Wireless PHY: Modulation and Demodulation

Size: px
Start display at page:

Download "Wireless PHY: Modulation and Demodulation"

Transcription

1 Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/6/2012

2 Outline Admin and recap Frequency domain examples Basic concepts of modulation Amplitude modulation Amplitude demodulation frequency shifting 2

3 Admin First assignment to be posted by this weekend Any feedback on pace and coverage 3

4 Recap: Fourier Series of Periodic Function A periodic function g(t) with period T on [a, a+t] can be decomposed as: g(t) = k= G[k] = 1 T G[k]e j2π k T t a a+t g(t)e j2π k T t dt For periodic function with period 1 on [0, 1] g(t) = G[k] = G[k]e j2πk t k= 1 0 g(t)e j2πk t dt 4

5 Fourier Transform For those who are curious, we do not need it formally Problem: Fourier series for periodic function g(t), what if g(t) is not periodical? Approach: Truncate g(t) beyond [-L/2, L/2] (i.e., set = 0) and then repeat to define g L (t) g L (t) = k= G L [k]e j2π k L t G L [k] = 1 L L/2 L/2 g L (t)e j2π k L t dt 5

6 Fourier Transform G L [k] = 1 L L/2 L/2 g L (t)e j2π k L t dt Define f k = k L Δf = 1 L Ĝ( f k ) = g L (t)e j2π f k t dt G L [k] = 1 L L/2 g L (t)e j2π k L t dt G L [k] = Δf Ĝ( f ) k L/2 g L (t) = k= Ĝ( f k )e j2π f k t Δf Ĝ( f )e j2π ft df Let L grow to infinity, we derive Fourier Transform: g(t) = Ĝ( f )e j2π ft df Ĝ( f ) = g(t)e j2π f t dt 6

7 Fourier Series vs Fourier Transform Fourier series For periodical functions, e.g., [0, 1] Fourier transform For non periodical functions g(t) = G[k]e j2πk t k= g(t) = Ĝ( f )e j2π ft df G[k] = 1 g(t)e j2πk t dt Ĝ( f ) = g(t)e j2π f t dt 0 7

8 Recap: Discrete Domain Analysis FFT: Transforming a sequence of numbers x 0, x 1,, x N-1 to another sequence of numbers X 0, X 1,, X N-1 Note G[k] = 1 N 1 g(t)e j2πkt dt g( N n )e j2πk N n 0 n=0 1 N 8

9 Recap: Discrete Domain Analysis FFT: Transforming a sequence of numbers x 0, x 1,, x N-1 to another sequence of numbers X 0, X 1,, X N-1 Interpretation: consider x 0, x 1,, x N-1 as sampled values of a periodical function defined on [0, 1] X k is the coefficient (scaled by N) for k Hz harmonics if the FFT N samples span one sec 9

10 FFT Analysis vs Sample Rate X 1 X 2 X Nfft/2 Nfft=Nsample 1Hz 2Hz Nfft/2 Hz N sample N fft 2N sample N fft N sample 2 The freq. analysis resolution: N sample N fft 10

11 Frequency Domain Analysis Examples Using GNURadio spectrum_2sin_plus Audio FFT Sink Scope Sink Noise 11

12 Frequency Domain Analysis Examples Using GNURadio spectrum_1sin_rawfft Raw FFT 12

13 Frequency Domain Analysis Examples Using GNURadio spectrum_2sin_multiply_complex Multiplication of a sine first by a real sine and then by a complex sine to observe spectrum 13

14 Takeaway from the Example Advantages of I/Q representation 14

15 I/Q Multiplication Also Called Quadrature Mixing spectrum of complex signal x(t) spectrum of complex signal x(t)e j2f0t spectrum of complex signal x(t)e -j2f0t 15

16 Basic Question: Why Not Send Digital Signal in Wireless Communications? Signals at undesirable frequencies suppose digital frame repeat every T seconds, then according to Fourier series decomposition, signal decomposes into frequencies at 1/T, 2/T, 3/T, let T = 1 ms, generates radio waves at frequencies of 1 KHz, 2 KHz, 3 KHz, digital signal 1 0 t 16

17 Frequencies are Assigned and Regulated Europe USA Japan Cellular Phones Cordless Phones Wireless LANs Others GSM , / , , / , / UMTS (FDD) , UMTS (TDD) , CT , CT DECT IEEE HIPERLAN , RF - Control 27, 128, 418, 433, 868 AMPS, TDMA, CDMA , TDMA, CDMA, GSM , PACS , PACS - UB I EEE , RF - Control 315, 915 PDC , , , PHS JCT IEEE RF - Control 426, 868 US operator: 17

18 Spectrum and Bandwidth: Shannon Channel Capacity The maximum number of bits that can be transmitted per second by a physical channel is: W log (1 + 2 S N ) where W is the frequency range of the channel, and S/N is the signal noise ratio, assuming Gaussian noise 18

19 Frequencies for Communications twisted pair coax cable optical transmission 1 Mm 300 Hz 10 km 30 khz 100 m 3 MHz 1 m 300 MHz 10 mm 30 GHz 100 µm 3 THz 1 µm 300 THz VLF LF MF HF VHF UHF SHF EHF infrared visible light UV VLF = Very Low Frequency UHF = Ultra High Frequency LF = Low Frequency SHF = Super High Frequency MF = Medium Frequency HF = High Frequency VHF = Very High Frequency EHF = Extra High Frequency UV = Ultraviolet Light Frequency and wave length: λ = c/f wave length λ, speed of light c 3x10 8 m/s, frequency f 19

20 Why Not Send Digital Signal in Wireless Communications? voice Transmitter 20-20KHz Antenna: size ~ wavelength At 3 KHz, λ = c f = =100km Antenna too large! Use modulation to transfer to higher frequency 20

21 Outline Recap Frequency domain examples Basic concepts of modulation 21

22 Basic Concepts of Modulation The information source Typically a low frequency signal Referred to to as as the baseband baseba signal x(t) X(f) q Carrier q q er A higher frequency sinusoid Example cos(2π10000t) t baseband carrier Modulator f Modulated signal q Modulated signal q Some parameter of the carrier (amplitude, frequency, phase) is varied in accordance with the baseband signal 22

23 Types of Modulation Analog modulation Amplitude modulation (AM) Frequency modulation (FM) Double and signal sideband: DSB, SSB Digital modulation Amplitude shift keying (ASK) Frequency shift keying: FSK Phase shift keying: BPSK, QPSK, MSK Quadrature amplitude modulation (QAM) 23

24 Outline Recap Frequency domain examples Basic concepts of modulation Amplitude modulation 24

25 Example: Amplitude Modulation (AM) Block diagram x(t) m x + x AM (t)=a c [1+mx(t)]cos c t Time domain me Domain A c cos c t Frequency Domain domain X(f) X AM (f) sideba -f m f m f -f c f c f 25

26 Example: am_modulation Example Setting Audio source (sample 32K) Signal source (300K, sample 800K) Multiply Two Scopes FFT Sink 26

27 Example AM Frequency Domain Note: There is always the negative freq. in the freq. domain. 27

28 Problem: How to Demodulate AM Signal? X(f) X AM (f) sideba -f m f m f -f c f c f 28

29 Outline Admin and recap Frequency domain examples Basic concepts of modulation Amplitude modulation Amplitude demodulation frequency shifting 29

30 Design Option 1 Step 1: Multiply signal by e -j2πfct Implication: Need to do complex multiple multiplication 30

31 Design Option 1 (After Step 1) -2f c 31

32 Design Option 1 (Step 2) Apply a Low Pass Filter to remove the extra frequencies at -2f c -2f c 32

33 Design Option 1 (Step 1 Analysis) How many complex multiplications do we need for Step 1 (Multiply by e -j2πfct )? 33

34 Design Option 2: Quadrature Sampling 34

35 Quadrature Sampling: Upper Path (cos) 35

36 Quadrature Sampling: Upper Path (cos) 36

37 Quadrature Sampling: Upper Path (cos) 37

38 Quadrature Sampling: Lower Path (sin) 38

39 Quadrature Sampling: Lower Path (sin) 39

40 Quadrature Sampling: Lower Path (sin) 40

41 Quarature Sampling: Putting Together 41

42 Exercise: SpyWork Setting: a scanner scans 128KHz blocks of AM radio and saves each block to a file. SpyWork: Scan the block in a saved file to find radio stations and tune to each station (each AM station has 10 KHz) 42

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude demodulation requency shiting 09/6/202 2 Admin First assignment to be posted by this

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Modulation and Demodulation Yang (Richard) Yang Computer Science Department Yale University 208A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

Wireless Transmission:

Wireless Transmission: Wireless Transmission: Physical Layer Aspects and Channel Characteristics Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems 1 Frequencies for communication

More information

Structure of the Lecture

Structure of the Lecture Structure of the Lecture Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations Structure of the Lecture Chapter 2 Technical Basics: Laer Methods for Medium Access: Laer 2 Representation of digital signals on an analogous medium Signal propagation Characteristics of antennas Chapter

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO Multiplexing, Cognitive Radio Spread spectrum, modulation Cellular systems 2.1 Frequencies

More information

Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/11/2012 Outline Admin and recap Amplitude demodulation Digital modulation 2 Admin Assignment 1 posted 3 Recap: Modulation Objective o Frequency

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals, antennas, signal propagation, MIMO

More information

Chapter 2 PHYSICAL AND LINK LAYER

Chapter 2 PHYSICAL AND LINK LAYER Chapter 2 PHYSICAL AND LINK LAYER Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum CDMA Modulation Distributed

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Outline. Wireless PHY: Modulation and Demodulation. Recap: Modulation. Admin. Recap: Demod of AM. Page 1. Recap: Amplitude Modulation (AM)

Outline. Wireless PHY: Modulation and Demodulation. Recap: Modulation. Admin. Recap: Demod of AM. Page 1. Recap: Amplitude Modulation (AM) Outline Wireless PHY: Modulation and Demodulation Admin and recap Amplitude demodulation Digital modulation Y. Richard Yang 9// Admin Assignment posted Recap: Modulation Objective o Frequency assignment

More information

WIRELESS TRANSMISSION

WIRELESS TRANSMISSION COMP 635: WIRELESS NETWORKS WIRELESS TRANSMISSION Jasleen Kaur Fall 205 Outline Frequenc Spectrum Ø Usage and Licensing Signals and Antennas Ø Propagation Characteristics Multipleing Ø Space, Frequenc,

More information

Point-to-Point Communications

Point-to-Point Communications Point-to-Point Communications Key Aspects of Communication Voice Mail Tones Alphabet Signals Air Paper Media Language English/Hindi English/Hindi Outline of Point-to-Point Communication 1. Signals basic

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

What is a Communications System?

What is a Communications System? Introduction to Communication Systems: An Overview James Flynn Sharlene Katz What is a Communications System? A communications system transfers an information bearing signal from a source to one or more

More information

Mobile Communications

Mobile Communications Mobile Communications Semester B, Mandatory modules, ECTS Units: 3 George Pavlides http://georgepavlides.info Book: Jochen H. Schiller, Mobile Communications Second Edition, Addison- Wesley, Pearson Education

More information

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN)

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN) Wireless Networks Why Wireless Networks? rate MBit/s 100.0 10.0 1.0 0.1 0.01 wired terminals WMAN WLAN CORDLESS (CT, DECT) Office Building stationary walking drive Indoor HIPERLAN UMTS CELLULAR (GSM) Outdoor

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Wireless Transmission in Cellular Networks

Wireless Transmission in Cellular Networks Wireless Transmission in Cellular Networks Frequencies Signal propagation Signal to Interference Ratio Channel capacity (Shannon) Multipath propagation Multiplexing Spatial reuse in cellular systems Antennas

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

SAMPLE. UEENEEH046B Solve fundamental problems in electronic communications systems. Learner Workbook. UEE07 Electrotechnology Training Package

SAMPLE. UEENEEH046B Solve fundamental problems in electronic communications systems. Learner Workbook. UEE07 Electrotechnology Training Package UEE07 Electrotechnology Training Package UEENEEH046B Solve fundamental problems in electronic communications systems Learner Workbook Version 1 Training and Education Support Industry Skills Unit Meadowbank

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Test Equipment. PHYS 401 Physics of Ham Radio

Test Equipment. PHYS 401 Physics of Ham Radio Test Equipment Voltmeter - an instrument that is used to measure voltage. It is used in parallel with a circuit to be measured. a series resistor extends the range of the meter. Ammeter - an instrument

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl Ad hoc and Sensor Networks Chapter 4: Physical layer Holger Karl Goals of this chapter Get an understanding of the peculiarities of wireless communication Wireless channel as abstraction of these properties

More information

Objectives. Presentation Outline. Digital Modulation Lecture 01

Objectives. Presentation Outline. Digital Modulation Lecture 01 Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018 An Introduction to Electrical and Electronic Engineering Communication Dr. Cahit Karakuş, 2018 Significance of Human Communication Methods of communication: 1. Face to face 2. Signals 3. Written word (letters)

More information

Wireless Transmission Rab Nawaz Jadoon

Wireless Transmission Rab Nawaz Jadoon Wireless Transmission Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication Frequency Spectrum Note: The figure shows

More information

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Communications II Mohammad Fathi mfathi@uok.ac.ir Course information Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Introduction: [1.1, 1.2, 1.3, and 1.4] Review

More information

Input electric signal. Transmitter. Noise and signals from other sources. Receiver. Output electric. signal. Electrical Communication System

Input electric signal. Transmitter. Noise and signals from other sources. Receiver. Output electric. signal. Electrical Communication System Electrical Communication System: Block Diagram Information Source Input Transducer Input electric signal Transmitter Transmitted signal Noise and signals from other sources Channel Destination Output Transducer

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

Basics of Wireless and Mobile Communications

Basics of Wireless and Mobile Communications Basics of Wireless and Mobile Communications Wireless Transmission Frequencies Signals Antenna Signal propagation Multiplexing Modulation Spread spectrum Cellular systems Media Access Schemes Motivation

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

COMM 704: Communication Systems

COMM 704: Communication Systems COMM 704: Communication Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Course Objective Give an introduction to the basic concepts of electronic communication systems

More information

Mobile Ad Hoc Networks

Mobile Ad Hoc Networks Mobile Ad Hoc Networks Dr. Lokesh Chouhan Assistant Professor Computer Science and Engineering (CSE) Department National Institute of Technology (NIT) Hamirpur (H.P.) INDIA Website: http://nith.ac.in/newweb/computer-science-engineering/

More information

Wireless Networks (PHY): Design for Diversity

Wireless Networks (PHY): Design for Diversity Wireless Networks (PHY): Design for Diversity Y. Richard Yang 9/20/2012 Outline Admin and recap Design for diversity 2 Admin Assignment 1 questions Assignment 1 office hours Thursday 3-4 @ AKW 307A 3 Recap:

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

1 Introduction 1.1 RADIO: WHAT AND WHY...

1 Introduction 1.1 RADIO: WHAT AND WHY... 1 Introduction 1.1 RADIO: WHAT AND WHY... Radio is the use of unguided propagating electromagnetic fields in the frequency range 3 khz and 300 GHz to convey information. Propagating electromagnetic fields

More information

Real and Complex Modulation

Real and Complex Modulation Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? Modulation is the act of changing a carrier signal s properties (amplitude, phase, frequency)

More information

Ham Radio Training. Level 1 Technician Level. Presented by Richard Bosch KJ4WBB

Ham Radio Training. Level 1 Technician Level. Presented by Richard Bosch KJ4WBB Ham Radio Training Level 1 Technician Level Presented by Richard Bosch KJ4WBB In this chapter, you ll learn about: What is a radio signal The characteristics of radio signals How modulation adds information

More information

Advanced Digital Communication

Advanced Digital Communication Advanced Digital Communication Manjunatha. P manjup.jnnce@gmail.com Professor Dept. of ECE J.N.N. College of Engineering, Shimoga March 14, 2013 ADC Syllabus SEMSTER - II ADVANCED DIGITAL COMMUNICATIONS

More information

Wireless Networked Systems. Lec #1b: PHY Basics

Wireless Networked Systems. Lec #1b: PHY Basics Wireless Networked Systems CS 795/895 - Spring 2013 Lec #1b: PHY Basics Tamer Nadeem Dept. of Computer Science Wireless Communication Page 2 Spring 2013 CS 795/895 - Wireless Networked Systems Radio Signal

More information

Discussion Chapter#5

Discussion Chapter#5 The Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4314: Data Communication Instructor: Dr. Aiman Abu Samra T.A.: Eng. Alaa O. Shama Discussion Chapter#5 Main

More information

Physical Layer Issues

Physical Layer Issues Physical Layer Issues twisted pair coax cable Frequencies for communication optical transmission 1 Mm 300 Hz 10 km 30 khz 100 m 3 MHz 1 m 300 MHz 10 mm 30 GHz 100 µm 3 THz 1 µm 300 THz VLF LF MF HF VHF

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

1B Paper 6: Communications Handout 2: Analogue Modulation

1B Paper 6: Communications Handout 2: Analogue Modulation 1B Paper 6: Communications Handout : Analogue Modulation Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk Lent Term 16 1 / 3 Modulation Modulation

More information

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks ISHIK UNIVERSITY Faculty of Science Department of Information Technology 2017-2018 Fall Course Name: Wireless Networks Agenda Lecture 4 Multiple Access Techniques: FDMA, TDMA, SDMA and CDMA 1. Frequency

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Mobile Communication An overview Lesson 03 Introduction to Modulation Methods

Mobile Communication An overview Lesson 03 Introduction to Modulation Methods Mobile Communication An overview Lesson 03 Introduction to Modulation Methods Oxford University Press 2007. All rights reserved. 1 Modulation The process of varying one signal, called carrier, according

More information

Direct Link Communication II: Wireless Media. Motivation

Direct Link Communication II: Wireless Media. Motivation Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots:

More information

Overview and Challenges

Overview and Challenges RF/RF-SoC Overview and Challenges Fang Chen May 14, 2004 1 Content What is RF Research Topics in RF RF IC Design/Verification RF IC System Design Circuit Implementation What is RF-SoC Design Methodology

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

Chapter 2. Physical Layer

Chapter 2. Physical Layer Chapter 2 Physical Layer Lecture 1 Outline 2.1 Analog and Digital 2.2 Transmission Media 2.3 Digital Modulation and Multiplexing 2.4 Transmission Impairment 2.5 Data-rate Limits 2.6 Performance Physical

More information

Principles of Modern Communications Digital Communications

Principles of Modern Communications Digital Communications Principles of based on 2011 lecture series by Dr. S. Waharte. Department of Computer Science and Technology,. 14th January 2013 Outline 1 2 3 Transmission Fundamentals Learning Objectives 4 1 Familiarize

More information

Information theory II. Fisica dell Energia - a.a. 2017/2018

Information theory II. Fisica dell Energia - a.a. 2017/2018 Information theory II Fisica dell Energia - a.a. 2017/2018 Transfer of information Communication Communication is the transfer of information from one place to another. This should be done as efficiently

More information

Week 2. Topics in Wireless Systems EE584-F 03 9/9/2003. Copyright 2003 Stevens Institute of Technology - All rights reserved

Week 2. Topics in Wireless Systems EE584-F 03 9/9/2003. Copyright 2003 Stevens Institute of Technology - All rights reserved Week Topics in Wireless Systems 43 0 th Generation Wireless Systems Mobile Telephone Service Few, high-power, long-range basestations -> No sharing of spectrum -> few users -> expensive 44 Cellular Systems

More information

Chapter 1: Introduction. EET-223: RF Communication Circuits Walter Lara

Chapter 1: Introduction. EET-223: RF Communication Circuits Walter Lara Chapter 1: Introduction EET-223: RF Communication Circuits Walter Lara Introduction Electronic communication involves transmission over medium from source to destination Information can contain voice,

More information

Mobile Communications I Chapter 1: Introduction and History

Mobile Communications I Chapter 1: Introduction and History Mobile Communications I Chapter 1: Introduction and History Mobile communication Two aspects of mobility: user mobility: users communicate (wireless) anytime, anywhere, with anyone device mobility (portability):

More information

New Standards for Wireless LANs

New Standards for Wireless LANs New Standards for Wireless LANs Summer Term 2014 Dr.-Ing. Andreas Könsgen Dr.-Ing. Koojana Kuladinithi Communication Networks TZI University of Bremen Organisational Issues How to reach us? Andreas Könsgen

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.3 Modulation Techniques Reasons for Choosing Encoding Techniques Digital data,

More information

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1 Announcement 18-759: Wireless Networks Lecture 3: Physical Layer Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2010 http://www.cs.cmu.edu/~prs/wirelesss10/

More information

Lecture 2: Links and Signaling. CSE 123: Computer Networks Stefan Savage

Lecture 2: Links and Signaling. CSE 123: Computer Networks Stefan Savage Lecture 2: Links and Signaling CSE 123: Computer Networks Stefan Savage Lecture 2 Overview Signaling Channel characteristics Types of physical media Modulation Narrowband vs. Broadband Encoding schemes

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Data Communication and Media

Data Communication and Media Data Communication and Media Concept and Model of Communications Analogy Signal and Digital Signal Signal Frequency, Spectrum and Bandwidth System Frequency Response and Bandwidth Transmission Media and

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Why Study Antenna Engineering?

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum. 2 ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Wireless Sensor Networks 4th Lecture

Wireless Sensor Networks 4th Lecture Wireless Sensor Networks 4th Lecture 07.11.2006 Christian Schindelhauer schindel@informatik.uni-freiburg.de 1 Amplitude Representation Amplitude representation of a sinus curve s(t) = A sin(2π f t + ϕ)

More information

Chapter 3 Data Transmission COSC 3213 Summer 2003

Chapter 3 Data Transmission COSC 3213 Summer 2003 Chapter 3 Data Transmission COSC 3213 Summer 2003 Courtesy of Prof. Amir Asif Definitions 1. Recall that the lowest layer in OSI is the physical layer. The physical layer deals with the transfer of raw

More information

Mm- Wave Propaga-on: Fundamentals and Models

Mm- Wave Propaga-on: Fundamentals and Models Mm- Wave Propaga-on: Fundamentals and Models Hajime Suzuki 7 April 2014 CSIRO Computa-onal Informa-cs CSIRO Radio Physics Laboratory Advanced Wireless Broadband Communica:ons in Rural Areas Page 2 Coded

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELCN405 Fall 2011 Communications and Computer Engineering Program Faculty of Engineering Cairo University 2 Outline 1 Electromagnetic Spectrum Recent Advances

More information

Wireless Transmission & Media Access

Wireless Transmission & Media Access Wireless Transmission & Media Access Signals and Signal Propagation Multiplexing Modulation Media Access 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller,

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 5 (March 9, 2016)

More information

ECE 4203: COMMUNICATIONS ENGINEERING LAB II

ECE 4203: COMMUNICATIONS ENGINEERING LAB II DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ECE 4203: COMMUNICATIONS ENGINEERING LAB II SEMESTER 2, 2017/2018 DIGITAL MODULATIONS INTRODUCTION In many digital communication systems, cable (as for data

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

Chapter 1 Acknowledgment:

Chapter 1 Acknowledgment: Chapter 1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

PGT316 Mobile and Wireless Communications

PGT316 Mobile and Wireless Communications PGT316 Mobile and Wireless Communications Lecture 1: Introduction to Mobile Communications System Ts. Dr. Khairul Najmy bin Abdul Rani Wireless Technology Overview 2 Contents Definition, History, Objective

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

ECE5713 : Advanced Digital Communications

ECE5713 : Advanced Digital Communications ECE5713 : Advanced Digital Communications Bandpass Modulation MPSK MASK, OOK MFSK 04-May-15 Advanced Digital Communications, Spring-2015, Week-8 1 In-phase and Quadrature (I&Q) Representation Any bandpass

More information

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

More information

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt.

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt. Wireless Networks (PHY): Design or Diversity Admin and recap Design or diversity Y. Richard Yang 9/2/212 2 Admin Assignment 1 questions Assignment 1 oice hours Thursday 3-4 @ AKW 37A Channel characteristics

More information

Spectrum Analyzing & Interference Locating

Spectrum Analyzing & Interference Locating Spectrum Analyzing & Interference Locating SpecMini Handheld Spectrum Analyzer Frequency Range: 9kHz to 6.0GHz DANL: -168dBm@1GHz Android Operating System: touch screen operation, multitouch, easy-to-use

More information

TRANSCOM Manufacturing & Education

TRANSCOM Manufacturing & Education www.transcomwireless.com 1 G6 Vector Signal Generator Overview G6 Vector Signal Generator is a high performance vector signal generator. It can generate arbitrary wave signal, continuous wave signal, common

More information

Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission. Goals of This Class. Warm Up. Outline of the Class

Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission. Goals of This Class. Warm Up. Outline of the Class Introduction to Communications Part Two: Physical Layer Ch5: Analog Transmission Kuang Chiu Huang TCM NCKU Spring/2008 2009/4/11 KuangChiu Huang 1 Goals of This Class Through the lecture of analog transmission,

More information

An Introduction to Wireless Technologies Part 1. F. Ricci

An Introduction to Wireless Technologies Part 1. F. Ricci An Introduction to Wireless Technologies Part 1 F. Ricci Content Wireless communication standards Computer Networks Simple reference model Frequencies and regulations Wireless communication technologies

More information