednesday, April 7, 7:3-9:3pm. No reciaions on he day of he exam. Coverage: Lecures 5 Reciaions

More information

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier

More information

Deblurring Images via Partial Differential Equations

Deblurring Images via Partial Differential Equations Deblurring Images via Parial Dierenial Equaions Sirisha L. Kala Mississippi Sae Universiy slk3@mssae.edu Advisor: Seh F. Oppenheimer Absrac: Image deblurring is one o he undamenal problems in he ield o

More information

2. Continuous-wave modulation

2. Continuous-wave modulation . Continuous-wave odulation 1. Appliation goal We study representations in tie and frequeny doain for two types of ontinuous wave odulation: aplitude odulation (AM) and frequeny odulation (FM).. Continuous-wave

More information

13.1 Analog/Digital Lowpass Butterworth Filter

13.1 Analog/Digital Lowpass Butterworth Filter CHAPTER 3 IIR FILTER DESIGN 3. Analog/Digial Lowpass Buerworh Filer This docuen designs a lowpass digial IIR filer of he Buerworh ype. A bilinear ransforaion is perfored o creae a digial filer fro he analog

More information

Negative frequency communication

Negative frequency communication Negaive frequency communicaion Fanping DU Email: dufanping@homail.com Qing Huo Liu arxiv:2.43v5 [cs.it] 26 Sep 2 Deparmen of Elecrical and Compuer Engineering Duke Universiy Email: Qing.Liu@duke.edu Absrac

More information

Chapter 2. Signal Processing and Modulation

Chapter 2. Signal Processing and Modulation Chaper 2. Signal Proessing and Modulaion 2.1. The Naure of Eleroni Signals 2.1.1. Sai and Quasi-Sai Signals Sai signals are by definiion unhanging over a long period of ime. Suh signals are essenially

More information

Chapter 2: Fourier Representation of Signals and Systems

Chapter 2: Fourier Representation of Signals and Systems Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial

More information

ELG3175 Introduction to Communication Systems. Conventional AM

ELG3175 Introduction to Communication Systems. Conventional AM ELG317 Introdution to Communiation Systems Conventional AM Disadvantages o DSB-SC The reeiver must generate a replia o the arrier in order to demodulate a DSB-SC signal. Any phase and/or requeny error

More information

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud EE 70- (08) Chapter IV: Angle Modulation Leture Dr. Wajih Abu-Al-Saud Effet of Non Linearity on AM and FM signals Sometimes, the modulated signal after transmission gets distorted due to non linearities

More information

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7 EE3204 Microelecronics II Biar / McNeill Due: Monday, May 1, 2017 EE 3204 / Term D-2017 Problem Se 7 All ex problems from Sedra and Smih, Microelecronic ircuis, 7h ediion. NOTES: Be sure your NAME and

More information

Pulse amplitude modula.on Baseband to passband and back

Pulse amplitude modula.on Baseband to passband and back Pulse ampliude modula.on Baseband o and back message inpu ) Today s opics concern wih he modulaor and demodulaor ransminer acharapan Suwansan.suk Sampler Quan.zer Source Channel Modulaor analog sequence

More information

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature! Lecure 4 EITN75 2018 Chaper 12, 13 Modulaion and diversiy Receiver noise: repeiion Anenna noise is usually given as a noise emperaure! Noise facors or noise figures of differen sysem componens are deermined

More information

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017 Angle Modulaion (Phase & Frequency Modulaion) EE442 Lecure 8 Spring 2017 1 Ampliude, Frequency and Phase Modulaion Wih ew excepions, Phase Modulaion (PM) is used primarily in digial communicaion 2 Why

More information

Lecture #7: Discrete-time Signals and Sampling

Lecture #7: Discrete-time Signals and Sampling EEL335: Discree-Time Signals and Sysems Lecure #7: Discree-ime Signals and Sampling. Inroducion Lecure #7: Discree-ime Signals and Sampling Unlike coninuous-ime signals, discree-ime signals have defined

More information

6.003: Signals and Systems Lecture 24 May 6, 2010

6.003: Signals and Systems Lecture 24 May 6, 2010 6.3: Signals and Sysems Lecure 24 May 6, 2 6.3: Signals and Sysems Course VI Underground Guide Modulaion Please give us and fuure sudens feedbac on 6.3 by paricipaing in he Course VI Underground Guide

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #8 C-T Sysems: Frequency-Domain Analysis of Sysems Reading Assignmen: Secion 5.2 of Kamen and Heck /2 Course Flow Diagram The arrows here show concepual

More information

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1) ELE4353 Mobile and Saellie Communicaion Syem uorial 3 (wee 7-8 S 4 Queion If a paricular modulaion provide uiable ER performance whenever σ /

More information

EE201 Circuit Theory I Fall

EE201 Circuit Theory I Fall EE1 Circui Theory I 17 Fall 1. Basic Conceps Chaper 1 of Nilsson - 3 Hrs. Inroducion, Curren and Volage, Power and Energy. Basic Laws Chaper &3 of Nilsson - 6 Hrs. Volage and Curren Sources, Ohm s Law,

More information

UNIT IV DIGITAL MODULATION SCHEME

UNIT IV DIGITAL MODULATION SCHEME UNI IV DIGIAL MODULAION SCHEME Geomeric Represenaion of Signals Ojecive: o represen any se of M energy signals {s i (} as linear cominaions of N orhogonal asis funcions, where N M Real value energy signals

More information

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University Principles o Communicaions Lecure 4: Analog Modulaion Techniques Chih-Wei Liu 劉志尉 Naional Chiao Tung Universiy cwliu@wins.ee.ncu.edu.w Oulines Linear Modulaion Angle Modulaion Inererence Feedback Demodulaors

More information

Signal detection, Fouriertransformation, phase correction and quadrature detection

Signal detection, Fouriertransformation, phase correction and quadrature detection 2/35 Signal deecion, Fourierransformaion, phase correcion and quadraure deecion Peer Schmieder Schmilka 2004 Wha is his seminar abou? Signaldeecion Wha kind of signal do we deec in NMR Fourierransformaion

More information

10. The Series Resistor and Inductor Circuit

10. The Series Resistor and Inductor Circuit Elecronicsab.nb 1. he Series esisor and Inducor Circui Inroducion he las laboraory involved a resisor, and capacior, C in series wih a baery swich on or off. I was simpler, as a pracical maer, o replace

More information

Free and Forced Vibrations of Two Degree of Systems

Free and Forced Vibrations of Two Degree of Systems ree and orced Vibraions of Two Degree of Syses Inroducion: The siple single degree-of-freedo syse can be coupled o anoher of is ind, producing a echanical syse described by wo coupled differenial equaions;

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals Deparmen of Elecrical Engineering Universiy of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Coninuous-Time Signals Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inroducion: wha are signals and sysems? Signals

More information

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introdution to Analog And Digital Communiations Seond Edition Simon Haykin, Mihael Moher Chapter 9 Noise in Analog Communiations 9.1 Noise in Communiation Systems 9. Signal-to-Noise Ratios 9.3 Band-Pass

More information

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

f t 2cos 2 Modulator Figure 21: DSB-SC modulation. 4.5 Ampliude modulaion: AM 4.55. DSB-SC ampliude modulaion (which is summarized in Figure 21) is easy o undersand and analyze in boh ime and frequency domains. However, analyical simpliciy is no always

More information

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects Opical Shor Pulse Generaion and Measuremen Based on Fiber Polarizaion Effecs Changyuan Yu Deparmen of Elecrical & Compuer Engineering, Naional Universiy of Singapore, Singapore, 117576 A*STAR Insiue for

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 40 Digial Proceing Pro. Mark Fowler Noe Se #3 Baic Sampling heory Reading Aignmen: Sec. 6. o Proaki & Manolaki /9 Sampling i Key o Much o oday echnology Analog Elecronic ADC DSP Compuer DAC C- C- Syem

More information

March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION

March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION 1. Parial Derivaives and Differeniable funcions In all his chaper, D will denoe an open subse of R n. Definiion 1.1. Consider a funcion

More information

Lecture 11. Digital Transmission Fundamentals

Lecture 11. Digital Transmission Fundamentals CS4/MSc Compuer Neworking Lecure 11 Digial Transmission Fundamenals Compuer Neworking, Copyrigh Universiy of Edinburgh 2005 Digial Transmission Fundamenals Neworks consruced ou of Links or ransmission

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

Signals and communications fundamentals

Signals and communications fundamentals Signals and communicaions undamenals Luca Reggiani luca.reggiani@polimi.i hp://home.dei.polimi.i/reggiani/ Diparimeno di Eleronica, Inormazione e Bioingegneria Poliecnico di Milano Signals and communicaions

More information

Angle Modulation Frequency Modulation

Angle Modulation Frequency Modulation Angle Modulation Frequeny Modulation Consider again the general arrier v t =V osω t + φ ωt + φ represents the angle o the arrier. There are two ways o varying the angle o the arrier. a) By varying the

More information

Analog Communication (10EC53) Unit 3 Quadrature Carrier Multiplexing

Analog Communication (10EC53) Unit 3 Quadrature Carrier Multiplexing Analog Couniation (0EC53) Unit 3 Quadrature Carrier Multiplexing A Quadrature Carrier Multiplexing (QCM) or Quadrature Aplitude Modulation (QAM) ethod enables two DSBSC odulated waves, resulting ro two

More information

Communication involves the transfer of information from one point to another. Three basic elements

Communication involves the transfer of information from one point to another. Three basic elements Wha s Communiaions? Communiaion involves he ransfer of informaion from one poin o anoher. Three basi elemens Transmier: onvers message ino a form suiable for ransmission Channel: he physial medium, inrodues

More information

Communication Systems, 5e

Communication Systems, 5e Communiation Systems, 5e Chapter 7: Analog Communiation Systems A. Brue Carlson Paul B. Crilly 010 The Mraw-Hill Companies Chapter 7: Analog Communiation Systems Reeiver blok diagram design Image requeny

More information

Chapter 2 Amplitude Modulation

Chapter 2 Amplitude Modulation Couniaion Syses (Theory) Chaper pliude Modulaion Objeive Upon opleion of his haper you will be able o: Undersand he proess of pliude Modulaion. Undersand differen ypes of pliude Modulaion. Design differen

More information

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1 Passand Daa ransmission I References Phase-shif keying Chaper 4.-4.3, S. Haykin, Communicaion Sysems, Wiley. G. Inroducion Inroducion In aseand pulse ransmission, a daa sream represened in he form of a

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access Spread specrum (SS) ECS455: Chaper 4 Muliple Access Dr.Prapun Suksompong prapun.com/ecs455 4.3 DS/SS Oice Hours: BKD, 6h loor o Sirindhralai building Tuesday 4:20-5:20 Wednesday 4:20-5:20 Friday 9:5-0:5

More information

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents ree-wheeling diode Turn-off power dissipaion: off/d = f s * E off/d (v d, i LL, T j/d ) orward power dissipaion: fw/t = 1 T T 1 v () i () d Neglecing he load curren ripple will resul in: fw/d = i Lavg

More information

6.003: Signals and Systems Lecture 24 December 6, 2011

6.003: Signals and Systems Lecture 24 December 6, 2011 6.3: Signals and Sysems Lecure 24 December 6, 2 6.3: Signals and Sysems Modulaion Subjec Evaluaions Your feedbac is imporan o us! Please give feedbac o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion

More information

Exercise 1 Principles of Computer Aided Modeling and Simulation

Exercise 1 Principles of Computer Aided Modeling and Simulation Gdans Universiy o Technology, Faculy o Ocean Engineering and Ship Technology Modeling and Conrol o Dynaic Syses, Laboraory, M. H. Ghaei Eercise Principles o Copuer Aided Modeling and Siulaion OBJECTIVE

More information

Communication Systems. Communication Systems

Communication Systems. Communication Systems Communicaion Sysems Analog communicaion Transmi and receive analog waveforms Ampliude Modulaion (AM Phase Modulaion (PM Freq. Modulaion (FM Quadraure Ampliude Modulaion (QAM Pulse Ampliude Modulaion (PAM

More information

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecure 24 Amplificaion wih Transisor Circuis Small Signal Modelling Review from las ime Area Comparison beween BJT and MOSFET BJT Area = 3600 l 2 n-channel MOSFET Area = 168 l 2 Area Raio = 21:1

More information

SystemC-AMS Hands-On Lab Part 2

SystemC-AMS Hands-On Lab Part 2 SysemC-AMS Hands-On Lab Par 2 Markus Damm, Chrisoph Grimm Compuer Technology Vienna Universiy of Technology, Ausria François Pecheux Laboraoire d Informaique de Paris 6 Universié Pierre & Marie Curie Compuer

More information

Announcement. Allowed

Announcement. Allowed 9//05 nnouncemen Firs es: Sep. 8, Chap. -4 llowed wriing insrumen poce calculaor ruler One 8.5" " paper conaining consans, formulas, and any oher informaion ha you migh find useful (NOT any inds of soluions).

More information

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department

ANALOG COMMUNICATIONS IV Sem. Prepared by Mr. T. Nagarjuna ECE Department ANALOG COMMUNICAIONS IV Sem Prepared by Mr.. Nagaruna ECE Department UNI I SIGNAL ANALYSIS AND LI SYSEMS Classifiation of Signals Deterministi & Non Deterministi Signals Periodi & A periodi Signals Even

More information

TELE3013 Mid-session QUIZ 1

TELE3013 Mid-session QUIZ 1 TELE3013 Mid-session QUIZ 1 Week 7 10 th April, 2006 Name: Student No: Instrutions to Candidates (1) Time allowed: 90 minutes or so (2) Answer all questions. Total Marks = 90. (3) Marks are as indiated.

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

UNIT-5 ANGLE MODULATION (FM) I

UNIT-5 ANGLE MODULATION (FM) I UNIT-5 ANGLE MODULATION (FM) I Topis: Basi deinitions, FM, narrow band FM, wide band FM, transission bandwidth o FM waves, and generation o FM waves: indiret FM and diret FM. Angle odulation is a ethod

More information

Generating Polar Modulation with R&S SMU200A

Generating Polar Modulation with R&S SMU200A Rohde & Schwarz producs: SMU00 Generaing Polar Modulaion wih R&S SMU00 Polar modulaion is a mehod where digial modulaion is realized as a combinaion of phase and ampliude modulaion, raher han using an

More information

A HF Frequency Prediction Method of Engineering Calculation in the Asia Pacific Region Chao LI, Yun-jiang LIU, Xiao-peng YANG and Feng WANG

A HF Frequency Prediction Method of Engineering Calculation in the Asia Pacific Region Chao LI, Yun-jiang LIU, Xiao-peng YANG and Feng WANG 8 nternational Conerene on Computer, Eletroni normation and Communiations (CEC 8 SBN: 978--9-7- A HF Frequeny Predition Method o Engineering Calulation in the Asia Paii Region Chao L, Yun-jiang LU, Xiao-peng

More information

weight: amplitude of sine curve

weight: amplitude of sine curve Joseph Fourier s claim: all signals are sums of sinusoids of differen frequencies. weighed sine curves weigh: ampliude of sine curve all : no exacly bu doesn maer for us in pracice Example: 3 sin() + sin(*)

More information

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University

Communication Systems Lecture 7. Dong In Kim School of Info/Comm Engineering Sungkyunkwan University Communiation Systems Leture 7 Dong In Kim Shool o Ino/Comm Engineering Sungkyunkwan University 1 Outline Expression o SSB signals Waveorm o SSB signals Modulators or SSB: Frequeny disrimination Phase disrimination

More information

BPSK so that we have a discrete set of RF signals. t)cos(

BPSK so that we have a discrete set of RF signals. t)cos( BPSK. BPSK Introdution Reall that the most general modulation has the form s( t) a( t)os[ t ( t)]. We remared earlier that phase modulation was not an effetive way to implement analog ommuniation, one

More information

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers.

Calculating the input-output dynamic characteristics. Analyzing dynamic systems and designing controllers. CHAPTER : REVIEW OF FREQUENCY DOMAIN ANALYSIS The long-term response of a proess is nown as the frequeny response whih is obtained from the response of a omplex-domain transfer funtion. The frequeny response

More information

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS TEHNIAL DATA Analog Muliplexer Demuliplexer HighPerformance SiliconGae MOS IW402B N SUFFIX PLASTI The IW402B analog muliplexer/demuliplexer is digially conrolled analog swiches having low ON impedance

More information