Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Predictive Control

Size: px
Start display at page:

Download "Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Predictive Control"

Transcription

1 Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe Predictive Control A Simple and Powerful Method to Control Power Converters and Drives Ralph M. Kennel, Technische Universitaet Muenchen, Germany Marian Kazmierkowski, Technical University of Warsaw, Poland José Rodríguez, Universidad Nacional Andrés Bello, Santiago, Chile

2 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

3 State of the Art : Field Oriented Control r mains field coordinates stator coordinates flux controller i s e j u s PWM 6 speed controller current controllers e -j i s u s r model M 3~ encoder

4 Problems of Linear Algorithms Linear control characteristics Control unit and controlled unit are assumed to be linear Control unit are assumed to be time constant Linear circuits show identical reactions in each operation range under the same reference commands Drive systems characteristics Drive systems are non-linear Drive systems are time-variant The behavior of a drive system is depending on the operation range

5 Problems of Linear Algorithms Feedforward Control high dynamic behaviour no impact by sensor characteristics models are not absolutely accurate high accuracy requires knowledge of all quantuities temperature and drift behaviour often cannot be described/modeled Advantages Feedback Control high accuracy high reliability Disadvantages high longterm stability simple optimization/adjustment procedure controlled quantities can be monitored (re)action only, when there is a control difference already sensors cause measuring errors

6 Problems of Linear Algorithms any controller optimization is a compromise making the inverter unnecessarily slow in many operation points controllers with parameter adaptation and/or structure adaptation are very complex they often have bad effects during the adaptation process itself converters cause harmonics leading to offset effects in combination with fast control loops the elimination of harmonics by filtering causes a time delay in the feedback and therefore leads to a less dynamic control

7 Problems of Linear Algorithms any controller optimization is a compromise making the inverter unnecessarily slow in many operation points controllers with parameter adaptation and/or structure adaptation are very complex they often have bad effects during the adaptation process itself converters cause harmonics leading to offset effects in combination with fast control loops the elimination of harmonics by filtering causes a time delay in the feedback and therefore leads to a less dynamic control

8 Typical Cascaded Structure of Drive Control position controller speed controller current controller power electronics motor windings I inertia gear etc.

9 Typical Cascaded Structure of Drive Control position controller speed controller current controller power electronics motor windings I inertia gear etc.

10 Problems of Linear Algorithms in cascaded control structures speed control must be much faster than position control and current control must be much faster than speed control current control must be very fast to achieve position control with reasonable cycle times in the controlled system (drive, converter, ) however, there is no time constant justifying cycle times of 100 µs or less

11 Problems of Linear Algorithms using cascaded PI(D) control most problems (= differences between theory and practical results) occur with the (inner) current control a linear controller tries to control an extremely non-linear inverter whose behaviour is depending on the modultaion method most developments of converter control deal with current control or flux control because these elements are closest to the inverter itself the behaviour of any improved current control is expected to be more linear than the inverter itself speed and position controllers can be designed as PI(D) controllers as before

12 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

13 Predictive Control Why? it is not better performance! more power more dynamics etc. we already operate our systems at the physical limits!!!

14 Predictive Control Why? the real reason is simpler handling! you do not need a Ph.D. to do the set-up

15 General Structure of a Predictive Controller prediction and calculation switching state actual machine state power electronics machine and power electronics model motor windings I inertia gear etc. reminds slightly to state control state control, however, is basically a linear control predictive control is not!!!

16 Usual Structure of Drive Control why PWM? linearization of the inverter consequences? very high switching frequency DC link PI controller

17 Structure of a Direct Control when Predictive Control overcomes some serious disadvantages of PWM DC link direct controller is it really reasonable to add a PWM to Predictive Control???

18 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

19

20 Principle of Predictive Control reference commands precalculation of the behaviour for each of the switching states definite number of equivalent circuits without switching elements definite number of switching states comparison between precalculation and reference commands when this precalculation is performed on-line Predictive Control definite number of switching elements next switching state or switching time can be fixed inverter

21 Principle of Predictive Optimum Control reference commands precalculation of the behaviour for each of the switching states definite number of equivalent circuits without switching elements definite number of switching states comparison between precalculation and reference commands when this precalculation is performed on-line off-line Predictive Optimum Control definite number of switching elements next switching state or switching time can be fixed inverter

22 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

23 Outline Introduction Predictive Control Methods Trajectory Based Predictive Control Hysteresis Based Predictive Control Long-Range Predictive Control

24 Example : Trajectory Based Predictive Control Direct Self Control (DSC) acc. to Depenbrock

25 Example : Trajectory Based Predictive Control Direct Speed Control acc. to Mutschler * e model and prediction u k i s = ~ u d u s e / a k+1 k+1 S k+1 S k Hy e / a k+3 k+3 a = +Hy M 3~ e / a k k S k+2 e / a k+2 k+2 e = ref

26 Trajectory Based Predictive Control Strategies system states are forced to follow (pre-)defined natural reference trajectories difference to sliding mode control there the trajectories are not natural

27 Characteristics of Trajectory Based Predictive Control system states are forced to follow (pre-)defined reference trajectories switching takes place at intersections between different system-trajectories or at (pre-)defined instants switching frequency of the inverter can be fixed to a constant value control behaviour comparable to feedforward control exact knowledge of system parameters is required appropriate for realisation by digital circuits or controllers

28 Outline Introduction Predictive Control Methods Trajectory Based Predictive Control Hysteresis Based Predictive Control Long-Range Predictive Control

29 Example : Hysteresis Based Predictive Control Predictive Current Control acc. to Holtz

30 Example : Hysteresis Based Predictive Control Predictive Current Control acc. to Holtz

31 Characteristics of Hysteresis Based Predictive Control switching takes place at borders of a hysteresis area a maximum error can be (pre-)defined switching frequency of the inverter is not constant control behaviour comparable to feedback control exact knowledge of system parameters is not required appropriate for realisation by analog circuits

32 Outline Introduction Predictive Control Methods Trajectory Based Predictive Control Hysteresis Based Predictive Control Long-Range Predictive Control

33 The Human Behaviour of DMPC DMPC is like playing chess the player calculates in advance all possible moves until a prediction horizon the player chooses the move with the best expectations of success after each opponent s move pre-calculation and optimization is repeated

34 Model Predictive Control History Future Page 34

35 Direct Model Predictive Control System Model / Cost Function Page 35

36 Characteristics of Model Based Predictive Control basic ideas are derived from state-space control the past is explicitely considered (mostly by the system state) future control values are pre-calculated and optimized the first of the precalculated control values only model parameters can be estimated on-line until a (pre-)defined horizon is transmitted to the controlled system extension to MIMO-control is possible with little additional effort use of non-linear model is possible for non-linear control systems a lot of calculation power is required

37 Features of (Longe Range) Predictive Control Advantages possibility to use foreknowledge about drive system (system model) inverter limitations and dynamic behaviours are taken into account improved representation of non-linear systems no need for time challenging cascade structure improved dynamic behaviour Disadvantages high processing capability required for industrial use change in teaching engineers necessary stationary accuracy and dynamic behaviour depend on accurracy of model parameters

38 Features of (Longe Range) Predictive Control Advantages possibility to use foreknowledge about drive system (system model) inverter limitations and dynamic behaviours are taken into account improved representation of non-linear systems no need for time challenging cascade structure improved dynamic behaviour Disadvantages high processing capability required for industrial use change in teaching engineers necessary stationary accuracy and dynamic behaviour depend on accurracy of model parameters

39 Features of (Longe Range) Predictive Control Advantages possibility to use foreknowledge about drive system (system model) inverter limitations and dynamic behaviours are taken into account improved representation of non-linear systems no need for time challenging cascade structure improved dynamic behaviour Disadvantages high processing capability required for industrial use change in teaching engineers necessary stationary accuracy and dynamic behaviour depend on accurracy of model parameters

40 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

41 Different Way of Thinking in Model Based Predictive Control 1. model of the controlled system this is no difference to conventional control the better the model, the better the prediction 2. cost function the engineer has to learn to describe what he wants the controlled system really to do!!! 3. stability that s a really good question next question? Page 41

42 Different Way of Thinking in Model Based Predictive Control 1. model of the controlled system this is no difference to conventional control the better the model, the better the prediction 2. cost function the engineer has to learn to describe what he wants the controlled system really to do!!! 3. stability that s a really good question next question? Page 42

43 Different Way of Thinking in Model Based Predictive Control 1. model of the controlled system this is no difference to conventional control the better the model, the better the prediction 2. cost function the engineer has to learn to describe what he wants the controlled system really to do!!! 3. stability that s a really good question next question? Page 43

44 Different Way of Thinking in Model Based Predictive Control 1. model of the controlled system this is no difference to conventional control the better the model, the better the prediction 2. cost function the engineer has to learn to describe what he wants the controlled system really to do!!! 3. stability that s a really good question next question? Page 44

45 Different Way of Thinking in Model Based Predictive Control 1. model of the controlled system this is no difference to conventional control the better the model, the better the prediction 2. cost function the engineer has to learn to describe what he wants the controlled system really to do!!! 3. stability that s a really good question next question? Page 45

46 Cost Function commonly used structure Source : Zhenbin Zhang Techn. Univ. Muenchen

47 Cost Function commonly used structure Source : Zhenbin Zhang Techn. Univ. Muenchen

48 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

49 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some more applications Predictive Control where s the future? Conclusions/Discussion

50 Direct Model Predictive Voltage Control of Quasi-Z-Source Inverters with LC Filters Ayman Ayad, Petros Karamanakos, Ralph Kennel Institute Of Electrical Drive Systems and Power Electronics (Prof. Dr. Ing. Ralph Kennel) Technische Universität München

51 Agenda Introduction & Motivation Classical Control Model Predictive Control Physical Model Simulation & Experimental Results Conclusion 51

52 Impedance Source Inveretrs DG Configurations dc-dc boost converter ac O/P < dc I/P (buck inverter) Dead-time EMI problem Control complexity Cost Efficiency Dead-time EMI problem 52

53 Impedance Source Inveretrs Z-source inverter (ZSI) Buck-boost & Single-stage No dead-time Higher reliability 53

54 Impedance Source Inveretrs Quasi-Z-source inverter (qzsi) Continous input current Common earthing between input source and dc-link bus Smaller passive components 54

55 Classical Control Control Objectives: AC (Output voltage) DC (Dc-link voltage) linear/ non-linear Capacitor voltage Inductor current 55

56 Model Predictive Control Classical PI control: MPC: What we need: Seperate multi-loop for each side Interaction between dc & ac side during transients Requires PLL & transformations abc/dq & dq/abc Needs modulation stage Can handle multiple objectives, i.e. single control loop Very fast dynamic response Manpulates the inveretr switches (No need for a modulator) Variable switching frequency An accurate mathematical model A good cost function... Determine the weighting factors!!!! 56

57 Model Predicitve Control Control Objectives: 1- Reference tracking Output voltage Capacitor voltage Inductor current 2- Switching effort 57

58 Physical Model Non-shoot-through state Shoot-through state Boost mode Buck mode 58

59 Physical Model Continuous-time domain model: 59

60 Physical Model Discrete-time model: 60

61 Cost Function Design Derived system model 61

62 Simulation Results 62

63 Simulation Results 63

64 Simulation Results 64

65 Simulation Results 65

66 Simulation Results 66

67 Experimental Results 67

68 Conclusion Quasi-Z-source inverter (qzsi): One-stage buck-boost converter with higher efficiency and less components. It is connected with an LC filter to be used as a UPS system. Both sides of the qzsi are to be simultaneously controlled. DMPC of qzsi: The full physical model of the system under review is derived and discretized. A cost fucntion is formulated that takes into account all variables of concern. Both sides of the qzsi are simultaneously controlled in one computational stage without requiring any subsequent control loops. The average switching frequency is kept at 10kHz. The proposed method is effective with both modes of operation. MPC manages to minimize the steady-state error and features favorable behavior during transients. 68

69 Saliency based Encoderless Predictive Torque Control without Signal Injection Overview Predictive Torque Control Saliency Tracking P. Landsmann, D. Paulus, P. Stolze and R. Kennel Technische Universitaet Muenchen Munich Germany Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

70 Basic Idea: A Predictive Torque Controller neglecting the saliency in the model causes a prediction error which contains the angle information Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

71 Predictive Torque Control Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

72 Simulation Results for PMSM Simulation parameter of PMSM Overview Predictive Torque Control Saliency Tracking Speed controlled encoderless predictive torque control Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

73 Simulation Results for PMSM Speed controlled step response to rated speed very good dynamics in simulation Overview Predictive Torque Control dependency on torque gradients Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

74 Measurements with Reluctance Machine Data of transverse laminated RM Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

75 Measurements with Reluctance Machine Speed controlled step response to 160% rated speed Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

76 Measurements with Reluctance Machine Response to 66% rated torque load step at speed controlled standstill Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

77 Summary Proposed Scheme: Neglect the saliency in PTC equations Prediction error contains angle information Reconstruct Prediction Error using PLL angle Vectorproduct of both is PLL input Benefits: Saliency based: permanent operation at standstill No signal injection: operation at high speed as well as at standstill Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

78 Summary Proposed Scheme: Neglect the saliency in PTC equations Prediction error contains angle information Reconstruct Prediction Error using PLL angle Vectorproduct of both is PLL input Benefits: Saliency based: permanent operation at standstill No signal injection: operation at high speed as well as at standstill Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

79 Summary Proposed Scheme: Neglect the saliency in PTC equations Prediction error contains angle information Reconstruct Prediction Error using PLL angle Vectorproduct of both is PLL input Benefits: Saliency based: permanent operation at standstill No signal injection: operation at high speed as well as at standstill Overview Predictive Torque Control Saliency Tracking Simulation Results Measurements Conclusion Institute for Electrical Drive Systems & Power Electronics Technische Universität München Arcisstr. 21, D Munich - peter.landsmann@tum.de

80 Encoderless Control with Arbitrary Injection Limitations of HF Injection Methods - HF injection voltage margin limitation to medium and low speed - Restriction to rotating or alternating shape due to algorithmic reasons Meaning of Arbitrary - No physical necessity for injection shape - Basically any current ripple contains the saliency angle information - Finding a way to exploit this provides additional degrees of freedom

81

82

83

84 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

85 Experimental Results (DMPC) current control comparison : PI control model predictive control

86

87

88 Strengths and Challenges Source : Zhenbin Zhang Techn. Univ. Muenchen

89 There is definitely a strong demand for reducing the calculation power necessary for predictive control

90 There is definitely a strong demand for reducing the calculation power necessary for predictive control

91 There is definitely a strong demand for reducing the calculation power necessary for predictive control Relying on Moore s Law is not sufficient! Heuristic Preselection Extrapolation instead of Exact calculation

92 Outline Introduction Predictive Control - Why Predictive Control Principle Predictive Control Methods Different Way of Thinking Review of classical PWM The principle of MPC in Power Electronics Review of converter topologies controlled using MPC Some applications of converters controlled using MPC Predictive Control where s the future? Conclusions/Discussion

93 Actual Situation in cascaded control structures speed control must be much faster than position control and current control must be much faster than speed control current control must be extremely fast to achieve position control with reasonable cycle times at the time most requirements in industrial applications are satisfied sufficiently there is no strong need for improvement in industry however at a certain time there will be a demand for improvement with respect to a future increase of requirements more investigations should be done Page 93

94 Discussion predictive control strategies offer the possibility to use foreknowledge about the drive system physical limitations and dynamic behaviour of power electronics are taken into account non-linear systems are represented better (by non-linear models) no need for time challenging cascaded structures the way of thinking is different model of the controlled system cost function with respect to a future increase of requirements more investigations should be done Page 94

95 Thank you!

Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Predictive Control

Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe. Predictive Control Vorlesung Bewegungssteuerung durch geregelte elektrische Antriebe Predictive Control A Simple and Powerful Method to Control Power Converters and Drives Ralph M. Kennel, Technische Universitaet Muenchen,

More information

Encoderless & Predictive Control of Synchronous Machines

Encoderless & Predictive Control of Synchronous Machines Encoderless & Predictive Control of Synchronous Machines Ralph M. Kennel, Technische Universitaet Muenchen, Germany kennel@ieee.org EMAD E M A D lectrical achines nd rives Laboratories Wuppertal University

More information

Predictive Control - A Simple and Powerful Method to Control Power Converters and Drives

Predictive Control - A Simple and Powerful Method to Control Power Converters and Drives Predictive Control - A Simple and Powerful Method to Control Power Converters and Drives Ralph M. Kennel, Technische Universitaet Muenchen,Germany Marian Kazmierkowski, Technical University of Warsaw,

More information

Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations

Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations Ralph M. Kennel, Technische Universitaet Muenchen, Germany kennel@ieee.org Reasons for Industrial Applications

More information

Encoderless Control of Synchronous Machines - State of the Art. Ralph M. Kennel, Technische Universität München, Germany

Encoderless Control of Synchronous Machines - State of the Art. Ralph M. Kennel, Technische Universität München, Germany Encoderless Control of Synchronous Machines - State of the Art Ralph M. Kennel, Technische Universität München, Germany Ralph.Kennel@tum.de Reasons for Industrial Applications of Drives with encoderless

More information

Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations

Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations Encoderless Control of AC Drives Recent Achievements Realistic and Unrealistic Expectations Ralph M. Kennel, Technische Universitaet Muenchen, Germany kennel@ieee.org Reasons for Industrial Applications

More information

Hardware-in-the-Loop Systems With Power Electronics a Powerful Simulation Tool

Hardware-in-the-Loop Systems With Power Electronics a Powerful Simulation Tool Hardware-in-the-Loop Systems With Power Electronics a Powerful Simulation Tool Prof. Dr.-Ing. Ralph Kennel Technische Universität München Electrical Drive Systems and Power Electronics Hardware-in-the-Loop

More information

Vector Control (Field Oriented Control, Direct Torque Control)

Vector Control (Field Oriented Control, Direct Torque Control) Vector Control (Field Oriented Control, Direct Torque Control) Referents: Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Germany 1 The General

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS Haitham Abu-Rub Texas A&M University at Qatar, Qatar Atif Iqbal Qatar University, Qatar and Aligarh Muslim University, India Jaroslaw Guzinski

More information

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Sensorless Control of a Novel IPMSM Based on High-Frequency Injection Xiaocan Wang*,Wei Xie**, Ralph Kennel*, Dieter Gerling** Institute for Electrical Drive Systems and Power Electronics,Technical University

More information

Synchronous Current Control of Three phase Induction motor by CEMF compensation

Synchronous Current Control of Three phase Induction motor by CEMF compensation Synchronous Current Control of Three phase Induction motor by CEMF compensation 1 Kiran NAGULAPATI, 2 Dhanamjaya Appa Rao, 3 Anil Kumar VANAPALLI 1,2,3 Assistant Professor, ANITS, Sangivalasa, Visakhapatnam,

More information

Low Speed Position Estimation Scheme for Model Predictive Control with Finite Control Set

Low Speed Position Estimation Scheme for Model Predictive Control with Finite Control Set Low Speed Position Estimation Scheme for Model Predictive Control with Finite Control Set Shamsuddeen Nalakath, Matthias Preindl, Nahid Mobarakeh Babak and Ali Emadi Department of Electrical and Computer

More information

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104) International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 3, June 2014, pp. 322 328 ISSN: 2088-8708 322 A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

EEE, St Peter s University, India 2 EEE, Vel s University, India

EEE, St Peter s University, India 2 EEE, Vel s University, India Torque ripple reduction of switched reluctance motor drives below the base speed using commutation angles control S.Vetriselvan 1, Dr.S.Latha 2, M.Saravanan 3 1, 3 EEE, St Peter s University, India 2 EEE,

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

Interactions Between Electrical Machine and Power Electronics

Interactions Between Electrical Machine and Power Electronics Interactions Between Electrical Machine and Power Electronics Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Additional Losses Prof. Dr. Ing.

More information

Chapter 10 Switching DC Power Supplies

Chapter 10 Switching DC Power Supplies Chapter 10 Switching One of the most important applications of power electronics 10-1 Linear Power Supplies Very poor efficiency and large weight and size 10-2 Switching DC Power Supply: Block Diagram

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Control of Power Converters for Distributed Generation

Control of Power Converters for Distributed Generation Mechatronics Industrial Advisory Board 2004 Control of Power Converters for Distributed Generation Ph.D. Student: Min Dai Advisor: Prof. Ali Keyhani Department of Electrical and Computer Engineering The

More information

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy Design of Shunt Active Power Filter by using An Advanced Current Control Strategy K.Sailaja 1, M.Jyosthna Bai 2 1 PG Scholar, Department of EEE, JNTU Anantapur, Andhra Pradesh, India 2 PG Scholar, Department

More information

Seddik Bacha Iulian Munteanu Antoneta Iuliana Bratcu. Power Electronic Converters. and Control. Modeling. with Case Studies.

Seddik Bacha Iulian Munteanu Antoneta Iuliana Bratcu. Power Electronic Converters. and Control. Modeling. with Case Studies. Seddik Bacha Iulian Munteanu Antoneta Iuliana Bratcu Power Electronic Converters Modeling and Control with Case Studies ^ Springer Contents 1 Introduction 1 1.1 Role and Objectives of Power Electronic

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER Asian Journal of Electrical Sciences (AJES) Vol.2.No.1 2014 pp 16-21. available at: www.goniv.com Paper Received :08-03-2014 Paper Accepted:22-03-2013 Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD T PRAHLADA 1, P SUJATHA 2, P BHARATH KUMAR 3 1PG Scholar,

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 49 CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES 3.1 INTRODUCTION The wavelet transform is a very popular tool for signal processing and analysis. It is widely used for the analysis

More information

1. Introduction 1.1 Motivation and Objectives

1. Introduction 1.1 Motivation and Objectives 1. Introduction 1.1 Motivation and Objectives Today, the analysis and design of complex power electronic systems such as motor drives is usually done using a modern simulation software which can provide

More information

Model Predictive Control for Quasi-Z Source Inverters with Improved Thermal Performance

Model Predictive Control for Quasi-Z Source Inverters with Improved Thermal Performance Aalborg Universitet Model Predictive Control for Quasi-Z Source Inverters with Improved Thermal Performance Liu, Ping; Yang, Yongheng; Yuan, Jing; Blaabjerg, Frede Published in: Proceedings of the 19th

More information

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents User Guide 08092 IRMCS3043 System Overview/Guide By International Rectifier s imotion Team Table of Contents IRMCS3043 System Overview/Guide... 1 Introduction... 1 IRMCF343 Application Circuit... 2 Power

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

Effective Formulation of the DTC Strategy for Convergence and Stability Analysis The IPM Motor Drive Case Study

Effective Formulation of the DTC Strategy for Convergence and Stability Analysis The IPM Motor Drive Case Study Effective Formulation of the DTC Strategy for Convergence and Stability Analysis The IPM Motor Drive Case Study Adriano Faggion Silverio Bolognani Electric Drives Laboratory Department of Industrial Engineering

More information

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani.

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani. VOLTAGE-SOURCED CONVERTERS IN POWER SYSTEMS Modeling, Control, and Applications Amirnaser Yazdani University of Western Ontario Reza Iravani University of Toronto r TECHNISCHE INFORMATIONSBIBLIOTHEK UNIVERSITATSBIBLIOTHEK

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

Introduction to Servo Control & PID Tuning

Introduction to Servo Control & PID Tuning Introduction to Servo Control & PID Tuning Presented to: Agenda Introduction to Servo Control Theory PID Algorithm Overview Tuning & General System Characterization Oscillation Characterization Feed-forward

More information

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction User Guide 0607 IRMCS3041 System Overview/Guide By Aengus Murray Table of Contents Introduction... 1 IRMCF341 Application Circuit... 2 Sensorless Control Algorithm... 4 Velocity and Current Control...

More information

Control of Electric Machine Drive Systems

Control of Electric Machine Drive Systems Control of Electric Machine Drive Systems Seung-Ki Sul IEEE 1 PRESS к SERIES I 0N POWER ENGINEERING Mohamed E. El-Hawary, Series Editor IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

Traction Drive with PMSM: Frequency Characteristics Measurement

Traction Drive with PMSM: Frequency Characteristics Measurement Transactions on Electrical Engineering, Vol. 1 (2012), No. 1 13 Traction Drive with PMSM: Frequency Characteristics Measurement Tomáš Glasberger 1), Zdeněk Peroutka 2) Martin Janda 3), Jan Majorszký 4)

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

METHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW

METHODS TO IMPROVE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OVERVIEW METHODS TO IMPROE DYNAMIC RESPONSE OF POWER FACTOR PREREGULATORS: AN OERIEW G. Spiazzi*, P. Mattavelli**, L. Rossetto** *Dept. of Electronics and Informatics, **Dept. of Electrical Engineering University

More information

BECAUSE OF their low cost and high reliability, many

BECAUSE OF their low cost and high reliability, many 824 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 45, NO. 5, OCTOBER 1998 Sensorless Field Orientation Control of Induction Machines Based on a Mutual MRAS Scheme Li Zhen, Member, IEEE, and Longya

More information

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in Sensorless Control of High Power Induction Motors Using Multilevel Converters K. Saleh, M. Sumner, G. Asher, Q. Gao Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham,

More information

2. Basic Control Concepts

2. Basic Control Concepts 2. Basic Concepts 2.1 Signals and systems 2.2 Block diagrams 2.3 From flow sheet to block diagram 2.4 strategies 2.4.1 Open-loop control 2.4.2 Feedforward control 2.4.3 Feedback control 2.5 Feedback control

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION Qing-Chang Zhong The University of Sheffield, UK Tomas Hornik Turbo Power Systems Ltd., UK WILEY A John Wiley & Sons, Ltd., Publication

More information

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES DESIGNER SERIES Power supplies are one of the last holdouts of true analog feedback in electronics. For various reasons, including cost, noise, protection, and speed, they have remained this way in the

More information

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters Drives and Filters Overview. Fast switching of power devices in an inverter causes high dv/dt at the rising

More information

A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems

A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems A Novel H Bridge based Active inductor as DC link Reactor for ASD Systems K Siva Shankar, J SambasivaRao Abstract- Power converters for mobile devices and consumer electronics have become extremely lightweight

More information

Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors

Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors Dr David Hind, Chen Li, Prof Mark Sumner, Prof Chris Gerada Power Electronics, Machines

More information

Research and design of PFC control based on DSP

Research and design of PFC control based on DSP Acta Technica 61, No. 4B/2016, 153 164 c 2017 Institute of Thermomechanics CAS, v.v.i. Research and design of PFC control based on DSP Ma Yuli 1, Ma Yushan 1 Abstract. A realization scheme of single-phase

More information

Voltage Source Inverter (VSI)

Voltage Source Inverter (VSI) Voltage Source Inverter (VSI) Prof. Dr. Ing. Hans Georg Herzog (hg.herzog@tum.de) Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Germany 1

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Abstract: PWM Inverters need an internal current feedback loop to maintain desired CURRENT REGULATION OF PWM INVERTER USING STATIONARY FRAME REGULATOR B. JUSTUS RABI and Dr.R. ARUMUGAM, Head of the Department of Electrical and Electronics Engineering, Anna University, Chennai 600 025.

More information

Advanced Servo Tuning

Advanced Servo Tuning Advanced Servo Tuning Dr. Rohan Munasinghe Department of Electronic and Telecommunication Engineering University of Moratuwa Servo System Elements position encoder Motion controller (software) Desired

More information

3. Discrete and Continuous-Time Analysis of Current-Mode Cell

3. Discrete and Continuous-Time Analysis of Current-Mode Cell 3. Discrete and Continuous-Time Analysis of Current-Mode Cell 3.1 ntroduction Fig. 3.1 shows schematics of the basic two-state PWM converters operating with current-mode control. The sensed current waveform

More information

Available online at ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016

Available online at   ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 168 (216 ) 1671 1675 3th Eurosensors Conference, EUROSENSORS 216 Embedded control of a PMSM servo drive without current measurements

More information

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER Murdoch University: The Murdoch School of Engineering & Information Technology Author: Jason Chan Supervisors: Martina Calais &

More information

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique O. Hemakesavulu 1, T. Brahmananda Reddy 2 1 Research Scholar [PP EEE 0011], EEE Department, Rayalaseema University, Kurnool,

More information

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer Research Journal of Applied Sciences, Engineering and Technology 2(8): 789-797, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted date: September 27, 2010 Accepted date: November 18,

More information

E Typical Application and Component Selection AN 0179 Jan 25, 2017

E Typical Application and Component Selection AN 0179 Jan 25, 2017 1 Typical Application and Component Selection 1.1 Step-down Converter and Control System Understanding buck converter and control scheme is essential for proper dimensioning of external components. E522.41

More information

MODELING AND ANALYSIS OF IMPEDANCE NETWORK VOLTAGE SOURCE CONVERTER FED TO INDUSTRIAL DRIVES

MODELING AND ANALYSIS OF IMPEDANCE NETWORK VOLTAGE SOURCE CONVERTER FED TO INDUSTRIAL DRIVES Int. J. Engg. Res. & Sci. & Tech. 2015 xxxxxxxxxxxxxxxxxxxxxxxx, 2015 Research Paper MODELING AND ANALYSIS OF IMPEDANCE NETWORK VOLTAGE SOURCE CONVERTER FED TO INDUSTRIAL DRIVES N Lakshmipriya 1* and L

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR International Journal of Science, Environment and Technology, Vol. 3, No 5, 2014, 1713 1720 ISSN 2278-3687 (O) A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR 1 P. Sweety

More information

Parameter-independent estimation strategy combining HF signal injection and sliding mode methodology for AC self-sensing control machines.

Parameter-independent estimation strategy combining HF signal injection and sliding mode methodology for AC self-sensing control machines. Parameter-independent estimation strategy combining HF signal injection and sliding mode methodology for AC self-sensing control machines. Application to EV/HEV powertrains Renault - Ecole Centrale de

More information

for more please visit :

for more please visit : articlopedia.gigcities.com for more please visit : http://articlopedia.gigcities.com file:///d /important.html9/13/2006 8:50:19 PM Disclaimer: This document was part of the First European DSP Education

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

NPTEL

NPTEL NPTEL Syllabus Pulse width Modulation for Power Electronic Converters - Video course COURSE OUTLINE Converter topologies for AC/DC and DC/AC power conversion, overview of applications of voltage source

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER Kushal Rajak 1, Rajendra Murmu 2 1,2 Department of Electrical Engineering, B I T Sindri, (India) ABSTRACT This paper presents

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

Power Management for Computer Systems. Prof. C Wang

Power Management for Computer Systems. Prof. C Wang ECE 5990 Power Management for Computer Systems Prof. C Wang Fall 2010 Course Outline Fundamental of Power Electronics cs for Computer Systems, Handheld Devices, Laptops, etc More emphasis in DC DC converter

More information

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 37 CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 3.1 INTRODUCTION This chapter presents speed and torque characteristics of induction motor fed by a new controller. The proposed controller is based on fuzzy

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Harnessing of wind power in the present era system

Harnessing of wind power in the present era system International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 1 Harnessing of wind power in the present era system Raghunadha Sastry R, Deepthy N Abstract This paper deals

More information

630 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 2, MAY 2013

630 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 2, MAY 2013 630 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 2, MAY 2013 Development of High-Reliability EV and HEV IM Propulsion Drive With Ultra-Low Latency HIL Environment Evgenije M. Adžić, Member,

More information

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS 2.1 Introduction The PEBBs are fundamental building cells, integrating state-of-the-art techniques for large scale power electronics systems. Conventional

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

IN MANY industrial applications, ac machines are preferable

IN MANY industrial applications, ac machines are preferable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 111 Automatic IM Parameter Measurement Under Sensorless Field-Oriented Control Yih-Neng Lin and Chern-Lin Chen, Member, IEEE Abstract

More information

PMSM TECHNOLOGY IN HIGH PERFORMANCE VARIABLE SPEED APPLICATIONS

PMSM TECHNOLOGY IN HIGH PERFORMANCE VARIABLE SPEED APPLICATIONS PMSM TECHNOLOGY IN HIGH PERFORMANCE VARIABLE SPEED APPLICATIONS John Chandler Automotion Inc., an Infranor Inter AG Company Ann Arbor, MI Abstract Many variable speed applications found in industry today

More information

Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard

Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard Methodology for testing a regulator in a DC/DC Buck Converter using Bode 100 and SpCard J. M. Molina. Abstract Power Electronic Engineers spend a lot of time designing their controls, nevertheless they

More information

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM M. Tavakoli Bina 1,*, N. Khodabakhshi 1 1 Faculty of Electrical Engineering, K. N. Toosi University of Technology, * Corresponding

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

Inverter topologies for photovoltaic modules with p-sim software

Inverter topologies for photovoltaic modules with p-sim software Inverter topologies for photovoltaic modules with p-sim software Anand G. Acharya, Brijesh M. Patel, Kiran R. Prajapati 1. Student, M.tech, power system, SKIT, Jaipur, India, 2. Assistant Professor, ADIT,

More information

Control of Electric Motors and Drives via Convex Optimization

Control of Electric Motors and Drives via Convex Optimization Control of Electric Motors and Drives via Convex Optimization Nicholas Moehle Advisor: Stephen Boyd February 5, 2018 Outline 1. waveform design for electric motors permanent magnet induction 2. control

More information

Multi-Level Inverters

Multi-Level Inverters Lecture Power Electronics Multi-Level Inverters Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Electrical Drive Systems and Power Electronics Arcisstraße 21 80333 München

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Power semiconductor devices constitute the heart of the modern power electronics, and are being extensively used in power electronic converters in the form of a

More information

Multi-Level Inverters

Multi-Level Inverters Lecture Power Electronics Multi-Level Inverters Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Germany MULTILEVEL INVERTERS more than 2 voltage

More information

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using 1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using op-amps a. b. c. d. Solution: b) Explanation: The dotted

More information

THREE-PHASE voltage-source pulsewidth modulation

THREE-PHASE voltage-source pulsewidth modulation 1144 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 6, NOVEMBER 1998 A Novel Overmodulation Technique for Space-Vector PWM Inverters Dong-Choon Lee, Member, IEEE, and G-Myoung Lee Abstract In this

More information

An Induction Motor Control by Space Vector PWM Technique

An Induction Motor Control by Space Vector PWM Technique An Induction Motor Control by Space Vector PWM Technique Sanket Virani PG student Department of Electrical Engineering, Sarvajanik College of Engineering & Technology, Surat, India Abstract - This paper

More information