Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Size: px
Start display at page:

Download "Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop"

Transcription

1 Chaper 2 Inroducion: From Phase-Locked Loop o Cosas Loop The Cosas loop can be considered an exended version of he phase-locked loop (PLL). The PLL has been invened in 932 by French engineer Henri de Belleszice []. In his firs applicaion, de Belleszice used he PLL as a synchronous demodulaor for double sideband ampliude modulaed signals wih carrier. The block diagram of a PLL is shown in Fig. 2.. I is buil from hree blocks, a phase deecor (PD), a loop filer (LF), and a volage-conrolled oscillaor (VCO). In he firs PLL applicaions, an analog muliplier was used for he phase deecor [2]. Assuming for he firs momen ha boh signals U and U 2 are sinusoidal, we can wrie u ðþ ¼U sinðx þ h Þ u 2 ðþ ¼U 2 cosðx þ h 2 Þ where U,U 2 are he ampliudes of U and U 2, respecively, x is he radian frequency of he inpu signal U, and h and h 2 are he zero phases of U and U 2, respecively. Assume furher ha he sysem is already locked, i.e., boh signals have he same frequency, bu can have differen phases. In his case, he signals u and U 2 differ by 9 in he locked sae; hence, i is reasonable o define U as a sine wave and U 2 as a cosine wave. I can be shown ha he oupu signal of he phase deecor is proporional o sin(h h 2 ) = sin(h e ), where h e is called phase error. Bu he oupu signal of ha ype of phase deecor also conains a high-frequency erm, i.e., a sine erm having radian frequency 2 x. This erm is removed by he loop filer, which is mosly realized eiher as a lag-lead filer or as a PI filer (proporional Elecronic supplemenary maerial The online version of his chaper (doi:.7/ _2) conains supplemenary maerial, which is available o auhorized users. Springer Inernaional Publishing AG 28 R. Bes, Cosas Loops, hps://doi.org/.7/ _2 5

2 6 2 Inroducion: From Phase-Locked Loop o Cosas Loop Fig. 2. Block diagram of a phase-locked loop and inegral filer). More abou loop filers laer in his ex. The oupu signal u f of he loop filer is applied o he inpu of he VCO. When here exiss a phase error, he frequency of he VCO is adjused such ha finally he phase error becomes eiher or is a leas very small. Nex we consider a PLL circui used for synchronous demodulaion of AM signals. Figure 2.2 shows he relevan signals. The upper race is he modulaing signal. I is scaled such ha i is wihin he range from o. The middle race is he carrier signal c(). The modulaed signal U is given by u ¼ cðþð þ mu m ðþþ wih m = modulaion index. m mus be chosen m <, a commonly used value is m =.3. In his case, he modulaed signal u (lower race) is always in-phase wih he carrier c(). If m were chosen larger han, U could be in aniphase wih he carrier when he modulaing signal has large negaive values. When he modulaed signal u is now applied o he inpu of a PLL, he oupu signal U 2 of he VCO would correcly lock ono ha signal, i.e., here would always be a phase difference of 9 beween u and u 2. Figure 2.3 shows he block diagram of a PLL designed for synchronous demodulaion of he ampliude modulaed signal. Four blocks have been added o he basic circui of Fig. 2., a 9 phase shifer, a muliplier (MUL), a lowpass filer (LPF), and a highpass filer (HPF). As we have seen, here is a phase difference of 9 beween U and U 2 when he PLL has locked. When U 2 is shifed by 9, he shifed signal U 2,shif is exacly in-phase wih he modulaed carrier U. Wih he definiions u ¼ U sinðx þ h Þð þ mu m Þ u 2;shif ¼ U 2 sinðx þ h Þ

3 2 Inroducion: From Phase-Locked Loop o Cosas Loop 7 Modulaing signal um c u Carrier AM signal Fig. 2.2 Double sideband AM wih carrier. Upper race: modulaing signal U m, middle race: carrier c, lower race: modulaed signal U Fig. 2.3 PLL used for synchronous demodulaion of AM signal

4 8 2 Inroducion: From Phase-Locked Loop o Cosas Loop he oupu signal of he muliplier U Mul becomes u Mul ¼ U U 2 ð þ mu m Þ sin 2 ðx þ h Þ ¼ U U 2 ð þ mu m Þ 2 2 cosð2x þ 2h Þ We recognize ha U Mul conains a high-frequency erm cenered a wice he cener radian frequency x. This erm is removed from he lowpass filer; hence, is oupu signal is given by u LPF ¼ U U 2 ð þ mu m Þ 2 This signal conains a dc erm U U 2 /2. This can be removed if required by a highpass filer. The oupu of he highpass filer is hen u HPF ¼ U U 2 m u m 2 which is idenical wih he modulaing signal scaled by a facor U U 2 m/2. Whereas he PLL can be successfully used for he synchronous demodulaion of double sideband AM signals wih carrier, i fails when i cames o demodulaed AM signals wih suppressed carriers. The waveforms of such an AM signal are shown in Fig Firs race: modulaing signal U m. Second race: carrier c(). Third race: modulaed signal U. Fourh race: reconsruced carrier U 2,shif. The modulaed signal U is given here by u ¼ u m sinðx Þ When U m is posiive (cf. ime inerval from 4 ms), U is in-phase wih he carrier. When U m becomes negaive, however, he U is in aniphase wih he carrier (cf. ime inerval from 4 8 ms). When U is applied now o he inpu of a PLL, his circui would rack he phase of he VCO oupu signal U 2 o he phase of U. The shifed signal U 2,shifed would be in-phase wih U when U m is posiive, bu afer a ransien in he inerval 4 5 ms, i would lock in aniphase wih he carrier c (). If he circui in Fig. 2.3 were used o demolae he AM signal, he oupu signal U Mul would have wrong polariy during he inervals where U m is negaive. There is anoher applicaion where he PLL fails for he same reason: Binary Phase Shif Keying (BPSK). The signals are similar o hose in he previous example, as shown in Fig The same happens as in he previous example. Because he polariy of he BPSK signal is reversed when he binary signal becomes negaive, he reconsruced carrier U 2,shif is in aniphase wih he carrier c(), when he modulaing signal U m is negaive.

5 2 Inroducion: From Phase-Locked Loop o Cosas Loop 9 um c u u2,shif Modulaing signal Carrier AM signal Reconsruced carrier Fig. 2.4 Waveforms of a double sideband AM signal wih suppressed carrier Here he Cosas loop comes ino play [3]. Figure 2.6 shows he block diagram of he convenional Cosas loop for BPSK. Compared wih he PLL, his novel circui consiss of wo branches, he I branch and he Q branch, whereas he PLL has only one. The inpu signal is given by U = m() sin(x +h ), where m is he daa signal and can wo values, +c or c, where c is a consan. In many cases, c = is chosen. When he currenly ransmied bi is a logical one, m = + c, and when he currenly ransmied bi is a logical zero, m = c. The volage-conrolled oscillaor in his circui has wo oupus ha differ by 9 in-phase, i.e., a sine oupu and a cosine oupu. The inpu signal is muliplied by he sine wave in he I branch, and i is muliplied by he cosine wave in he Q branch. Consequenly, he oupu of he muliplier in he I branch becomes m() sin(x +h ) 2 sin(x +h 2 ). This signal conains a high-frequency erm whose frequency is cenered around 2 x. This erm is removed by lowpass filer LPF, and he oupu signal of his filer becomes m() cos(h h 2 ) = m() cos h e, where h e is he phase error. In analogy, he oupu signal of lowpass filer LPF2 becomes m() sin h e. Now he oupu signals of boh lowpass filers are muliplied; hence, he oupu signal of muliplier MUL is u d ¼ m2 2 sinð2 h eþ

6 2 Inroducion: From Phase-Locked Loop o Cosas Loop binary signal u2,shifed u c um Carrier BPSK signal Reconsruced carrier Fig. 2.5 Waveforms for BPSK. Firs race: binary signal u m. Second race: carrier c(). Third race: BPSK signal u. Fourh race: reconsruced carrier U 2,shif, shifed by 9 Fig. 2.6 Block diagram of Cosas loop for BPSK

7 2 Inroducion: From Phase-Locked Loop o Cosas Loop When he phase error is small, his can be wrien u d ¼ m 2 h e i.e., he muliplier represens a phase deecor having deecor gain K d ¼ m 2 We recognize ha he oupu signal u d of he phase deecor does no depend on he polariy of signal m, due o he facor m 2. Thus, he phase deecor oupu signal does no change polariy when m changes from posiive o negaive values and vice versa. The oupu signal u d of he muliplier (phase deecor) is applied o he inpu of he loop filer LF. This filer is always realized as a lowpass filer. Two kinds of loop filers are in use, he lag-lead filer and he PI filer (proporional and inegral filer) [2, 4]. When here is a phase error h e, he oupu signal of he loop filer conrols he frequency of he VCO such ha he phase error is reduced o zero or o a very small value. When he phase error has been reduced o zero or near zero, he oupu signal of lowpass filer LPF is idenical wih he daa signal m(). We have seen ha he Cosas loop can adjus he frequency and phase of he VCO such loop locks wih a phase difference h h 2 near zero. I should be noed ha he Cosas loop can also lock wih a phase difference h h 2 of p. Assume for he momen ha h h 2 has no ye aained he value p, bu is near p. We hen can se h h 2 ¼ p þ h e Under his condiion, he oupu signal of LPF becomes m() cos(h h 2 )= m () cos h e, and he oupu signal of LPF2 becomes m() sin h e. The oupu signal of he muliplier hen becomes again u d ¼ m 2 h e Here again, when here exiss a phase error, he frequency of he VCO will be adjused such ha he loop sably locks wih a phase difference h h 2 = p. We can conclude herefore ha he Cosas loop can lock a wo differen poins of equilibrium, i.e., wih h h 2 = or wih h h 2 = p. When he loop locks wih a phase difference of p, he oupu signal of lowpass filer LPF becomes m, i.e., is polariy ges invered. This is no necessarily a problem, because in many cases differenial encoding is used wih BPSK [5]. Wih sandard i.e., no differenial encoding he value of he currenly ransmied bi depends only on he polariy of signal m(). The Cosas loop can decide ha a ransmied bi is a logical when m is posiive or a logical when m is negaive. When differenial encoding is applied, he value of he currenly ransmied bi depends from wo values, i.e., from he polariy of he curren bi and he polariy of he previously ransmied bi. We define, for example, ha

8 2 2 Inroducion: From Phase-Locked Loop o Cosas Loop he currenly ransmied bi is a logical when curren and previous bi have opposie polariy, and ha he value of ha bi is a logical when hese wo samples have he same polariy. Under his condiion, he Cosas loop can lock ono any of he wo equilibrium saes. Non-differenial encoding can be used when he Cosas loop can be brough o lock a priori wih he correc phase difference of. Assume ha a ransmier sars o send a series of binary daa, e.g., a series of 256 bis. To obain correc locking, a preamble is preceding he daa block, e.g., a series of 6 logical s. The Cosas loop mus now be equipped wih an iniializaion circui ha becomes acive a sar of daa ransmission. Because he Cosas loop knows he correc value of he firs received bis, he iniializaion circui can conrol he VCO such ha false locking (i.e., locking wih a phase difference of p is prevened). In Sec. 5.6, an example of a Cosas loop using such a preamble is presened. References. De Belleszice H., La Recepion Synchrone, L onde elecrique,, (932) 2. E. Roland, Bes, phase-locked loops, design, simulaion, and applicaions, 6h edn. (McGraw-Hill, New York, 27) 3. J.P. Cosas, Synchronous communicaions. Proc. IRE (956) 4. U. Rohde, J. Whiacker, Communicaions receivers (Sofware Radios, and Design, McGraw-Hill, DSP, 2) 5. B. Sklar, Digial communicaions, fundamenals and applicaions (Prenice Hall, USA, 988)

9 hp://

LECTURE 1 CMOS PHASE LOCKED LOOPS

LECTURE 1 CMOS PHASE LOCKED LOOPS Lecure 01 (8/9/18) Page 1-1 Objecive LECTURE 1 CMOS PHASE LOCKED LOOPS OVERVIEW Undersand he principles and applicaions of phase locked loops using inegraed circui echnology wih emphasis on CMOS echnology.

More information

Communications II Lecture 7: Performance of digital modulation

Communications II Lecture 7: Performance of digital modulation Communicaions II Lecure 7: Performance of digial modulaion Professor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Digial modulaion and demodulaion Error probabiliy

More information

Solution of ECE 342 Test 2 S12

Solution of ECE 342 Test 2 S12 Soluion of ECE 342 Tes 2 S2. All quesions regarding superheerodyne receivers refer o his diagram. x c () Anenna B T < B RF < 2 f B = B T Oher Signals f c Mixer f Baseband x RFi RF () x RFo () () () x i

More information

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such

More information

UNIT IV DIGITAL MODULATION SCHEME

UNIT IV DIGITAL MODULATION SCHEME UNI IV DIGIAL MODULAION SCHEME Geomeric Represenaion of Signals Ojecive: o represen any se of M energy signals {s i (} as linear cominaions of N orhogonal asis funcions, where N M Real value energy signals

More information

Analog/Digital Communications Primer

Analog/Digital Communications Primer for Amaeur Radio Virginia Polyechnic Insiue & Sae Universiy March 19, 2013 # include //... in main() { floa kf = 0.1f; // modulaion facor liquid_freqdem_ype ype = LIQUID_FREQDEM_DELAYCONJ;

More information

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras ECEN 44 Communicaion Theory Chaper Summary: Coninuous-Wave Modulaion.1 Modulaion Modulaion is a process in which a parameer of a carrier waveform is varied in accordance wih a given message (baseband)

More information

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1 Passand Daa ransmission I References Phase-shif keying Chaper 4.-4.3, S. Haykin, Communicaion Sysems, Wiley. G. Inroducion Inroducion In aseand pulse ransmission, a daa sream represened in he form of a

More information

Principles of Communications

Principles of Communications Sae Key Lab. on ISN, Xidian Universiy Principles of Communicaions Chaper VI: Elemenary Digial Modulaion Sysem Email: ychwang@mail.xidian.edu.cn Xidian Universiy Sae Key Lab. on ISN December 13, 2013 Sae

More information

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

f t 2cos 2 Modulator Figure 21: DSB-SC modulation. 4.5 Ampliude modulaion: AM 4.55. DSB-SC ampliude modulaion (which is summarized in Figure 21) is easy o undersand and analyze in boh ime and frequency domains. However, analyical simpliciy is no always

More information

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI)

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI) ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Sandard ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Ecma Inernaional Rue du Rhône 114

More information

Communication Systems. Department of Electronics and Electrical Engineering

Communication Systems. Department of Electronics and Electrical Engineering COMM 704: Communicaion Lecure : Analog Mulipliers Dr Mohamed Abd El Ghany Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg nroducion Nonlinear operaions on coninuous-valued analog signals are ofen

More information

Chapter 2: Fourier Representation of Signals and Systems

Chapter 2: Fourier Representation of Signals and Systems Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial

More information

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1 Passand Daa ransmission II Reerences Frequency-shi keying Chaper 6.5, S. Haykin, Communicaion Sysems, Wiley. H. Inroducion Inroducion PSK and QAM are linear modulaion FSK is a nonlinear modulaion Similar

More information

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier

More information

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II ECE 405 - ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II FALL 2005 A.P. FELZER To do "well" on his invesigaion you mus no only ge he righ answers bu mus also do

More information

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions 2.2-2.7 and 3.1-3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial Communicaions, 2nd ed., John iley & Sons,

More information

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes Noes CHAPTER CONTENTS 9. Line Coding 9. inary Line Codes 9. ipolar and iphase Line Codes 9.. AMI 9... inary N Zero Subsiuion 9..3 lock Line Codes 9.3 M-ary Correlaion Codes 9.3. Q 9.3. Correlaion Coding

More information

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009 ECMA-373 2 nd Ediion / June 2012 Near Field Communicaion Wired Inerface (NFC-WI) Reference number ECMA-123:2009 Ecma Inernaional 2009 COPYRIGHT PROTECTED DOCUMENT Ecma Inernaional 2012 Conens Page 1 Scope...

More information

Communication Systems. Communication Systems

Communication Systems. Communication Systems Communicaion Sysems Analog communicaion Transmi and receive analog waveforms Ampliude Modulaion (AM Phase Modulaion (PM Freq. Modulaion (FM Quadraure Ampliude Modulaion (QAM Pulse Ampliude Modulaion (PAM

More information

Optical phase locked loop for transparent inter-satellite communications

Optical phase locked loop for transparent inter-satellite communications Opical phase locked loop for ransparen iner-saellie communicaions F. Herzog 1, K. Kudielka 2,D.Erni 1 and W. Bächold 1 1 Communicaion Phoonics Group, Laboraory for Elecromagneic Fields and Microwave Elecronics,

More information

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 4: Bandpass Digial Transmission A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper 4: Bandpass Digial Transmission Digial CW modulaion Coheren binary sysems

More information

Synchronization of the bit-clock in the receiver

Synchronization of the bit-clock in the receiver Synchronizaion of he bi-clock in he receiver Necessiy - he recovery and synchronizaion of he local bi-clock in he receiver is required for wo reasons: he sampling of he coded received signal should be

More information

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29,

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29, 7 h Inernaional Conference on DEVEOPMENT AND APPICATION SYSTEMS S u c e a v a, o m a n i a, M a y 27 29, 2 0 0 4 THEE-PHASE AC CHOPPE WITH IGBT s Ovidiu USAU 1, Mihai UCANU, Crisian AGHION, iviu TIGAEU

More information

The design of an improved matched filter in DSSS-GMSK system

The design of an improved matched filter in DSSS-GMSK system Journal of Physics: Conference Series PAPER OPEN ACCESS The design of an improved mached filer in DSSS-GMSK sysem To cie his aricle: Mao Wei-ong e al 16 J. Phys.: Conf. Ser. 679 1 View he aricle online

More information

Modulation exercises. Chapter 3

Modulation exercises. Chapter 3 Chaper 3 Modulaion exercises Each problem is annoaed wih he leer E, T, C which sands for exercise, requires some hough, requires some concepualizaion. Problems labeled E are usually mechanical, hose labeled

More information

Signal Characteristics

Signal Characteristics Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1

More information

P. Bruschi: Project guidelines PSM Project guidelines.

P. Bruschi: Project guidelines PSM Project guidelines. Projec guidelines. 1. Rules for he execuion of he projecs Projecs are opional. Their aim is o improve he sudens knowledge of he basic full-cusom design flow. The final score of he exam is no affeced by

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

Direct Analysis of Wave Digital Network of Microstrip Structure with Step Discontinuities

Direct Analysis of Wave Digital Network of Microstrip Structure with Step Discontinuities Direc Analysis of Wave Digial Nework of Microsrip Srucure wih Sep Disconinuiies BILJANA P. SOŠIĆ Faculy of Elecronic Engineering Universiy of Niš Aleksandra Medvedeva 4, Niš SERBIA MIODRAG V. GMIROVIĆ

More information

Negative frequency communication

Negative frequency communication Negaive frequency communicaion Fanping DU Email: dufanping@homail.com Qing Huo Liu arxiv:2.43v5 [cs.it] 26 Sep 2 Deparmen of Elecrical and Compuer Engineering Duke Universiy Email: Qing.Liu@duke.edu Absrac

More information

Analog Circuits EC / EE / IN. For

Analog Circuits EC / EE / IN.   For Analog Circuis For EC / EE / IN By www.hegaeacademy.com Syllabus Syllabus for Analog Circuis Small Signal Equivalen Circuis of Diodes, BJTs, MOSFETs and Analog CMOS. Simple Diode Circuis, Clipping, Clamping,

More information

Lecture 5: DC-DC Conversion

Lecture 5: DC-DC Conversion 1 / 31 Lecure 5: DC-DC Conversion ELEC-E845 Elecric Drives (5 ECTS) Mikko Rouimo (lecurer), Marko Hinkkanen (slides) Auumn 217 2 / 31 Learning Oucomes Afer his lecure and exercises you will be able o:

More information

EE201 Circuit Theory I Fall

EE201 Circuit Theory I Fall EE1 Circui Theory I 17 Fall 1. Basic Conceps Chaper 1 of Nilsson - 3 Hrs. Inroducion, Curren and Volage, Power and Energy. Basic Laws Chaper &3 of Nilsson - 6 Hrs. Volage and Curren Sources, Ohm s Law,

More information

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c Inernaional Symposium on Mechanical Engineering and Maerial Science (ISMEMS 016 Phase-Shifing Conrol of Double Pulse in Harmonic Eliminaion Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi i1, c

More information

Universal microprocessor-based ON/OFF and P programmable controller MS8122A MS8122B

Universal microprocessor-based ON/OFF and P programmable controller MS8122A MS8122B COMPETENCE IN MEASUREMENT Universal microprocessor-based ON/OFF and P programmable conroller MS8122A MS8122B TECHNICAL DESCRIPTION AND INSTRUCTION FOR USE PLOVDIV 2003 1 I. TECHNICAL DATA Analog inpus

More information

Comparative Analysis of the Large and Small Signal Responses of "AC inductor" and "DC inductor" Based Chargers

Comparative Analysis of the Large and Small Signal Responses of AC inductor and DC inductor Based Chargers Comparaive Analysis of he arge and Small Signal Responses of "AC inducor" and "DC inducor" Based Chargers Ilya Zelser, Suden Member, IEEE and Sam Ben-Yaakov, Member, IEEE Absrac Two approaches of operaing

More information

A New Voltage Sag and Swell Compensator Switched by Hysteresis Voltage Control Method

A New Voltage Sag and Swell Compensator Switched by Hysteresis Voltage Control Method Proceedings of he 8h WSEAS Inernaional Conference on ELECTRIC POWER SYSTEMS, HIGH VOLTAGES, ELECTRIC MACHINES (POWER '8) A New Volage Sag and Swell Compensaor Swiched by Hyseresis Volage Conrol Mehod AMIR

More information

HF Transformer Based Grid-Connected Inverter Topology for Photovoltaic Systems

HF Transformer Based Grid-Connected Inverter Topology for Photovoltaic Systems 1 HF Transformer Based Grid-Conneced Inverer Topology for Phoovolaic Sysems Abhiji Kulkarni and Vinod John Deparmen of Elecrical Engineering, IISc Bangalore, India. (abhijik@ee.iisc.erne.in, vjohn@ee.iisc.erne.in)

More information

Receiver Architectures

Receiver Architectures 27/Dec/26 1 Receiver Archiecures Image-Rejec Receivers Shif-by-9 o For narrowband signal: sin cos +j /2 +j (a) T / 4 X = j j /2 G( ) = j sgn( ) 1/2 (b) Figure 5.23 Shif by 9 o in (a) ime and (b) frequency

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleraion Wha You Need To Know: The Physics In he previous lab you learned ha he velociy of an objec can be deermined by finding he slope of he objec s posiion vs. ime graph. x v ave. = v ave.

More information

Dead Zone Compensation Method of H-Bridge Inverter Series Structure

Dead Zone Compensation Method of H-Bridge Inverter Series Structure nd Inernaional Conference on Elecrical, Auomaion and Mechanical Engineering (EAME 7) Dead Zone Compensaion Mehod of H-Bridge Inverer Series Srucure Wei Li Insiue of Elecrical Engineering and Informaion

More information

OpenStax-CNX module: m Elemental Signals. Don Johnson. Perhaps the most common real-valued signal is the sinusoid.

OpenStax-CNX module: m Elemental Signals. Don Johnson. Perhaps the most common real-valued signal is the sinusoid. OpenSax-CNX module: m0004 Elemenal Signals Don Johnson This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License.0 Absrac Complex signals can be buil from elemenal signals,

More information

The ramp is normally enabled but can be selectively disabled by suitable wiring to an external switch.

The ramp is normally enabled but can be selectively disabled by suitable wiring to an external switch. Vickers Amplifier Cards Power Amplifiers for Proporional Valves EEA-PAM-56*-A-14 Design EEA-PAM-561-A-14 for use wih valve ypes: KDG5V-5, * and KDG5V-7, 1* series EEA-PAM-568-A-14 for use wih valve ypes:

More information

State Space Modeling, Simulation and Comparative Analysis of a conceptualised Electrical Control Signal Transmission Cable for ROVs

State Space Modeling, Simulation and Comparative Analysis of a conceptualised Electrical Control Signal Transmission Cable for ROVs Sae Space Modeling, Simulaion and omparaive Analysis of a concepualised Elecrical onrol Signal ransmission able for ROVs James Naganda, Deparmen of Elecronic Engineering, Konkuk Universiy, Seoul, Korea

More information

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity Wrap Up Fourier ransorm Sampling, Modulaion, Filering Noise and he Digial Absracion Binary signaling model and Shannon Capaciy Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Wrap Up, Slide

More information

Pulse Train Controlled PCCM Buck-Boost Converter Ming Qina, Fangfang Lib

Pulse Train Controlled PCCM Buck-Boost Converter Ming Qina, Fangfang Lib 5h Inernaional Conference on Environmen, Maerials, Chemisry and Power Elecronics (EMCPE 016 Pulse Train Conrolled PCCM Buck-Boos Converer Ming Qina, Fangfang ib School of Elecrical Engineering, Zhengzhou

More information

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecure 24 Amplificaion wih Transisor Circuis Small Signal Modelling Review from las ime Area Comparison beween BJT and MOSFET BJT Area = 3600 l 2 n-channel MOSFET Area = 168 l 2 Area Raio = 21:1

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Compuing, Acuaing Sander Suik (s.suik@ue.nl) Deparmen of Elecrical Engineering Elecronic Sysems INDUCTIE SENSOS (Chaper.5,.6,.0, 5.4) 3 Inducive sensors damping conrol wheel speed sensor (ABS)

More information

PLL Hardware Design and Software Simulation using the 32-bit version of SystemView by ELANIX Stephen Kratzet, ELANIX, Inc.

PLL Hardware Design and Software Simulation using the 32-bit version of SystemView by ELANIX Stephen Kratzet, ELANIX, Inc. Applicaion Noe AN14A Apr 8, 1997 SysemView B Y E L A N I X PLL Hardware Design and Sofware Simulaion using he 32-bi version of SysemView by ELANIX Sephen Kraze, ELANIX, Inc. Inroducion This applicaion

More information

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First Signal Proessing Firs Leure 4 Ampliude Modulaion AM LECURE OBJECIVES Review of F properies Convoluion mulipliaion Frequen shifing Sinewave Ampliude Modulaion AM radio Frequen-division mulipleing FDM

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Phoo Modules for PCM Remoe Conrol Sysems Descripion The HS38B series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he epoxy package

More information

MEASUREMENTS OF VARYING VOLTAGES

MEASUREMENTS OF VARYING VOLTAGES MEASUREMENTS OF ARYING OLTAGES Measuremens of varying volages are commonly done wih an oscilloscope. The oscilloscope displays a plo (graph) of volage versus imes. This is done by deflecing a sream of

More information

A1 K. 12V rms. 230V rms. 2 Full Wave Rectifier. Fig. 2.1: FWR with Transformer. Fig. 2.2: Transformer. Aim: To Design and setup a full wave rectifier.

A1 K. 12V rms. 230V rms. 2 Full Wave Rectifier. Fig. 2.1: FWR with Transformer. Fig. 2.2: Transformer. Aim: To Design and setup a full wave rectifier. 2 Full Wave Recifier Aim: To Design and seup a full wave recifier. Componens Required: Diode(1N4001)(4),Resisor 10k,Capacior 56uF,Breadboard,Power Supplies and CRO and ransformer 230V-12V RMS. + A1 K B1

More information

Channel Estimation for Wired MIMO Communication Systems

Channel Estimation for Wired MIMO Communication Systems Channel Esimaion for Wired MIMO Communicaion Sysems Final Repor Mulidimensional DSP Projec, Spring 2005 Daifeng Wang Absrac This repor addresses raining-based channel modeling and esimaion for a wired

More information

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter 160 Journal of Power Elecronics, Vol. 5, No. 2, April 2005 JPE 5-2-9 A Harmonic Circulaion Curren Reducion Mehod for Parallel Operaion of U wih a Three-Phase Inverer Kyung-Hwan Kim, Wook-Dong Kim * and

More information

AN303 APPLICATION NOTE

AN303 APPLICATION NOTE AN303 APPLICATION NOTE LATCHING CURRENT INTRODUCTION An imporan problem concerning he uilizaion of componens such as hyrisors or riacs is he holding of he componen in he conducing sae afer he rigger curren

More information

weight: amplitude of sine curve

weight: amplitude of sine curve Joseph Fourier s claim: all signals are sums of sinusoids of differen frequencies. weighed sine curves weigh: ampliude of sine curve all : no exacly bu doesn maer for us in pracice Example: 3 sin() + sin(*)

More information

Digital Communications: An Overview of Fundamentals

Digital Communications: An Overview of Fundamentals IMPERIAL COLLEGE LONDON DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING. COMPACT LECTURE NOTES on COMMUNICATION THEORY. Prof. Ahanassios Manikas, version Auumn 2008 Digial Communicaions: An Overview

More information

Digital Encoding And Decoding

Digital Encoding And Decoding Digial Encoding And Decoding Dr. George W Benhien Augus 13, 2007 Revised March 30, 2010 E-mail: george@gbenhien.ne 1 Inroducion Many elecronic communicaion devices oday process and ransfer informaion digially.

More information

Microwave Wireless Communication System

Microwave Wireless Communication System Technical repor, IDE068, January 006 Microwave Wireless Communicaion Sysem Maser s Thesis in Elecrical Engineering Carl Dagne, Johan Bengsson, Ingemar Lindgren School of Informaion Science, Compuer and

More information

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communicaions II Lecure 5: Eecs o Noise on FM Proessor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Recap o FM FM sysem model in noise Derivaion o oupu SNR Pre/de-emphasis

More information

Diodes. Diodes, Page 1

Diodes. Diodes, Page 1 Diodes, Page 1 Diodes V-I Characerisics signal diode Measure he volage-curren characerisic of a sandard signal diode, he 1N914, using he circui shown below. The purpose of he back-o-back power supplies

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Phoo Modules for PCM Remoe Conrol Sysems Available ypes for differen carrier frequencies Type fo Type fo TSOP223 3 khz TSOP2233 33 khz TSOP2236 36 khz TSOP2237 36.7 khz TSOP2238 38 khz TSOP224 4 khz TSOP2256

More information

TSOP322.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors

TSOP322.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors TSOP3.. IR Receiver Modules for Remoe Conrol Sysems Descripion The TSOP3.. - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he

More information

TSOP12.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors

TSOP12.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors TSOP1.. IR Receiver Modules for Remoe Conrol Sysems Descripion The TSOP1.. - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he

More information

Lecture 11. Digital Transmission Fundamentals

Lecture 11. Digital Transmission Fundamentals CS4/MSc Compuer Neworking Lecure 11 Digial Transmission Fundamenals Compuer Neworking, Copyrigh Universiy of Edinburgh 2005 Digial Transmission Fundamenals Neworks consruced ou of Links or ransmission

More information

Chapter 1: Introduction

Chapter 1: Introduction Second ediion ober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder.. Inroducion o power processing.. Some applicaions of power elecronics.3. Elemens of power elecronics Summary of he course.

More information

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing VOLUME 3, ISSUE 2 Offse Phase Shif Keying Modulaion in Muliple-Inpu Muliple-Oupu Spaial Mulipleing Adeyemo, Z. Kayode, Rabiu, E. Oluwaosin and Rober, O. Abolade Deparmen of Elecronic and Elecrical Engineering

More information

Notes on the Fourier Transform

Notes on the Fourier Transform Noes on he Fourier Transform The Fourier ransform is a mahemaical mehod for describing a coninuous funcion as a series of sine and cosine funcions. The Fourier Transform is produced by applying a series

More information

Control circuit for a Self-Oscillating Power Supply (SOPS) TDA8385

Control circuit for a Self-Oscillating Power Supply (SOPS) TDA8385 FEATURES Bandgap reference generaor Slow-sar circuiry Low-loss peak curren sensing Over-volage proecion Hyseresis conrolled sand-by funcion Error amplifier wih gain seing Programmable ransfer characer

More information

Technology Trends & Issues in High-Speed Digital Systems

Technology Trends & Issues in High-Speed Digital Systems Deailed comparison of dynamic range beween a vecor nework analyzer and sampling oscilloscope based ime domain reflecomeer by normalizing measuremen ime Sho Okuyama Technology Trends & Issues in High-Speed

More information

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3 Laboraory # Chap 3 Objecives Linear Sysem Response: general case Undersand he difference and he relaionship beween a sep and impulse response. Deermine he limis of validiy of an approximaed impulse response.

More information

Synchronization of single-channel stepper motor drivers reduces noise and interference

Synchronization of single-channel stepper motor drivers reduces noise and interference hronizaion of single-channel sepper moor drivers reduces noise and inerference n mos applicaions, a non-synchronized operaion causes no problems. However, in some cases he swiching of he wo channels inerfere,

More information

EE 40 Final Project Basic Circuit

EE 40 Final Project Basic Circuit EE 0 Spring 2006 Final Projec EE 0 Final Projec Basic Circui Par I: General insrucion 1. The final projec will coun 0% of he lab grading, since i s going o ake lab sessions. All oher individual labs will

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for Remoe Conrol Sysems FEATURES Very low supply curren Phoo deecor and preamplifier in one package Inernal filer for PCM frequency Supply volage: 2.5 V o 5.5 V Improved immuniy agains

More information

FROM ANALOG TO DIGITAL

FROM ANALOG TO DIGITAL FROM ANALOG TO DIGITAL OBJECTIVES The objecives of his lecure are o: Inroduce sampling, he Nyquis Limi (Shannon s Sampling Theorem) and represenaion of signals in he frequency domain Inroduce basic conceps

More information

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017 Angle Modulaion (Phase & Frequency Modulaion) EE442 Lecure 8 Spring 2017 1 Ampliude, Frequency and Phase Modulaion Wih ew excepions, Phase Modulaion (PM) is used primarily in digial communicaion 2 Why

More information

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects Opical Shor Pulse Generaion and Measuremen Based on Fiber Polarizaion Effecs Changyuan Yu Deparmen of Elecrical & Compuer Engineering, Naional Universiy of Singapore, Singapore, 117576 A*STAR Insiue for

More information

HS0038B5. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

HS0038B5. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors IR Receiver Modules for Remoe Conrol Sysems Descripion The - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he epoxy package

More information

Memorandum on Impulse Winding Tester

Memorandum on Impulse Winding Tester Memorandum on Impulse Winding Teser. Esimaion of Inducance by Impulse Response When he volage response is observed afer connecing an elecric charge sored up in he capaciy C o he coil L (including he inside

More information

EE558 - Digital Communications

EE558 - Digital Communications EE558 - Digial Communicaions Lecure 1: Inroducion & Overview Dr. Duy Nguyen Ouline 1 Course Informaion 2 Inroducion o Digial Communicaions Course Informaion 2 Adminisraion Hours and Locaion Lecures: TTH

More information

SystemC-AMS Hands-On Lab Part 2

SystemC-AMS Hands-On Lab Part 2 SysemC-AMS Hands-On Lab Par 2 Markus Damm, Chrisoph Grimm Compuer Technology Vienna Universiy of Technology, Ausria François Pecheux Laboraoire d Informaique de Paris 6 Universié Pierre & Marie Curie Compuer

More information

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost) Table of Conens 3.0 SMPS Topologies 3.1 Basic Componens 3.2 Buck (Sep Down) 3.3 Boos (Sep Up) 3.4 nverer (Buck/Boos) 3.5 Flyback Converer 3.6 Curren Boosed Boos 3.7 Curren Boosed Buck 3.8 Forward Converer

More information

Demodulation Based Testing of Off Chip Driver Performance

Demodulation Based Testing of Off Chip Driver Performance Demodulaion Based Tesing of Off Driver Performance Wilfried Daehn Hochschule Magdeburg-Sendahl Fachbereich Elekroechnik Posfach 368 39 Magdeburg Phone: ++49 39 886 4673 Fa: ++49 39 886 426 Email: wilfried.daehn@compuer.org

More information

Double Tangent Sampling Method for Sinusoidal Pulse Width Modulation

Double Tangent Sampling Method for Sinusoidal Pulse Width Modulation Compuaional and Applied Mahemaics Journal 2018; 4(1): 8-14 hp://www.aasci.org/journal/camj ISS: 2381-1218 (Prin); ISS: 2381-1226 (Online) Double Tangen Sampling Mehod for Sinusoidal Pulse Widh Modulaion

More information

Lecture #7: Discrete-time Signals and Sampling

Lecture #7: Discrete-time Signals and Sampling EEL335: Discree-Time Signals and Sysems Lecure #7: Discree-ime Signals and Sampling. Inroducion Lecure #7: Discree-ime Signals and Sampling Unlike coninuous-ime signals, discree-ime signals have defined

More information

Pulse amplitude modula.on Baseband to passband and back

Pulse amplitude modula.on Baseband to passband and back Pulse ampliude modula.on Baseband o and back message inpu ) Today s opics concern wih he modulaor and demodulaor ransminer acharapan Suwansan.suk Sampler Quan.zer Source Channel Modulaor analog sequence

More information

4 20mA Interface-IC AM462 for industrial µ-processor applications

4 20mA Interface-IC AM462 for industrial µ-processor applications Because of he grea number of indusrial buses now available he majoriy of indusrial measuremen echnology applicaions sill calls for he sandard analog curren nework. The reason for his lies in he fac ha

More information

Development of Temporary Ground Wire Detection Device

Development of Temporary Ground Wire Detection Device Inernaional Journal of Smar Grid and Clean Energy Developmen of Temporary Ground Wire Deecion Device Jing Jiang* and Tao Yu a Elecric Power College, Souh China Universiy of Technology, Guangzhou 5164,

More information

Industrial, High Repetition Rate Picosecond Laser

Industrial, High Repetition Rate Picosecond Laser RAPID Indusrial, High Repeiion Rae Picosecond Laser High Power: RAPID is a very cos efficien, compac, diode pumped Nd:YVO4 picosecond laser wih 2 W average power a 1064 nm. Is 10 ps-pulses have high pulse

More information

Power Loss Research on IGCT-applied NPC Three-level Converter

Power Loss Research on IGCT-applied NPC Three-level Converter ELKOMNIKA Indonesian Journal of Elecrical Engineering Vol.2, No.7, July 204, pp. 554 ~ 562 DOI: 0.59/elkomnika.v2i7.5908 554 Power Loss Research on IGC-applied NPC hree-level Converer Dong Xu*, Min-Xiao

More information

4.5 Biasing in BJT Amplifier Circuits

4.5 Biasing in BJT Amplifier Circuits 4/5/011 secion 4_5 Biasing in MOS Amplifier Circuis 1/ 4.5 Biasing in BJT Amplifier Circuis eading Assignmen: 8086 Now le s examine how we C bias MOSFETs amplifiers! f we don bias properly, disorion can

More information

Mobile Communications Chapter 3 : Media Access

Mobile Communications Chapter 3 : Media Access Moivaion Can we apply media access mehods from fixed neworks? Mobile Communicaions Chaper 3 : Media Access Moivaion SDMA, FDMA, TDMA Aloha Reservaion schemes Collision avoidance, MACA Polling CDMA SAMA

More information

SYNCHRONISATION OF THE LHC BETATRON COUPLING AND PHASE ADVANCE MEASUREMENT SYSTEM

SYNCHRONISATION OF THE LHC BETATRON COUPLING AND PHASE ADVANCE MEASUREMENT SYSTEM Proceedings of IBIC214, Monerey, CA, USA MOP4 SYNCHONISATION OF THE BETATON COUPLING AN PHASE AANCE MEASUEMENT SYSTEM J. Olexa, M. Gasior, CEN, Geneva, Swizerland Absrac The new iode Obi and OScillaion

More information

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents ree-wheeling diode Turn-off power dissipaion: off/d = f s * E off/d (v d, i LL, T j/d ) orward power dissipaion: fw/t = 1 T T 1 v () i () d Neglecing he load curren ripple will resul in: fw/d = i Lavg

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for Remoe Conrol Sysems 2 MECHNICAL DATA Pinning for TSOP44.., TSOP48..: = OUT, 2 = GND, 3 = V S Pinning for TSOP22.., TSOP24..: = OUT, 2 = V S, 3 = GND 3 6672 FEATURES Improved immuniy

More information

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s The PSK Modulaion - PSK is a modulaion ha modifies he phase of a carrier signal, a he beginning of he symbol period, wih a value ha depends on he mulibi ha has o be modulaed - i exhibis a good resilience

More information

A-LEVEL Electronics. ELEC4 Programmable Control Systems Mark scheme June Version: 1.0 Final

A-LEVEL Electronics. ELEC4 Programmable Control Systems Mark scheme June Version: 1.0 Final A-LEVEL Elecronics ELEC4 Programmable Conrol Sysems scheme 243 June 26 Version:. Final schemes are prepared by he Lead Assessmen Wrier and considered, ogeher wih he relevan quesions, by a panel of subjec

More information