ICT 5305 Mobile Communications

Size: px
Start display at page:

Download "ICT 5305 Mobile Communications"

Transcription

1 ICT 5305 Mobile Communicaions Lecure - 2 April 2016 Dr. Hossen Asiful Musafa 2.1

2 Frequencies for communicaion VLF = Very Low Frequency LF = Low Frequency MF = Medium Frequency HF = High Frequency VHF = Very High Frequency UHF = Ulra High Frequency SHF = Super High Frequency EHF = Exra High Frequency UV = Ulraviole Ligh Frequency and wave lengh - = c/f - wave lengh, speed of ligh c 3x10 8 m/s, frequency f wised pair coax cable opical ransmission 1 Mm 300 Hz 10 km 30 khz 100 m 3 MHz 1 m 300 MHz 10 mm 30 GHz 100 m 3 THz 1 m 300 THz VLF LF MF HF VHF UHF SHF EHF infrared visible ligh UV 2.2

3 Example frequencies for mobile communicaion VHF-/UHF-ranges for mobile radio - simple, small anenna for cars - deerminisic propagaion characerisics, reliable connecions SHF and higher for direced radio links, saellie communicaion - small anenna, beam forming - large bandwidh available Wireless LANs use frequencies in UHF o SHF range - some sysems planned up o EHF - limiaions due o absorpion by, e.g., waer (dielecric heaing, see microwave oven) - weaher dependen fading, signal loss caused by heavy rainfall ec. 2.3

4 Frequencies and regulaions Examples Europe USA Japan Cellular neworks GSM , , , UMTS , LTE , , Cordless phones CT , CT DECT AMPS, TDMA, CDMA, GSM , TDMA, CDMA, GSM, UMTS , PACS , PACS-UB PDC, FOMA , PDC , FOMA , PHS JCT Wireless LANs b/g b/g b g Oher RF sysems 27, 128, 418, 433, , , 868 In general: ITU-R holds aucions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences); 3GPP specific: see e.g. 3GPP TS V ( ) 2.4

5 Signals I Physical represenaion of daa Funcion of ime and locaion Signal parameers: parameers represening he value of daa Classificaion - coninuous ime/discree ime - coninuous values/discree values - analog signal = coninuous ime and coninuous values - digial signal = discree ime and discree values Signal parameers of periodic signals: - period T, frequency f=1/t, ampliude A, phase shif - sine wave as special periodic signal for a carrier: s() = A sin(2 f + ) 2.5

6 Fourier represenaion of periodic signals g( ) 1 2 c n 1 a n sin(2 nf) n 1 b n cos(2 nf) ideal periodic signal 0 real composiion (based on harmonics) 2.6

7 Signals II Differen represenaions of signals - ampliude (ampliude domain) - frequency specrum (frequency domain) - consellaion diagram (ampliude M and phase in polar coordinaes) A [V] A [V] Q = M sin [s] I= M cos f [Hz] Composed signals ransferred ino frequency domain using Fourier ransformaion Digial signals need - infinie frequencies for perfec ransmission - modulaion wih a carrier frequency for ransmission (analog signal!) 2.7

8 Anennas: isoropic radiaor Radiaion and recepion of elecromagneic waves, coupling of wires o space for radio ransmission Isoropic radiaor: equal radiaion in all direcions (hree dimensional) - only a heoreical reference anenna Real anennas always have direcive effecs (verically and/or horizonally) Radiaion paern: measuremen of radiaion around an anenna y z x z y x ideal isoropic radiaor 2.8

9 Anennas: simple dipoles Real anennas are no isoropic radiaors bu, e.g., dipoles wih lenghs /4 on car roofs or /2 as Herzian dipole shape of anenna proporional o wavelengh /4 /2 Example: Radiaion paern of a simple Herzian dipole y y z x z x simple dipole side view (xy-plane) side view (yz-plane) op view (xz-plane) Gain: maximum power in he direcion of he main lobe compared o he power of an isoropic radiaor (wih he same average power) 2.9

10 Anennas: direced and secorized Ofen used for microwave connecions or base saions for mobile phones (e.g., radio coverage of a valley) y y z x z x direced anenna side view (xy-plane) side view (yz-plane) op view (xz-plane) z z x x secorized anenna op view, 3 secor op view, 6 secor 2.10

11 Anennas: diversiy Grouping of 2 or more anennas - muli-elemen anenna arrays Anenna diversiy - swiched diversiy, selecion diversiy - receiver chooses anenna wih larges oupu - diversiy combining - combine oupu power o produce gain - cophasing needed o avoid cancellaion /4 /2 /4 /2 /2 /2 + + ground plane 2.11

12 MIMO Muliple-Inpu Muliple-Oupu - Use of several anennas a receiver and ransmier - Increased daa raes and ransmission range wihou addiional ransmi power or bandwidh via higher specral efficiency, higher link robusness, reduced fading Examples - IEEE n, LTE, HSPA+, Funcions - Beamforming : emi he same signal from all anennas o maximize signal power a receiver anenna - Spaial muliplexing: spli high-rae signal ino muliple lower rae sreams and ransmi over differen anennas - Diversiy coding: ransmi single sream over differen anennas wih (near) orhogonal codes sender 2 Time of fligh 2 = 1 +d 2 3 = 1 +d 3 Sending ime 1: 0 2: 0 -d 2 3: 0 -d 3 receiver 2.12

13 Signal propagaion ranges Transmission range - communicaion possible - low error rae Deecion range - deecion of he signal possible - no communicaion possible Inerference range - signal may no be deeced - signal adds o he background noise sender ransmission deecion inerference disance Warning: figure misleading bizarre shaped, ime-varying ranges in realiy! 2.13

14 Signal propagaion Propagaion in free space always like ligh (sraigh line) Receiving power proporional o 1/d² in vacuum much more aenuaion in real environmens, e.g., d 3.5 d 4 (d = disance beween sender and receiver) Receiving power addiionally influenced by - fading (frequency dependen) - shadowing - reflecion a large obsacles - refracion depending on he densiy of a medium - scaering a small obsacles - diffracion a edges shadowing reflecion refracion scaering diffracion 2.14

15 Mulipah propagaion Signal can ake many differen pahs beween sender and receiver due o reflecion, scaering, diffracion LOS pulses mulipah pulses LOS (line-of-sigh) signal a sender signal a receiver Time dispersion: signal is dispersed over ime - inerference wih neighbor symbols, Iner Symbol Inerference (ISI) The signal reaches a receiver direcly and phase shifed - disored signal depending on he phases of he differen pars 2.15

16 Effecs of mobiliy Channel characerisics change over ime and locaion - signal pahs change - differen delay variaions of differen signal pars - differen phases of signal pars quick changes in he power received (shor erm fading) power long erm fading Addiional changes in - disance o sender - obsacles furher away slow changes in he average power received (long erm fading) shor erm fading 2.16

17 Muliplexing Muliplexing in 4 dimensions - space (s i ) - ime () - frequency (f) - code (c) Goal: muliple use of a shared medium channels k i s 1 k 1 k 2 k 3 k 4 k 5 k 6 c f c Imporan: guard spaces needed! c s 2 f s 3 f 2.17

18 Frequency muliplex Separaion of he whole specrum ino smaller frequency bands A channel ges a cerain band of he specrum for he whole ime Advanages - no dynamic coordinaion necessary - works also for analog signals Disadvanages - wase of bandwidh if he raffic is disribued unevenly c k 1 k 2 k 3 k 4 k 5 k 6 f - inflexible 2.18

19 Time muliplex A channel ges he whole specrum for a cerain amoun of ime Advanages - only one carrier in he medium a any ime - hroughpu high even for many users k 1 k 2 k 3 k 4 k 5 k 6 Disadvanages - precise synchronizaion necessary c f 2.19

20 Time and frequency muliplex Combinaion of boh mehods A channel ges a cerain frequency band for a cerain amoun of ime Example: GSM, Blueooh Advanages - beer proecion agains apping - proecion agains frequency selecive inerference bu: precise coordinaion required c k 1 k 2 k 3 k 4 k 5 k 6 f 2.20

21 Cogniive Radio Typically in he form of a specrum sensing CR - Deec unused specrum and share wih ohers avoiding inerference - Choose auomaically bes available specrum (inelligen form of ime/frequency/space muliplexing) Disinguish - Primary Users (PU): users assigned o a specific specrum by e.g. regulaion - Secondary Users (SU): users wih a CR o use unused specrum Examples - Reuse of (regionally) unused analog TV specrum (aka whie space) - Temporary reuse of unused specrum e.g. of pagers, amaeur radio ec. SU f PU SU SU PU PU SU SU PU PU SU SU PU space mux PU PU PU PU PU SU SU SU frequency/ime mux 2.21

22 Code muliplex Each channel has a unique code k 1 k 2 k 3 k 4 k 5 k 6 All channels use he same specrum a he same ime Advanages - bandwidh efficien - no coordinaion and synchronizaion necessary - good proecion agains inerference and apping c f Disadvanages - varying user daa raes - more complex signal regeneraion Implemened using spread specrum echnology 2.22

23 Modulaion Digial modulaion - digial daa is ranslaed ino an analog signal (baseband) - ASK, FSK, PSK - main focus in his chaper - differences in specral efficiency, power efficiency, robusness Analog modulaion - shifs cener frequency of baseband signal up o he radio carrier - Moivaion - smaller anennas (e.g., /4) - Frequency Division Muliplexing - medium characerisics - Basic schemes - Ampliude Modulaion (AM) - Frequency Modulaion (FM) - Phase Modulaion (PM) 2.23

24 Modulaion and demodulaion analog baseband digial signal daa digial analog modulaion modulaion radio ransmier radio carrier analog demodulaion analog baseband signal synchronizaion decision digial daa radio receiver radio carrier 2.24

25 Digial modulaion Modulaion of digial signals known as Shif Keying Ampliude Shif Keying (ASK): - very simple - low bandwidh requiremens - very suscepible o inerference Frequency Shif Keying (FSK): - needs larger bandwidh Phase Shif Keying (PSK): - more complex - robus agains inerference

26 Advanced Frequency Shif Keying Bandwidh needed for FSK depends on he disance beween he carrier frequencies Special pre-compuaion avoids sudden phase shifs MSK (Minimum Shif Keying) - bi separaed ino even and odd bis, he duraion of each bi is doubled - depending on he bi values (even, odd) he higher or lower frequency, original or invered is chosen - he frequency of one carrier is wice he frequency of he oher - Equivalen o offse QPSK Even higher bandwidh efficiency using a Gaussian low-pass filer GMSK (Gaussian MSK), used in GSM 2.26

27 Example of MSK daa even bis odd bis low frequency high frequency bi even odd signal h n n h value h: high frequency n: low frequency +: original signal -: invered signal MSK signal No phase shifs! 2.27

2. Wireless Transmission. Frequencies for Communication (1)

2. Wireless Transmission. Frequencies for Communication (1) 2. Wireless Transmission Frequencies and Signals Muliplexing Modulaion and Spread Specrum 2005 Burkhard Siller and Jochen Schiller FU Berlin M2 2 Frequencies or Communicaion (1) wised pair coax cable opical

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission This book ocuses on higher layer aspecs o mobile communicaions, he compuer science elemens raher han on he radio and ransmission aspecs, he elecrical engineering par. This chaper inroduces only hose undamenal

More information

Wireless Transmission

Wireless Transmission Wireless Transmission Arjan Durresi Durresi@csc.lsu.edu These slides are available a: hp://www.csc.lsu.edu/~durresi/csc7602_05/ Louisiana Sae Universiy 2 Wireless Transmission - 1 Overview Frequencies

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Antenna Parameters. G=4pηA w /l 2. G=Gain η= loss-coefficient (efficiency) A w = electrical aperture l= wavelength. A w (G=1)=l 2 /4pη 180 0

Antenna Parameters. G=4pηA w /l 2. G=Gain η= loss-coefficient (efficiency) A w = electrical aperture l= wavelength. A w (G=1)=l 2 /4pη 180 0 Anenna Parameers Half-Power Beamwidh Firs Null-o-Null G=4pηA w /l 2 G=Gain η= loss-coefficien (efficiency) A w = elecrical aperure l= wavelengh 360 0 0 0 90 0 A w (G=1)=l 2 /4pη 180 0 The loss-coefficien

More information

Lecture 11. Digital Transmission Fundamentals

Lecture 11. Digital Transmission Fundamentals CS4/MSc Compuer Neworking Lecure 11 Digial Transmission Fundamenals Compuer Neworking, Copyrigh Universiy of Edinburgh 2005 Digial Transmission Fundamenals Neworks consruced ou of Links or ransmission

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO Multiplexing, Cognitive Radio Spread spectrum, modulation Cellular systems 2.1 Frequencies

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

Mobile Communications Chapter 3 : Media Access

Mobile Communications Chapter 3 : Media Access Moivaion Can we apply media access mehods from fixed neworks? Mobile Communicaions Chaper 3 : Media Access Moivaion SDMA, FDMA, TDMA Aloha Reservaion schemes Collision avoidance, MACA Polling CDMA SAMA

More information

Mobile Communications

Mobile Communications Mobile Communications Semester B, Mandatory modules, ECTS Units: 3 George Pavlides http://georgepavlides.info Book: Jochen H. Schiller, Mobile Communications Second Edition, Addison- Wesley, Pearson Education

More information

Structure of the Lecture

Structure of the Lecture Structure of the Lecture Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

Communication Systems. Communication Systems

Communication Systems. Communication Systems Communicaion Sysems Analog communicaion Transmi and receive analog waveforms Ampliude Modulaion (AM Phase Modulaion (PM Freq. Modulaion (FM Quadraure Ampliude Modulaion (QAM Pulse Ampliude Modulaion (PAM

More information

UNIT IV DIGITAL MODULATION SCHEME

UNIT IV DIGITAL MODULATION SCHEME UNI IV DIGIAL MODULAION SCHEME Geomeric Represenaion of Signals Ojecive: o represen any se of M energy signals {s i (} as linear cominaions of N orhogonal asis funcions, where N M Real value energy signals

More information

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1 Passand Daa ransmission I References Phase-shif keying Chaper 4.-4.3, S. Haykin, Communicaion Sysems, Wiley. G. Inroducion Inroducion In aseand pulse ransmission, a daa sream represened in he form of a

More information

Wireless Transmission:

Wireless Transmission: Wireless Transmission: Physical Layer Aspects and Channel Characteristics Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems 1 Frequencies for communication

More information

Key Issue. 3. Media Access. Hidden and Exposed Terminals. Near and Far Terminals. FDD/FDMA General Scheme, Example GSM. Access Methods SDMA/FDMA/TDMA

Key Issue. 3. Media Access. Hidden and Exposed Terminals. Near and Far Terminals. FDD/FDMA General Scheme, Example GSM. Access Methods SDMA/FDMA/TDMA Key Issue Can we apply media access mehods from fixed neworks? 3. Media Access SDMA, FDMA, TDMA Aloha and Reservaion Schemes Avoidance and Polling MACA, CDMA, SAMA Example CSMA/CD: Carrier Sense Muliple

More information

weight: amplitude of sine curve

weight: amplitude of sine curve Joseph Fourier s claim: all signals are sums of sinusoids of differen frequencies. weighed sine curves weigh: ampliude of sine curve all : no exacly bu doesn maer for us in pracice Example: 3 sin() + sin(*)

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access Spread specrum (SS) ECS455: Chaper 4 Muliple Access Dr.Prapun Suksompong prapun.com/ecs455 4.3 DS/SS Oice Hours: BKD, 6h loor o Sirindhralai building Tuesday 4:20-5:20 Wednesday 4:20-5:20 Friday 9:5-0:5

More information

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity Wrap Up Fourier ransorm Sampling, Modulaion, Filering Noise and he Digial Absracion Binary signaling model and Shannon Capaciy Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Wrap Up, Slide

More information

Principles of Communications

Principles of Communications Sae Key Lab. on ISN, Xidian Universiy Principles of Communicaions Chaper VI: Elemenary Digial Modulaion Sysem Email: ychwang@mail.xidian.edu.cn Xidian Universiy Sae Key Lab. on ISN December 13, 2013 Sae

More information

Examination Mobile & Wireless Networking ( ) April 12,

Examination Mobile & Wireless Networking ( ) April 12, Page 1 of 5 Examinaion Mobile & Wireless Neworking (192620010) April 12, 2017 13.45 16.45 Noes: Only he overhead shees used in he course, 2 double-sided shees of noes (any fon size/densiy!), and a dicionary

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Frequenies or ommuniaion wised pair oa able opial ransmission Mobile Communiaions Chaper : Wireless Transmission Frequenies Signals Anenna Signal propagaion Mulipleing Spread sperum Modulaion Cellular

More information

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature! Lecure 4 EITN75 2018 Chaper 12, 13 Modulaion and diversiy Receiver noise: repeiion Anenna noise is usually given as a noise emperaure! Noise facors or noise figures of differen sysem componens are deermined

More information

Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/6/2012 Outline Admin and recap Frequency domain examples Basic concepts of modulation Amplitude modulation Amplitude demodulation frequency

More information

Review Wireless Communications

Review Wireless Communications EEC173B/ECS152C, Winer 2006 Review of las week s maerial Wireless Channel Access Challenges: Hidden/Exposed Terminals Access Mehods: SDMA, FDMA, TDMA, CDMA Random Access: Aloha, CSMA/CD, Reservaion Chuah,

More information

EECS 380: Wireless Communications Weeks 5-6

EECS 380: Wireless Communications Weeks 5-6 EECS 380: Wireless Communicaions Weeks 5-6 Michael L. Honig Norhwesern Universiy April 2018 1 Why Digial Communicaions? 1G (analog) à 2G (digial) à 3G (digial) Digiized voice requires abou 64 kbps, herefore

More information

Will my next WLAN work at 1 Gbps?

Will my next WLAN work at 1 Gbps? Will my nex WLAN work a 1 Gbps? Boris Bellala boris.bellala@upf.edu hp://www.dic.upf.edu/ bbellal/ Deparmen of Informaion and Communicaion Technologies (DTIC) Universia Pompeu Fabra (UPF) 2013 Ouline Moivaion

More information

Multiplexing. Structure of the Lecture. Channels. Frequency Multiplexing

Multiplexing. Structure of the Lecture. Channels. Frequency Multiplexing Srucure o he Lecure Muliplexing Chaper Technical Basics: Layer Mehods or Medium Access: Layer Channels in a requency band Saic medium access mehods (Muliplexing) Flexible medium access mehods (Muliple

More information

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations Structure of the Lecture Chapter 2 Technical Basics: Laer Methods for Medium Access: Laer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude demodulation requency shiting 09/6/202 2 Admin First assignment to be posted by this

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK INTRODUCTION: Much of daa communicaions is concerned wih sending digial informaion hrough sysems ha normally only pass analog signals. A elephone line is such

More information

Chapter 2 PHYSICAL AND LINK LAYER

Chapter 2 PHYSICAL AND LINK LAYER Chapter 2 PHYSICAL AND LINK LAYER Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum CDMA Modulation Distributed

More information

When answering the following 25 questions, always remember that there is someone who has to grade them. So please use legible handwriting.

When answering the following 25 questions, always remember that there is someone who has to grade them. So please use legible handwriting. 38963, VU Mobile Kommunikaion Miderm Exam: Insiu für Nachrichenechnik und Hochfrequenzechnik When answering he following 5 quesions, always remember ha here is someone who has o grade hem So please use

More information

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 4: Bandpass Digial Transmission A. Bruce Carlson Paul B. Crilly The McGraw-Hill Companies Chaper 4: Bandpass Digial Transmission Digial CW modulaion Coheren binary sysems

More information

Chapter 2. The Physical Layer

Chapter 2. The Physical Layer Chaper 2 The Physical Layer The Physical Layer Defines he mechanical, elecrical and iming inerfaces o he nework Transmission media - guided (copper and fiber opics) - wireless (radio erresrial) - saellie

More information

Negative frequency communication

Negative frequency communication Negaive frequency communicaion Fanping DU Email: dufanping@homail.com Qing Huo Liu arxiv:2.43v5 [cs.it] 26 Sep 2 Deparmen of Elecrical and Compuer Engineering Duke Universiy Email: Qing.Liu@duke.edu Absrac

More information

TELE4652 Mobile and Satellite Communications

TELE4652 Mobile and Satellite Communications TELE465 Mobile and Saellie Communicaions Assignmen (Due: 4pm, Monday 7 h Ocober) To be submied o he lecurer before he beginning of he final lecure o be held a his ime.. This quesion considers Minimum Shif

More information

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II ECE 405 - ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II FALL 2005 A.P. FELZER To do "well" on his invesigaion you mus no only ge he righ answers bu mus also do

More information

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras ECEN 44 Communicaion Theory Chaper Summary: Coninuous-Wave Modulaion.1 Modulaion Modulaion is a process in which a parameer of a carrier waveform is varied in accordance wih a given message (baseband)

More information

Optical fibres. Optical fibres made from high-density glass can carry light signals long distances without losing any light through their sides.

Optical fibres. Optical fibres made from high-density glass can carry light signals long distances without losing any light through their sides. Nearly here Nailed i! Uni 1 Conen Opical fibres Opical fibres made from high-densiy glass can carry ligh signals long disances wihou losing any ligh hrough heir sides. Criical angle The criical angle,

More information

Communications II Lecture 7: Performance of digital modulation

Communications II Lecture 7: Performance of digital modulation Communicaions II Lecure 7: Performance of digial modulaion Professor Kin K. Leung EEE and Compuing Deparmens Imperial College London Copyrigh reserved Ouline Digial modulaion and demodulaion Error probabiliy

More information

L A-B-C dei Segnali Spread-Spectrum

L A-B-C dei Segnali Spread-Spectrum L A-B-C dei Segnali Spread-Specrum Marco Luise Universiy of Pisa, Ialy Diparimeno Ingegneria dell Informazione hp://www.ie.unipi.i/m.luise PAM Signal +A -A s() a 0 a 1 a 2 a 3 a 4 {a k }=+1 Binary Symbols

More information

Analog/Digital Communications Primer

Analog/Digital Communications Primer for Amaeur Radio Virginia Polyechnic Insiue & Sae Universiy March 19, 2013 # include //... in main() { floa kf = 0.1f; // modulaion facor liquid_freqdem_ype ype = LIQUID_FREQDEM_DELAYCONJ;

More information

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1 Passand Daa ransmission II Reerences Frequency-shi keying Chaper 6.5, S. Haykin, Communicaion Sysems, Wiley. H. Inroducion Inroducion PSK and QAM are linear modulaion FSK is a nonlinear modulaion Similar

More information

6.976 High Speed Communication Circuits and Systems Lecture 19 Basics of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 19 Basics of Wireless Communication 6.976 High Speed Communicaion Circuis and Sysems Lecure 9 Basics o Wireless Communicaion Michael Perro Massachuses Insiue o Technology Copyrigh 23 by Michael H. Perro Ampliude Modulaion (Transmier) Transmier

More information

Wireless Transmission Basics

Wireless Transmission Basics Areas o researh in mobile ommuniaion Wireless Transmission Basis Frequenies Signals Anenna Signal propagaion Mulipleing Spread sperum Modulaion Cellular sysems Wireless Communiaion ransmission qualiy (bandwidh,

More information

Digital Encoding And Decoding

Digital Encoding And Decoding Digial Encoding And Decoding Dr. George W Benhien Augus 13, 2007 Revised March 30, 2010 E-mail: george@gbenhien.ne 1 Inroducion Many elecronic communicaion devices oday process and ransfer informaion digially.

More information

A WIDEBAND RADIO CHANNEL MODEL FOR SIMULATION OF CHAOTIC COMMUNICATION SYSTEMS

A WIDEBAND RADIO CHANNEL MODEL FOR SIMULATION OF CHAOTIC COMMUNICATION SYSTEMS A WIDEBAND RADIO CHANNEL MODEL FOR SIMULATION OF CHAOTIC COMMUNICATION SYSTEMS Kalle Rui, Mauri Honanen, Michael Hall, Timo Korhonen, Veio Porra Insiue of Radio Communicaions, Helsini Universiy of Technology

More information

Performance Analysis of High-Rate Full-Diversity Space Time Frequency/Space Frequency Codes for Multiuser MIMO-OFDM

Performance Analysis of High-Rate Full-Diversity Space Time Frequency/Space Frequency Codes for Multiuser MIMO-OFDM Performance Analysis of High-Rae Full-Diversiy Space Time Frequency/Space Frequency Codes for Muliuser MIMO-OFDM R. SHELIM, M.A. MATIN AND A.U.ALAM Deparmen of Elecrical Engineering and Compuer Science

More information

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects Opical Shor Pulse Generaion and Measuremen Based on Fiber Polarizaion Effecs Changyuan Yu Deparmen of Elecrical & Compuer Engineering, Naional Universiy of Singapore, Singapore, 117576 A*STAR Insiue for

More information

Channel Estimation for Wired MIMO Communication Systems

Channel Estimation for Wired MIMO Communication Systems Channel Esimaion for Wired MIMO Communicaion Sysems Final Repor Mulidimensional DSP Projec, Spring 2005 Daifeng Wang Absrac This repor addresses raining-based channel modeling and esimaion for a wired

More information

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

f t 2cos 2 Modulator Figure 21: DSB-SC modulation. 4.5 Ampliude modulaion: AM 4.55. DSB-SC ampliude modulaion (which is summarized in Figure 21) is easy o undersand and analyze in boh ime and frequency domains. However, analyical simpliciy is no always

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Signal Characteristics

Signal Characteristics Signal Characerisics Analog Signals Analog signals are always coninuous (here are no ime gaps). The signal is of infinie resoluion. Discree Time Signals SignalCharacerisics.docx 8/28/08 10:41 AM Page 1

More information

Lecture 13: Capacity of Cellular Systems

Lecture 13: Capacity of Cellular Systems Leure : apaiy of ellular Sysems Afer ha we onsidered he apaiy of a ommuniaion hannel in he erms of raffi load of daa in bis per seond and speral effiieny in erms of bi per seond per herz, le us now disuss

More information

Industrial, High Repetition Rate Picosecond Laser

Industrial, High Repetition Rate Picosecond Laser RAPID Indusrial, High Repeiion Rae Picosecond Laser High Power: RAPID is a very cos efficien, compac, diode pumped Nd:YVO4 picosecond laser wih 2 W average power a 1064 nm. Is 10 ps-pulses have high pulse

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation Tes 2 Review Tes 2 Review Professor Deepa Kundur Universiy of Torono Reference: Secions: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 of 5.1, 5.2, 5.3, 5.4, 5.5 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 S. Haykin and M. Moher,

More information

The design of an improved matched filter in DSSS-GMSK system

The design of an improved matched filter in DSSS-GMSK system Journal of Physics: Conference Series PAPER OPEN ACCESS The design of an improved mached filer in DSSS-GMSK sysem To cie his aricle: Mao Wei-ong e al 16 J. Phys.: Conf. Ser. 679 1 View he aricle online

More information

Signal Propagation. Jie Gao 01/27/2010

Signal Propagation. Jie Gao 01/27/2010 Signal Propagaion Jie Gao /7/ Signal Signal are generae as physial represenaions o aa A signal is a union o ime an loaion ieal igial signal a speial ype o signal, sine waves, also alle harmonis: s() =

More information

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Introduction: Analog Communication: Goal: Transmit a message from one location to another. ECE-5 Phil Schnier January 6, 8 Inroducion: Goal: Transmi a rom one locaion o anoher When is coninuous waveorm analog comm (eg, FM radio), sequence o numbers digial comm (eg, mp ile), hough he sequence

More information

Dimensions. Transmitter Receiver ø2.6. Electrical connection. Transmitter +UB 0 V. Emitter selection. = Light on = Dark on

Dimensions. Transmitter Receiver ø2.6. Electrical connection. Transmitter +UB 0 V. Emitter selection. = Light on = Dark on OBE-R-SE Dimensions Transmier.. 7.5 9..5.8 4.9 4 5 M 8.9 7.5 9..5.8 4 5 M 8.9 ø.6 ø.6 Model Number OBE-R-SE Thru-beam sensor wih m fixed cable Elecrical connecion Transmier Feaures BN +UB WH IN Ulra-small

More information

Dimensions. Transmitter Receiver ø2.6. Electrical connection. Transmitter +UB 0 V. Emitter selection. = Light on = Dark on

Dimensions. Transmitter Receiver ø2.6. Electrical connection. Transmitter +UB 0 V. Emitter selection. = Light on = Dark on OBE-R-SE Dimensions Transmier.. 7.5 9..5.8 4.9 4 5 M 8.9 7.5 9..5.8 4 5 M 8.9 ø.6 ø.6 Model Number OBE-R-SE Thru-beam sensor wih m fixed cable Elecrical connecion Transmier Feaures BN +UB WH IN Ulra-small

More information

OFDMA for Access Networks: Optical Setup

OFDMA for Access Networks: Optical Setup OFDMA or Access Neworks: Opical Seup Johannes von Hoyningen-Huene Lehrsuhl ür Nachrichen- und Überragungsechnik CAU Kiel Workshop der ITG-Fachgruppe 5.3.1 Kiel, 10.2.2015 Moivaion or OFDMA in Opical Access

More information

Solution of ECE 342 Test 2 S12

Solution of ECE 342 Test 2 S12 Soluion of ECE 342 Tes 2 S2. All quesions regarding superheerodyne receivers refer o his diagram. x c () Anenna B T < B RF < 2 f B = B T Oher Signals f c Mixer f Baseband x RFi RF () x RFo () () () x i

More information

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes Noes CHAPTER CONTENTS 9. Line Coding 9. inary Line Codes 9. ipolar and iphase Line Codes 9.. AMI 9... inary N Zero Subsiuion 9..3 lock Line Codes 9.3 M-ary Correlaion Codes 9.3. Q 9.3. Correlaion Coding

More information

Investigation and Simulation Model Results of High Density Wireless Power Harvesting and Transfer Method

Investigation and Simulation Model Results of High Density Wireless Power Harvesting and Transfer Method Invesigaion and Simulaion Model Resuls of High Densiy Wireless Power Harvesing and Transfer Mehod Jaber A. Abu Qahouq, Senior Member, IEEE, and Zhigang Dang The Universiy of Alabama Deparmen of Elecrical

More information

UNIT V DIGITAL TRANSMISSION SYSTEMS

UNIT V DIGITAL TRANSMISSION SYSTEMS UNIT V DIGITAL TRANSMISSION SYSTEMS Poin o poin link sysems consideraions Link Power budge Rise ime budge Noise effecs on sysem performance Operaional principles of WDM Solions EDFA s Basic conceps of

More information

Dimensions. Model Number. Electrical connection emitter. Features. Electrical connection receiver. Product information. Indicators/operating means

Dimensions. Model Number. Electrical connection emitter. Features. Electrical connection receiver. Product information. Indicators/operating means OBE-R-SE Dimensions.8.8 ø..75 7.5 6. 5 6.7 4.9 4. 5.9 ø.6 Model Number OBE-R-SE Elecrical connecion emier Thru-beam sensor wih m fixed cable Feaures 45 cable oule for maximum mouning freedom under exremely

More information

Wireless Transmission in Cellular Networks

Wireless Transmission in Cellular Networks Wireless Transmission in Cellular Networks Frequencies Signal propagation Signal to Interference Ratio Channel capacity (Shannon) Multipath propagation Multiplexing Spatial reuse in cellular systems Antennas

More information

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1) ELE4353 Mobile and Saellie Communicaion Syem uorial 3 (wee 7-8 S 4 Queion If a paricular modulaion provide uiable ER performance whenever σ /

More information

Multiuser Interference in TH-UWB

Multiuser Interference in TH-UWB Ouline Roman Merz, Cyril Boeron, Pierre-André Farine Insiue of Microechnology Universiy of Neuchâel 2000 Neuchâel Workshop on UWB for Sensor Neworks, 2005 Ouline Ouline 1 Inroducion Moivaions and Goals

More information

Electrical connection

Electrical connection Reference scanner Dimensioned drawing en 02-2014/06 50117040-01 200 500mm Disance on background/reference 10-30 V DC We reserve he righ o make changes DS_HRTR46Bref_en_50117040_01.fm Robus objec deecion

More information

EE558 - Digital Communications

EE558 - Digital Communications EE558 - Digial Communicaions Lecure 1: Inroducion & Overview Dr. Duy Nguyen Ouline 1 Course Informaion 2 Inroducion o Digial Communicaions Course Informaion 2 Adminisraion Hours and Locaion Lecures: TTH

More information

Modeling and Simulation of MISO Diversity for UHF RFID Communication

Modeling and Simulation of MISO Diversity for UHF RFID Communication Proceedings of he Federaed Conference on Compuer Science and Informaion Sysems pp. 83 82 ISBN 978-83-68-5-4 Modeling and Simulaion of Diversiy for UHF RFID Communicaion Grzegorz Smieanka and Jürgen Göze

More information

Experimental demonstration of 10 Gb/s multilevel carrier-less amplitude and phase modulation for short range optical communication systems

Experimental demonstration of 10 Gb/s multilevel carrier-less amplitude and phase modulation for short range optical communication systems Experimenal demonsraion of 1 Gb/s mulilevel carrier-less ampliude and phase modulaion for shor range opical communicaion sysems Li Tao, 1,2 Yiguang Wang, 1 Yuliang Gao, 3 Alan Pak Tao Lau, 3 Nan Chi, 1,*

More information

Multicarrier-Based QAPM Modulation System for the Low Power Consumption and High Data Rates

Multicarrier-Based QAPM Modulation System for the Low Power Consumption and High Data Rates Mobile New Appl (202) 7:45 52 DOI 0.007/s036-0-0308-4 Mulicarrier-Based QAPM Modulaion Sysem for he Low Power Consumpion and High Daa Raes Jae-Hoon Choi & Heung-Gyoon Ryu & Xuedong Liang Published online:

More information

Receiver Architectures

Receiver Architectures 27/Dec/26 1 Receiver Archiecures Image-Rejec Receivers Shif-by-9 o For narrowband signal: sin cos +j /2 +j (a) T / 4 X = j j /2 G( ) = j sgn( ) 1/2 (b) Figure 5.23 Shif by 9 o in (a) ime and (b) frequency

More information

The Influence of Propagation Environment in a Live GSM Network

The Influence of Propagation Environment in a Live GSM Network The Influence of Propagaion Environmen in a ive GSM Nework Yu-Huei Tseng, Wen-Shyang Hwang, *Ce-Kuen Shieh Deparmen of Elecrical Engineering, Naional Kaohsiung Universiy of Applied Sciences, Kaohsiung,

More information

Problem Sheet: Communication Channels Communication Systems

Problem Sheet: Communication Channels Communication Systems Problem Shee: Communicaion Channels Communicaion Sysems Professor A. Manikas Chair of Communicaions and Array Processing Deparmen of Elecrical & Elecronic Engineering Imperial College London v.11 Communicaion

More information

Mach Zehnder Interferometer for Wavelength Division Multiplexing

Mach Zehnder Interferometer for Wavelength Division Multiplexing Mach Zehnder nerferomeer for Wavelengh Division Muliplexing Ary Syahriar Pusa Pengkajian dan Penerapan Teknologi nformasi dan Elekronika Badan Pengkajian dan Penerapan Teknologi e-mail : ary@inn.bpp.go.id

More information

WIRELESS TRANSMISSION

WIRELESS TRANSMISSION COMP 635: WIRELESS NETWORKS WIRELESS TRANSMISSION Jasleen Kaur Fall 205 Outline Frequenc Spectrum Ø Usage and Licensing Signals and Antennas Ø Propagation Characteristics Multipleing Ø Space, Frequenc,

More information

A novel quasi-peak-detector for time-domain EMI-measurements F. Krug, S. Braun, and P. Russer Abstract. Advanced TDEMI measurement concept

A novel quasi-peak-detector for time-domain EMI-measurements F. Krug, S. Braun, and P. Russer Abstract. Advanced TDEMI measurement concept Advances in Radio Science (24) 2: 27 32 Copernicus GmbH 24 Advances in Radio Science A novel quasi-peak-deecor for ime-domain EMI-measuremens F. Krug, S. Braun, and P. Russer Insiue for High-Frequency

More information

Investigation of Novel Ultrasonic Positioning Method Installed in Sensor Network

Investigation of Novel Ultrasonic Positioning Method Installed in Sensor Network PIERS ONLINE, VOL. 5, NO. 4, 2009 321 Invesigaion of Novel Ulrasonic Posiioning Mehod Insalled in Sensor Nework Misuaka Hikia, Yasushi Hiraizumi, Hiroaki Aoki, Junji Masuda, and Tomoaki Waanabe Faculy

More information

Transmit Beamforming with Reduced Feedback Information in OFDM Based Wireless Systems

Transmit Beamforming with Reduced Feedback Information in OFDM Based Wireless Systems Transmi Beamforming wih educed Feedback Informaion in OFDM Based Wireless Sysems Seung-Hyeon Yang, Jae-Yun Ko, and Yong-Hwan Lee School of Elecrical Engineering and INMC, Seoul Naional Universiy Kwanak

More information

Digital Communications - Overview

Digital Communications - Overview EE573 : Advanced Digial Communicaions Digial Communicaions - Overview Lecurer: Assoc. Prof. Dr Noor M Khan Deparmen of Elecronic Engineering, Muhammad Ali Jinnah Universiy, Islamabad Campus, Islamabad,

More information

Generating Polar Modulation with R&S SMU200A

Generating Polar Modulation with R&S SMU200A Rohde & Schwarz producs: SMU00 Generaing Polar Modulaion wih R&S SMU00 Polar modulaion is a mehod where digial modulaion is realized as a combinaion of phase and ampliude modulaion, raher han using an

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals Deparmen of Elecrical Engineering Universiy of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Coninuous-Time Signals Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Inroducion: wha are signals and sysems? Signals

More information

4 20mA Interface-IC AM462 for industrial µ-processor applications

4 20mA Interface-IC AM462 for industrial µ-processor applications Because of he grea number of indusrial buses now available he majoriy of indusrial measuremen echnology applicaions sill calls for he sandard analog curren nework. The reason for his lies in he fac ha

More information

A Novel Approach based on UWB Beamforming for Indoor Positioning in None-Line-of-Sight Environments

A Novel Approach based on UWB Beamforming for Indoor Positioning in None-Line-of-Sight Environments A Novel Approach based on UWB Beamforming for Indoor Posiioning in None-Line-of-Sigh Environmens Amr Elaher and Thomas Kaiser Faculy of Engineering, Duisburg-Essen Universiy, Deparmen of Communicaion Sysems,

More information

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop Chaper 2 Inroducion: From Phase-Locked Loop o Cosas Loop The Cosas loop can be considered an exended version of he phase-locked loop (PLL). The PLL has been invened in 932 by French engineer Henri de Belleszice

More information

Signal processing for Underwater Acoustic MIMO OFDM

Signal processing for Underwater Acoustic MIMO OFDM Signal processing for Underwaer Acousic MIMO OFDM Milica Sojanovic Norheasern Universiy millisa@ece.neu.edu ONR (N4-7--22, 7 22 MURI N4-7--738) 7 738) Orhogonal frequency division muliplexing (OFDM) oal

More information

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing VOLUME 3, ISSUE 2 Offse Phase Shif Keying Modulaion in Muliple-Inpu Muliple-Oupu Spaial Mulipleing Adeyemo, Z. Kayode, Rabiu, E. Oluwaosin and Rober, O. Abolade Deparmen of Elecronic and Elecrical Engineering

More information

Traffic. analysis. The general setting. Example: buffer. Arrival Curves. Cumulative #bits: R(t), R*(t) Instantaneous speeds: r(t), r*(t)

Traffic. analysis. The general setting. Example: buffer. Arrival Curves. Cumulative #bits: R(t), R*(t) Instantaneous speeds: r(t), r*(t) The general seing Traffic Cumulaive #bis: R(), R*() Insananeous speeds: r(), r*() analysis R(): arrivals sysem R*(): deparures Lecure 7 2 Lecure 7 3 Example: buffer R() R*() bi rae c R() = #bis ha arrived

More information

Introduction to OFDM

Introduction to OFDM E225C Lecure 16 OFDM Inroducion EE225C Inroducion o OFDM asic idea» Using a large number o parallel narrow-band subcarriers insead o a single wide-band carrier o ranspor inormaion Advanages» Very easy

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Announcemens EE23 Digial Signal Processing Lecure Miderms: 2/28, 3/2, 4/2 HAM: Obain FRN number from FCC Fill form applicaion for amaeur radio operaor and bring o class on Friday or before (o Frank) Ink

More information

Research Article Interference Cancellation Using Replica Signal for HTRCI-MIMO/OFDM in Time-Variant Large Delay Spread Longer Than Guard Interval

Research Article Interference Cancellation Using Replica Signal for HTRCI-MIMO/OFDM in Time-Variant Large Delay Spread Longer Than Guard Interval Hindawi Publishing Corporaion Journal of Elecrical and Compuer Engineering Volume 212, Aricle D 571985, 1 pages doi:11155/212/571985 Research Aricle nerference Cancellaion Using Replica Signal for HTRC-MMO/OFDM

More information

Modeling and Prediction of the Wireless Vector Channel Encountered by Smart Antenna Systems

Modeling and Prediction of the Wireless Vector Channel Encountered by Smart Antenna Systems Modeling and Predicion of he Wireless Vecor Channel Encounered by Smar Anenna Sysems Kapil R. Dandekar, Albero Arredondo, Hao Ling and Guanghan Xu A Kalman-filer based, vecor auoregressive (VAR) model

More information