Modulation exercises. Chapter 3

Size: px
Start display at page:

Download "Modulation exercises. Chapter 3"

Transcription

1 Chaper 3 Modulaion exercises Each problem is annoaed wih he leer E, T, C which sands for exercise, requires some hough, requires some concepualizaion. Problems labeled E are usually mechanical, hose labeled T require a plan of aack, hose labeled C usually have more han one defensible answer. Recall he represenaion of bandlimied signals. Definiion x(); < <, is a real bandlimied signal wih carrier f c (Hz) if jx(f )j = 0, jf f c j > 2 B x and B x << f c as shown in Figure 3.. X(f) B x -f c f c f Figure 3.: FT of bandlimied signal Theorem Le x be a bandlimied signal. and ^x is Hilber ransform. Then x; ^x can be represened as 8; x() = A() cos[2ßf c + ()] ^x() = A() sin[2ßf c + ()] 9

2 0 CHAPTER 3. MODULATION EXERCISES Moreover, he ampliude A() and phase () can be obained from x; ^x and he carrier signal as follows. Firs obain he complex baseband signal z: z() =[x() +j ^x()]e j2ßfc ; hen A() =jz()j; () = arg z(): Moreover, jz(f )j =0; jfj > 2 B x. In he conex of modulaion, A and are he modulaing signals, and x is he modulaed (ransmied) signal wih carrier f c. Thus he demodulaor, afer receiving x, mus firs obain ^x, hen z, and hen recover A and.. E Wha is z in he following wo cases where we use f c =00Hz. (a) x() = cos(2ß 99) +sin(2ß 0). (b) x is given in Figure 3.2. X(f) f Figure 3.2: Bandlimied signal in Problem 2. T Repea Problem bu now use f c =05Hz. 3. T Given a modulaing signal f ha is bandlimied o W Hz, a carrier cos(! c ) wih! c >> 2ßW, a nonlineariy g, and a band-pass filer ha only passes frequencies wihing! c ±2ßW or! c ± 2ßW, we wan o build a modulaor ha has oupu x() =A[ + fif()] cos! c ] by combining he componens as in Figure 3.3. Assume jf ()j <<. Compue fi for he following nonlineariies. (a) g(x) = ( x; x<0 0; x 0

3 f() + g(.) BPF x() cos ω c Figure 3.3: Modulaion scheme in Problem 2 (b) g(x) = ( x; jxj < =2 0; jxj =2 4. E Consider a narrow band signal of he form 8; x() =cos(! c + ()) Assume X(!) is zero excep where jj!j! c j < 2ßWj. (Hin. Below you may use j!j = (j!)( jsgn!).) (a) Find y, z in he upper arrangemen of Figure 3.4. (b) Find z in he lower arrangmen. Here he bandpass filer only passes he frequencies jj!j! c j < 2ßWj. x() y() z() H(ω) = a + b ω envelope deecor x() y() hard sgn(y()) z() H(ω) = a + b ω limier BPF Figure 3.4: Deodulaion schemes in Problem 4 5. T The arrangmen in Figure 3.5 is a scrambler (i-iv) followed by a descrambler (v-vii). The single sideband modulaors generae, for an inpu signal f, he oupu signal ffi() = f ()cosw ^f ()sinw. The LPF has frequency response H(!) =, j!j» W, and H(!) = 0, oherwise. The signal m a inpu i is given by is Fourier ransform M in he lower par of he figure. (a) Give graphical represenaions in he frequency domain of he signals a ii-vii.

4 2 CHAPTER 3. MODULATION EXERCISES i ii iii iv v vi vii SSB X LPF SSB X LPF m() cos 2W cos 2W M(ω) -W W ω Figure 3.5: The scrambler-descrambler of Problem 5 (b) Explain in one senence in which sense he signal a iv is a scrambled version of he inpu signal. 6. T Consider he PAM ransmission sysem (you don need o know wha PAM is) in which he frequency response of he channel and he LPF combined is given by ( H(!) = 2 ( + cos! ); j!j < 2ß 2 0; j!j 2ß (a) Find he (non-causal) impulse response of his sysem. (b) Le he inpu o he PAM sysem be x() =5ffi() +ffi( ) + 4ffi( 2): Use he resul of he previous par o obain a formula for he oupu y. (c) Wha are he values of y(0);y();y(2);y(3)? (d) If he clock a he receiving end is delayed by fi seconds he sampled oupu is y(fi );y(+ fi );y(2 + fi );y(3 + fi ). Le fi =0:2: Use your calculaor o compue one of hese values. 7. T A es channel for binary ransmission has he frequency response H(!) =. The inpu ff+i! o he channel is given in Figure 3.6. The inpu on he lef corresponds o he binary inpu 0 (case A), and on he righ corresponds o (case B). The second binary digi is sampled a he oupu a =:5. (a) The oupu a =:5 will depend on wheher he firs binary digi is 0 or, and denoe i as y A (:5) and y B (:5), respecively. Wha is he lowes possible value of ff if we have he requiremen y B (:5) y A (:5)» 0:0: y A (:5)

5 3 0 (Case A) (Case B) Figure 3.6: Tes signal for Problem 7 (b) Explain inuiively why he requiremen is easy o saisfy for large values of ff. In paricular, wha happens o he raio above as ff!. 8. T (PSK Specra) Consider phase shif keying using phase deviaion consan ffi = ß. Tha is a 0 is represened by cos(2ßf c ) and a is represened by cos(2ßf c + ß). Assume a carrier frequency of 0.0 MHz. Assume daa is sen a he rae of 000 bis per second. (a) Skech he magniude specrum of he PSK signal for he periodic bi sequence (Hin: he bi sequence can be represened by a square wave. Choose he square wave o be even in ime). (b) For he sequence above, esimae he bandwidh wihin which 90% of he signal power can be found. (Numerical mehods are appropriae). 9. E(Hilber Transform) Le Le m() = sin00ß ß sin200ß + : ß x() =m()cos(0 5 ß) +( ß Λ m())sin(05 ß): Skech he specra M (f ) and X(f ). Wha ype of modulaion does his sysem provide? 0. T (Asynchronous Demodulaion) Consider deecion of a one-modulaed AM double-sideband wih carrier (DSB-WC) signal p[x 4 () =(+cos2ßf m )cos2ßf c using an ideal diode followed by low pass filer, where he oupu of he deecor is x 5 (). (As shown in figure 3.7, ideal recificaion of an AM DSB-WC signal can be considered as a muliplicaion by a square wave a he carrier frequency f c ). For f c = Hz and f m = 2 0 3, skech x 4 ();x 5 ();x 6 () and heir specra. Explain using a ime domain skech of x 6 () why he carrier is necessary for his asynchronous demodulaion scheme.. T This Malab exercise les you simulae he asynchronous demodulaion described above. Download he hwk8.zip file from he class web page, and follow he insrucions o creae he vecor radioes, which represens.5 seconds of a 50kHZ cenered radio signal

6 4 CHAPTER 3. MODULATION EXERCISES Inpu Volage x4() T Ideal Diode x5() x4() x5() H(f) x6() s() s() f (low pass filer wih cuoff freq. 20KHz) T Figure 3.7: Asynchronous demodulaion (DSB-LC) sampled a 400 housand samples per second ( T = 2:5μs). The radio band is from 50kHz o 500kHz and conains several saions. (a) Plo radioes and a recified radioes (= x 5 ) from.0 o.05 seconds. (Hin: consider using abs.) (b) Wha is he impulse response h lp () for a windowed, causal, ideal low pass filer wih cuoff 20 khz? (Choose an appropriae window lengh.) Skech H lp (f ). (c) Use conv o filer x 5 () wih h lp (n T ). Plo he resul from.0 o.05 seconds. Downsample from 400 khz o 8 khz, and play wih sound. Describe wha you hear, and explain any arifacs you hear.

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II ECE 405 - ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II FALL 2005 A.P. FELZER To do "well" on his invesigaion you mus no only ge he righ answers bu mus also do

More information

Communications II Lecture 7: Performance of digital modulation

Communications II Lecture 7: Performance of digital modulation Communicaions II Lecure 7: Performance of digial modulaion Professor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Digial modulaion and demodulaion Error probabiliy

More information

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras ECEN 44 Communicaion Theory Chaper Summary: Coninuous-Wave Modulaion.1 Modulaion Modulaion is a process in which a parameer of a carrier waveform is varied in accordance wih a given message (baseband)

More information

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First Signal Proessing Firs Leure 4 Ampliude Modulaion AM LECURE OBJECIVES Review of F properies Convoluion mulipliaion Frequen shifing Sinewave Ampliude Modulaion AM radio Frequen-division mulipleing FDM

More information

Analog/Digital Communications Primer

Analog/Digital Communications Primer for Amaeur Radio Virginia Polyechnic Insiue & Sae Universiy March 19, 2013 # include //... in main() { floa kf = 0.1f; // modulaion facor liquid_freqdem_ype ype = LIQUID_FREQDEM_DELAYCONJ;

More information

Principles of Communications

Principles of Communications Sae Key Lab. on ISN, Xidian Universiy Principles of Communicaions Chaper VI: Elemenary Digial Modulaion Sysem Email: ychwang@mail.xidian.edu.cn Xidian Universiy Sae Key Lab. on ISN December 13, 2013 Sae

More information

Solution of ECE 342 Test 2 S12

Solution of ECE 342 Test 2 S12 Soluion of ECE 342 Tes 2 S2. All quesions regarding superheerodyne receivers refer o his diagram. x c () Anenna B T < B RF < 2 f B = B T Oher Signals f c Mixer f Baseband x RFi RF () x RFo () () () x i

More information

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

f t 2cos 2 Modulator Figure 21: DSB-SC modulation. 4.5 Ampliude modulaion: AM 4.55. DSB-SC ampliude modulaion (which is summarized in Figure 21) is easy o undersand and analyze in boh ime and frequency domains. However, analyical simpliciy is no always

More information

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Introduction: Analog Communication: Goal: Transmit a message from one location to another. ECE-5 Phil Schnier January 6, 8 Inroducion: Goal: Transmi a rom one locaion o anoher When is coninuous waveorm analog comm (eg, FM radio), sequence o numbers digial comm (eg, mp ile), hough he sequence

More information

UNIT IV DIGITAL MODULATION SCHEME

UNIT IV DIGITAL MODULATION SCHEME UNI IV DIGIAL MODULAION SCHEME Geomeric Represenaion of Signals Ojecive: o represen any se of M energy signals {s i (} as linear cominaions of N orhogonal asis funcions, where N M Real value energy signals

More information

Communication Systems. Communication Systems

Communication Systems. Communication Systems Communicaion Sysems Analog communicaion Transmi and receive analog waveforms Ampliude Modulaion (AM Phase Modulaion (PM Freq. Modulaion (FM Quadraure Ampliude Modulaion (QAM Pulse Ampliude Modulaion (PAM

More information

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1 Passand Daa ransmission II Reerences Frequency-shi keying Chaper 6.5, S. Haykin, Communicaion Sysems, Wiley. H. Inroducion Inroducion PSK and QAM are linear modulaion FSK is a nonlinear modulaion Similar

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity Wrap Up Fourier ransorm Sampling, Modulaion, Filering Noise and he Digial Absracion Binary signaling model and Shannon Capaciy Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Wrap Up, Slide

More information

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1 Passand Daa ransmission I References Phase-shif keying Chaper 4.-4.3, S. Haykin, Communicaion Sysems, Wiley. G. Inroducion Inroducion In aseand pulse ransmission, a daa sream represened in he form of a

More information

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communicaions II Lecure 5: Eecs o Noise on FM Proessor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Recap o FM FM sysem model in noise Derivaion o oupu SNR Pre/de-emphasis

More information

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop Chaper 2 Inroducion: From Phase-Locked Loop o Cosas Loop The Cosas loop can be considered an exended version of he phase-locked loop (PLL). The PLL has been invened in 932 by French engineer Henri de Belleszice

More information

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3 Laboraory # Chap 3 Objecives Linear Sysem Response: general case Undersand he difference and he relaionship beween a sep and impulse response. Deermine he limis of validiy of an approximaed impulse response.

More information

Pulse amplitude modula.on Baseband to passband and back

Pulse amplitude modula.on Baseband to passband and back Pulse ampliude modula.on Baseband o and back message inpu ) Today s opics concern wih he modulaor and demodulaor ransminer acharapan Suwansan.suk Sampler Quan.zer Source Channel Modulaor analog sequence

More information

Negative frequency communication

Negative frequency communication Negaive frequency communicaion Fanping DU Email: dufanping@homail.com Qing Huo Liu arxiv:2.43v5 [cs.it] 26 Sep 2 Deparmen of Elecrical and Compuer Engineering Duke Universiy Email: Qing.Liu@duke.edu Absrac

More information

Example Message bandwidth and the transmitted signal bandwidth

Example Message bandwidth and the transmitted signal bandwidth 4.6 Bandwidh-Eiien Modulaions 4.74. We are now going o deine a quaniy alled he bandwidh o a signal. Unorunaely, in praie, here isn jus one deiniion o bandwidh. Deiniion 4.75. The bandwidh (BW) o a signal

More information

weight: amplitude of sine curve

weight: amplitude of sine curve Joseph Fourier s claim: all signals are sums of sinusoids of differen frequencies. weighed sine curves weigh: ampliude of sine curve all : no exacly bu doesn maer for us in pracice Example: 3 sin() + sin(*)

More information

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions 2.2-2.7 and 3.1-3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial Communicaions, 2nd ed., John iley & Sons,

More information

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University Principles o Communicaions Lecure 4: Analog Modulaion Techniques Chih-Wei Liu 劉志尉 Naional Chiao Tung Universiy cwliu@wins.ee.ncu.edu.w Oulines Linear Modulaion Angle Modulaion Inererence Feedback Demodulaors

More information

Chapter 2: Fourier Representation of Signals and Systems

Chapter 2: Fourier Representation of Signals and Systems Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial

More information

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7 EE3204 Microelecronics II Biar / McNeill Due: Monday, May 1, 2017 EE 3204 / Term D-2017 Problem Se 7 All ex problems from Sedra and Smih, Microelecronic ircuis, 7h ediion. NOTES: Be sure your NAME and

More information

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature! Lecure 4 EITN75 2018 Chaper 12, 13 Modulaion and diversiy Receiver noise: repeiion Anenna noise is usually given as a noise emperaure! Noise facors or noise figures of differen sysem componens are deermined

More information

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University Priniples of ouniaions Leure 3: nalog Modulaion Tehniques 1 hih-wei Liu 劉志尉 Naional hiao Tung Universiy wliu@wins.ee.nu.edu.w Oulines Linear Modulaion ngle Modulaion Inerferene Feedbak Deodulaors nalog

More information

In most communication systems, the modulated signal has the form

In most communication systems, the modulated signal has the form Chaper : Basic Modulaion Techniques In mos communicaion sysems, he modulaed signal has he form x () A()cos[ ()], (-1) c c where c is known as he carrier frequency, A() is he envelope and () is he phase.

More information

SystemC-AMS Hands-On Lab Part 2

SystemC-AMS Hands-On Lab Part 2 SysemC-AMS Hands-On Lab Par 2 Markus Damm, Chrisoph Grimm Compuer Technology Vienna Universiy of Technology, Ausria François Pecheux Laboraoire d Informaique de Paris 6 Universié Pierre & Marie Curie Compuer

More information

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax 2.5.3: Sinusoidal Signals and Complex Exponenials Revision: June 11, 2010 215 E Main Suie D Pullman, W 99163 (509) 334 6306 Voice and Fax Overview Sinusoidal signals and complex exponenials are exremely

More information

Problem Sheet: Communication Channels Communication Systems

Problem Sheet: Communication Channels Communication Systems Problem Shee: Communicaion Channels Communicaion Sysems Professor A. Manikas Chair of Communicaions and Array Processing Deparmen of Elecrical & Elecronic Engineering Imperial College London v.11 Communicaion

More information

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI)

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI) ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Sandard ECMA-373 1 s Ediion / June 2006 Near Field Communicaion Wired Inerface (NFC-WI) Ecma Inernaional Rue du Rhône 114

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access Spread specrum (SS) ECS455: Chaper 4 Muliple Access Dr.Prapun Suksompong prapun.com/ecs455 4.3 DS/SS Oice Hours: BKD, 6h loor o Sirindhralai building Tuesday 4:20-5:20 Wednesday 4:20-5:20 Friday 9:5-0:5

More information

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier)

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier) EE 499: Wireless & Mobile Communiaions (08) Leure : Modulaion Tehniques or Mobile Radio Dr. Wajih. bu-l-saud mpliude Modulaion Tehniques mpliude Modulaion (Full M or Double Sideband wih Carrier) The general

More information

Receiver Architectures

Receiver Architectures 27/Dec/26 1 Receiver Archiecures Image-Rejec Receivers Shif-by-9 o For narrowband signal: sin cos +j /2 +j (a) T / 4 X = j j /2 G( ) = j sgn( ) 1/2 (b) Figure 5.23 Shif by 9 o in (a) ime and (b) frequency

More information

Communication Systems. Department of Electronics and Electrical Engineering

Communication Systems. Department of Electronics and Electrical Engineering COMM 704: Communicaion Lecure : Analog Mulipliers Dr Mohamed Abd El Ghany Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg nroducion Nonlinear operaions on coninuous-valued analog signals are ofen

More information

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 4: Bandpass Digial Transmission A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper 4: Bandpass Digial Transmission Digial CW modulaion Coheren binary sysems

More information

When answering the following 25 questions, always remember that there is someone who has to grade them. So please use legible handwriting.

When answering the following 25 questions, always remember that there is someone who has to grade them. So please use legible handwriting. 38963, VU Mobile Kommunikaion Miderm Exam: Insiu für Nachrichenechnik und Hochfrequenzechnik When answering he following 5 quesions, always remember ha here is someone who has o grade hem So please use

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications TELE465 Mobile and Saellie Communicaions Assignmen (Due: 4pm, Monday 7 h Ocober) To be submied o he lecurer before he beginning of he final lecure o be held a his ime.. This quesion considers Minimum Shif

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #8 C-T Sysems: Frequency-Domain Analysis of Sysems Reading Assignmen: Secion 5.2 of Kamen and Heck /2 Course Flow Diagram The arrows here show concepual

More information

3. Carrier Modulation Analog

3. Carrier Modulation Analog 3. Carrier Modulaion Analog Modulaion is he process of using an informaion signal (such as voice or music) o aler some propery of a higher frequency waveform which can hen be efficienly radiaed by reasonably

More information

Lecture 19: Lowpass, bandpass and highpass filters

Lecture 19: Lowpass, bandpass and highpass filters Leure 9: Lowpass, bandpass and higass filers UHTXHQF\6HOHFLYH LOHUV Ideal frequeny-seleive filers are filers ha le frequeny omponens over a given frequeny band (he passband pass hrough undisored, while

More information

Digital Communications - Overview

Digital Communications - Overview EE573 : Advanced Digial Communicaions Digial Communicaions - Overview Lecurer: Assoc. Prof. Dr Noor M Khan Deparmen of Elecronic Engineering, Muhammad Ali Jinnah Universiy, Islamabad Campus, Islamabad,

More information

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 24. Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecure 24 Amplificaion wih Transisor Circuis Small Signal Modelling Review from las ime Area Comparison beween BJT and MOSFET BJT Area = 3600 l 2 n-channel MOSFET Area = 168 l 2 Area Raio = 21:1

More information

Signal detection, Fouriertransformation, phase correction and quadrature detection

Signal detection, Fouriertransformation, phase correction and quadrature detection 2/35 Signal deecion, Fourierransformaion, phase correcion and quadraure deecion Peer Schmieder Schmilka 2004 Wha is his seminar abou? Signaldeecion Wha kind of signal do we deec in NMR Fourierransformaion

More information

IR Receiver Module for Light Barrier Systems

IR Receiver Module for Light Barrier Systems IR Receiver Module for Ligh Barrier Sysems DESIGN SUPPORT TOOLS 19026 click logo o ge sared FEATURES Up o 2 m for presence sensing Uses modulaed burss a 38 khz 940 nm peak wavelengh PIN diode and sensor

More information

EE.351: Spectrum Analysis and Discrete-Time Systems MIDTERM EXAM, 2:30PM 4:30PM, November 4, 2004 (closed book)

EE.351: Spectrum Analysis and Discrete-Time Systems MIDTERM EXAM, 2:30PM 4:30PM, November 4, 2004 (closed book) Name: Suden Number: Page EE.35: Specrum Analysis and Discree-Time Sysems MIDTERM EXAM, :3PM 4:3PM, November 4, 4 (closed book) Examiner: Ha H. Nguyen Noe: There are four quesions. All quesions are of equal

More information

AM Demodulation (peak detect.)

AM Demodulation (peak detect.) AM Deodulaion (peak deec.) Deodulaion is abou recovering he original signal--crysal Radio Exaple Anenna = Long Wire FM AM Tuning Circui A siple Diode! Deodulaion Circui (envelop of AM Signal) Filer (Mechanical)

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals Deparmen of Elecrical Engineering Universiy of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Coninuous-Time Signals Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inroducion: wha are signals and sysems? Signals

More information

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1) ELE4353 Mobile and Saellie Communicaion Syem uorial 3 (wee 7-8 S 4 Queion If a paricular modulaion provide uiable ER performance whenever σ /

More information

dm t t A cos 2 10 t 10

dm t t A cos 2 10 t 10 T.C. OKAN ÜNİVERSİTESİ Fauly o Engineering and Arhieure Elerial and Eleroni Engineering Program EEE 3 Analog Communiaions Fall 23 In Class Work Par 4 Soluions:. Skeh he FM and PM modulaed waveorms or he

More information

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009

ECMA-373. Near Field Communication Wired Interface (NFC-WI) 2 nd Edition / June Reference number ECMA-123:2009 ECMA-373 2 nd Ediion / June 2012 Near Field Communicaion Wired Inerface (NFC-WI) Reference number ECMA-123:2009 Ecma Inernaional 2009 COPYRIGHT PROTECTED DOCUMENT Ecma Inernaional 2012 Conens Page 1 Scope...

More information

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s The PSK Modulaion - PSK is a modulaion ha modifies he phase of a carrier signal, a he beginning of he symbol period, wih a value ha depends on he mulibi ha has o be modulaed - i exhibis a good resilience

More information

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER INTRODUCTION: Being able o ransmi a radio frequency carrier across space is of no use unless we can place informaion or inelligence upon i. This las ransmier

More information

Lecture 5: DC-DC Conversion

Lecture 5: DC-DC Conversion 1 / 31 Lecure 5: DC-DC Conversion ELEC-E845 Elecric Drives (5 ECTS) Mikko Rouimo (lecurer), Marko Hinkkanen (slides) Auumn 217 2 / 31 Learning Oucomes Afer his lecure and exercises you will be able o:

More information

Technology Trends & Issues in High-Speed Digital Systems

Technology Trends & Issues in High-Speed Digital Systems Deailed comparison of dynamic range beween a vecor nework analyzer and sampling oscilloscope based ime domain reflecomeer by normalizing measuremen ime Sho Okuyama Technology Trends & Issues in High-Speed

More information

Intermediate Frequency (IF)

Intermediate Frequency (IF) Inerediae Frequeny IF Iage frequeny p. II-33 Apliude Modulaion: SSB DSB odulaion: By ixing wih a inuoidal arrier a rad/e, half of hi peral deniy i ranlaed up in frequeny and enered abou and half i ranlaed

More information

L A-B-C dei Segnali Spread-Spectrum

L A-B-C dei Segnali Spread-Spectrum L A-B-C dei Segnali Spread-Specrum Marco Luise Universiy of Pisa, Ialy Diparimeno Ingegneria dell Informazione hp://www.ie.unipi.i/m.luise PAM Signal +A -A s() a 0 a 1 a 2 a 3 a 4 {a k }=+1 Binary Symbols

More information

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications

Laboratory #2. Spectral Analysis of Digital Baseband Signals. SYSC 4600 Digital Communications Laboraory #2 Speral Analysis of Digial Baseband Signals SYSC 4600 Digial Communiaions Deparmen of Sysems and Compuer Engineering Fauly of Engineering Carleon Universiy Oober 206 Deparmen of Sysems & Compuer

More information

IR Receiver Module for Light Barrier Systems

IR Receiver Module for Light Barrier Systems IR Receiver Module for Ligh Barrier Sysems TSSP4..SSXB Vishay Semiconducors DESIGN SUPPORT TOOLS Models Available 3 MECHANICAL DATA Pinning: = OUT, = GND, 3 = V S 7 click logo o ge sared DESCRIPTION The

More information

The student will create simulations of vertical components of circular and harmonic motion on GX.

The student will create simulations of vertical components of circular and harmonic motion on GX. Learning Objecives Circular and Harmonic Moion (Verical Transformaions: Sine curve) Algebra ; Pre-Calculus Time required: 10 150 min. The sudens will apply combined verical ranslaions and dilaions in he

More information

HS0038B5. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

HS0038B5. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors IR Receiver Modules for Remoe Conrol Sysems Descripion The - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he epoxy package

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission This book ocuses on higher layer aspecs o mobile communicaions, he compuer science elemens raher han on he radio and ransmission aspecs, he elecrical engineering par. This chaper inroduces only hose undamenal

More information

Communications II LABORATORY : Lab1- Signal Statistics, an Introduction to Simulink and FM

Communications II LABORATORY : Lab1- Signal Statistics, an Introduction to Simulink and FM Communicaions II LABORATORY : Lab1- Signal Saisics, an Inroducion o Simulink and FM Inroducion: In oday's lab we have hree pars. Throughou he firs par we will develop ools for analyzing, modifying, processing

More information

FROM ANALOG TO DIGITAL

FROM ANALOG TO DIGITAL FROM ANALOG TO DIGITAL OBJECTIVES The objecives of his lecure are o: Inroduce sampling, he Nyquis Limi (Shannon s Sampling Theorem) and represenaion of signals in he frequency domain Inroduce basic conceps

More information

Chapter 5 Amplitude Modulation

Chapter 5 Amplitude Modulation Chaper 5 pliude Modulaion 68 nalog Couniaion Syse Inoraion Soure Signal Modulaor Propagaion Channel Signal Deodulaor Inoraion Desinaion nalog signals ay be ransied direly via arrier odulaion over he propagaion

More information

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017 Angle Modulaion (Phase & Frequency Modulaion) EE442 Lecure 8 Spring 2017 1 Ampliude, Frequency and Phase Modulaion Wih ew excepions, Phase Modulaion (PM) is used primarily in digial communicaion 2 Why

More information

The design of an improved matched filter in DSSS-GMSK system

The design of an improved matched filter in DSSS-GMSK system Journal of Physics: Conference Series PAPER OPEN ACCESS The design of an improved mached filer in DSSS-GMSK sysem To cie his aricle: Mao Wei-ong e al 16 J. Phys.: Conf. Ser. 679 1 View he aricle online

More information

Signal Characteristics

Signal Characteristics Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1

More information

MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION

MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION J Modern Technology & Engineering Vol2, No1, 217, pp76-81 MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION GA Rusamov 1*, RJ Gasimov 1, VG Farhadov 1 1 Azerbaijan Technical Universiy, Baku, Azerbaijan

More information

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications ELEG- Signal Processing and Communicaions Lecure 5 Periodic Signals, Harmonics & ime-varying Sinusoids READING ASSIGNMENS his Lecure: Chaper 3, Secions 3- and 3-3 Chaper 3, Secions 3-7 and 3-8 Lab sars

More information

Memorandum on Impulse Winding Tester

Memorandum on Impulse Winding Tester Memorandum on Impulse Winding Teser. Esimaion of Inducance by Impulse Response When he volage response is observed afer connecing an elecric charge sored up in he capaciy C o he coil L (including he inside

More information

MET 487 Instrumentation and Automatic Control. Topics of Discussion

MET 487 Instrumentation and Automatic Control. Topics of Discussion MET 487 Insrumenaion and Auomaic onrol Sysem Response Paul I-Hai I Lin, Professor Elecrical and ompuer Engineering Technology Purdue Universiy For Wayne ampus Tex Book: Inro o Mecharonics and Measuremen

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for Remoe Conrol Sysems FEATURES Very low supply curren Phoo deecor and preamplifier in one package Inernal filer for PCM frequency Supply volage: 2.5 V o 5.5 V Improved immuniy agains

More information

Lecture #7: Discrete-time Signals and Sampling

Lecture #7: Discrete-time Signals and Sampling EEL335: Discree-Time Signals and Sysems Lecure #7: Discree-ime Signals and Sampling. Inroducion Lecure #7: Discree-ime Signals and Sampling Unlike coninuous-ime signals, discree-ime signals have defined

More information

A Novel Phase-Noise Cancelled Optical Frequency Domain Reflectometry Using Modulation Sidebands

A Novel Phase-Noise Cancelled Optical Frequency Domain Reflectometry Using Modulation Sidebands Phoonics and Opoelecronics (P&O) Oc. 1, Vol. 1 Iss. 3, PP. 6-64 A Novel Phase-Noise Cancelled Opical Frequency Domain Reflecomery Using Modulaion Sidebands Shua Hiramasu, Kasushi Iwashia Kochi Universiy

More information

IR Sensor Module for Reflective Sensor, Light Barrier, and Fast Proximity Applications

IR Sensor Module for Reflective Sensor, Light Barrier, and Fast Proximity Applications IR Sensor Module for Reflecive Sensor, Ligh Barrier, and Fas Proximiy Applicaions 2 3 DESIGN SUPPORT TOOLS 6672 click logo o ge sared FEATURES Up o 2 m for presence and proximiy sensing Uses modulaed burss

More information

6.003: Signals and Systems Lecture 24 December 6, 2011

6.003: Signals and Systems Lecture 24 December 6, 2011 6.3: Signals and Sysems Lecure 24 December 6, 2 6.3: Signals and Sysems Modulaion Subjec Evaluaions Your feedbac is imporan o us! Please give feedbac o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for New TSOP48.. 2 3 MECHANICAL DATA Pinning = OUT, 2 =, 3 = 6672 FEATURES Low supply curren Phoo deecor and preamplifier in one package Inernal filer for PCM frequency Improved shielding

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for Remoe Conrol Sysems Descripion The HS38B3VM is a miniaurized receiver for infrared remoe conrol sysems. A PIN diode and a preamplifier are assembled on a lead frame, he epoxy package

More information

IR Sensor Module for Reflective Sensor, Light Barrier, and Fast Proximity Applications

IR Sensor Module for Reflective Sensor, Light Barrier, and Fast Proximity Applications IR Sensor Module for Reflecive Sensor, Ligh Barrier, and Fas Proximiy Applicaions 2 3 DESIGN SUPPORT TOOLS Models Available MECHANICAL DATA Pinning: = OUT, 2 = GND, 3 = V S click logo o ge sared 6672 APPLICATIONS

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems TSOP.., TSOP4.., TSOP6.., TSOP4.., TSOP44.., TSOP46.. IR Receiver Modules for Remoe Conrol Sysems MECHANICAL DATA Pinning for TSOP4...: = OUT, = GND, = V S Pinning for TSOP...: = OUT, = V S, = GND 667

More information

IR Receiver Module for Light Barrier Systems

IR Receiver Module for Light Barrier Systems New Produc IR Receiver Module for Ligh Barrier Sysems TSSP5838 1926 FEATURES Low supply curren Phoo deecor and preamplifier in one package Inernal filer for 38 khz IR signals Shielding agains EMI Supply

More information

Chapter 1: Introduction

Chapter 1: Introduction Second ediion ober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder.. Inroducion o power processing.. Some applicaions of power elecronics.3. Elemens of power elecronics Summary of he course.

More information

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects Opical Shor Pulse Generaion and Measuremen Based on Fiber Polarizaion Effecs Changyuan Yu Deparmen of Elecrical & Compuer Engineering, Naional Universiy of Singapore, Singapore, 117576 A*STAR Insiue for

More information

Optical phase locked loop for transparent inter-satellite communications

Optical phase locked loop for transparent inter-satellite communications Opical phase locked loop for ransparen iner-saellie communicaions F. Herzog 1, K. Kudielka 2,D.Erni 1 and W. Bächold 1 1 Communicaion Phoonics Group, Laboraory for Elecromagneic Fields and Microwave Elecronics,

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Phoo Modules for PCM Remoe Conrol Sysems Descripion The HS38B series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he epoxy package

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems IR Receiver Modules for Remoe Conrol Sysems MECHANICAL DATA Pinning for : 1 = OUT, 2 = GND, 3 = V S 1926 FEATURES Very low supply curren Phoo deecor and preamplifier in one package Opimized for Sony and

More information

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost) Table of Conens 3.0 SMPS Topologies 3.1 Basic Componens 3.2 Buck (Sep Down) 3.3 Boos (Sep Up) 3.4 nverer (Buck/Boos) 3.5 Flyback Converer 3.6 Curren Boosed Boos 3.7 Curren Boosed Buck 3.8 Forward Converer

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Phoo Modules for PCM Remoe Conrol Sysems Available ypes for differen carrier frequencies Type fo Type fo TSOP223 3 khz TSOP2233 33 khz TSOP2236 36 khz TSOP2237 36.7 khz TSOP2238 38 khz TSOP224 4 khz TSOP2256

More information

TSOP322.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors

TSOP322.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors TSOP3.. IR Receiver Modules for Remoe Conrol Sysems Descripion The TSOP3.. - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he

More information

A novel quasi-peak-detector for time-domain EMI-measurements F. Krug, S. Braun, and P. Russer Abstract. Advanced TDEMI measurement concept

A novel quasi-peak-detector for time-domain EMI-measurements F. Krug, S. Braun, and P. Russer Abstract. Advanced TDEMI measurement concept Advances in Radio Science (24) 2: 27 32 Copernicus GmbH 24 Advances in Radio Science A novel quasi-peak-deecor for ime-domain EMI-measuremens F. Krug, S. Braun, and P. Russer Insiue for High-Frequency

More information

TSOP12.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors

TSOP12.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors TSOP1.. IR Receiver Modules for Remoe Conrol Sysems Descripion The TSOP1.. - series are miniaurized receivers for infrared remoe conrol sysems. PIN diode and preamplifier are assembled on lead frame, he

More information

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such

More information

P. Bruschi: Project guidelines PSM Project guidelines.

P. Bruschi: Project guidelines PSM Project guidelines. Projec guidelines. 1. Rules for he execuion of he projecs Projecs are opional. Their aim is o improve he sudens knowledge of he basic full-cusom design flow. The final score of he exam is no affeced by

More information

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems 2 3 MECHANICAL DATA Pinning: = OUT, 2 =, 3 = V S 6672 FEATURES Very low supply curren Phoo deecor and preamplifier in one package Inernal filer for PCM frequency Improved shielding agains EMI Supply volage:

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Friday, 19 November 2004, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2004 Uni: Day and Time: Time Allowed: ELEC32 Communiaion Sysems (D2) Friday, 9 November 2004, 9:20 a.m. Three hours plus 0 minues reading ime. Toal Number of Quesions: SIX (6)

More information

Digital Communications: An Overview of Fundamentals

Digital Communications: An Overview of Fundamentals IMPERIAL COLLEGE LONDON DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING. COMPACT LECTURE NOTES on COMMUNICATION THEORY. Prof. Ahanassios Manikas, version Auumn 2008 Digial Communicaions: An Overview

More information