Nonlinear characterization and modeling of low. power transistors

Size: px
Start display at page:

Download "Nonlinear characterization and modeling of low. power transistors"

Transcription

1 Workshop WMB Nonlinear characterization and modeling of low frequency dispersive effects in power transistors R. Quéré (1), O. Jardel (2), A. Xiong (1), M. Oualli (2), T. Reveyrand (1), J.P. Teyssier (1), R. Sommet (1), J.C Jacquet (2), S. Piotrowicz (2) (1) MITIC/XLIM University of Limoges (2) MITIC/Thales 3-5 Lab -1-

2 Outline Characterization methods Thermal Issues Trapping effects Impact Ionization effects Conclusion -2-19/12/28

3 Challenges for the design of HPA Design of High Power Amplifiers requires accurate Non linear models that take into account: Strong Thermal constraints Parasitics effects such as Traps in HEMTs Impact Ionization limits in GaAs PHEMts To cope with Reliability issues Degradation of Large signal characteristics ti Rely on specialized characterizations tools -3-19/12/28

4 Characterization Tools -4-

5 Characterization of microwave devices In the modelling process, the characterization phase is preeminent, as some effects can only be put into evidence using specialized measurements techniques. DC and Pulsed I-V measurements CW and pulsed S-parameters meaasurements CW and pulsed Load-Pull frequency measurements CW and pulsed Load-Pull time domain measurements (LSNA) Low Frequency Z and S parameters measurements Two tone IM measurements. -5-

6 Pulsed Measurements of power devices g µ On Wafer performances Max current 5A Min current 1µA Max Voltage 12V S-parameters 1-4 GHz Température -65 C / 2 C Pulse duration > 3ns duty cycle >.5 % Vgs=+1. V Vgs= +.nv Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V Vgs=-5. V Vgs=-6. V Vgs=-7. V Vgs=-8. V Vgs=+1. V Vgs= +.nv Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V Vgs=-5. V Vgs=-6. V Vgs=-7. V Vgs=-8. V -6-6

7 Principle of pulsed measurements - short pulses 4ns : quasi isothermal state - period : 6µs - starting point of the pulses is the quiescent bias point (Vgs,Vds) that defines the thermal and trapping gsaeo state of the device - small-signal RF during the steady state of the pulses - I(V) and S-Parameters are taken during the pulses -7-

8 Harmonic Load Pull ( Frequency domain analysis) 5Ω RF coupler coupler Lin Amp DC bias D U T HN Tuner DC bias 1 Mhz Synch 4 channel test set LO frequency synthesis BP Detection Filter Mixer VNA receiver operation mode : Heterodyne Principle + narrow BP IF filter Sequential Measurements of Harmonic components Hn No phase relationship measurements between Hn and Hn+1 Absolute power and power wave ratios Hn -8-

9 Load pull Time Domain Waveform Measurements Reference Comb generator For phase cal procedure RF coupler coupler Lin Amp DC bias D U T HN Tuner DC bias 5Ω 1 Mhz Sy nch Time equivalent 1-2 Mhz Comb sampling 1 Mhz 2 Mhz Synthesizer Gen head LP filter ADC Harmonic Sub 2 MHz Frequency Translation and compression into a 1 Mhz IF Bandwidth -9-

10 Pulsed LSNA-organisation -1-

11 Pulsed LSNA- The stroboscopic approach -11-

12 Pulsed LSNA- The set-up -12-

13 Thermal issues -13-

14 Thermal Behaviour Impact on PA Gain Average current Degradation of performances for a 1W X band PA Outpout t Power & PAE Junction Temperature Junction tempe erature ( C) Pin (dbm) Optimization of PAE allows to reach the relialbility constraints for space applications -14-

15 Electrothermal modeling of HBTs Ic ( A ) TRANSISTOR TAB PACKAGE BACKSIDE AuSn GaAs DCu DCu Abelfilm525E I (,, ) B = f1 VBE VBC T +55 C Package I (,, ) C = f2 VBE VBC T P = VCE IC + VBE IB Réseau I(V) [S] T( jω) = ZTH ( jω) P S(2,2) 1 µm 25 µm 28 µm 25 µm 15 µm 125 µm Vce ( V ) freq (1.GHz to 1.GHz) 8 Full electrothermal model requires the knowledge of Pout (dbm m) ) Gain (db) PAE, Pout, Gain PAE (%) Z TH ( ω ) Pin (dbm) -15-

16 Thermal modeling of HBTs & Packaging Experimental set up SIMULATION Thermal Model Electrical measurement of the thermal impedance ,E-7 1,E-6 1,E-5 1,E-4 1,E-3 1,E-2 1,E-1 3D finite element simulation HP4194A k DC Offset=V BE V BE + ~ v be R 2 C=2mF R 1 Model Comparison Model Order Reduction. C. X T R R R T = E. X = K. X V A11.T11 DD2 A11.P1 1/λ11 V DD1 1 T11 R R R + F u R 1 P1 T1 A1m.P1 1/λ1m 1 T1m A1m.T1m -16-

17 Zth extraction from electrical measurements ~ V ~ I Principle of the measurement of the input impedance ~ BE B V f ( I, T) ) ~ ~ BE = B T = Z ( ω). P th = f I B T + f T I B T Z in = Z iniso + ϕ. ~ II B ~ T. ~ I ~ ~ ~ P = VCE. IC + VCE. IC B ~ P ~ ~ = h fe.( V CE R L. I C ) I B ~ Z in = Z iniso + ϕ. Z th ( ω). h fe.( V CE R L. IC ) -17-

18 Ib (ma) Extraction of φ Vbe (V) Vbe (V) T( C) φ (V/ C) V ϕ BE ( I B ) = TT I Bo Ib (ma) -18-

19 Input impedance variation 5 4 Re{Zin} R L > V ce /I c R L = V ce /I c R L < V ce /I c ~ Z in -1 Im{Zin} 1 1E1 1E2 1E3 1E4 1E5 Frequency (Hz) Z + ϕ ω = Z + ϕ. Z ( ω ). h.( V R. I ) iniso. th fe CE L C Zin purely real if the condition (V CE - R L.I C) ) = is verified -19-

20 3D FE Simulation Static & Dynamic Transient regime at the selected points ,E-7 1,E-6 1,E-5 1,E-4 1,E-3 1,E-2 1,E-1 Hot points, temperature profile Homogeneous repartition of the power Useful tool for the design of microwave power transistors But huge calculation time and heavy computing ressources -2-19/12/28

21 Model Order Reduction Representation FEM Linear conductivity Real system 3D Modeling Thermal subcircuit Numerical system. C. T + K. T = F 1 A11.P1 P1 A1m.P1 1/λ11 1/λ1m A11.T11 1 T11 A1m.T1m 1 T1m T1 Circuit it synthesis Reduced Order Model MOR -21-

22 Comparison ANSYS vs MOR (static) The Ritz method for MOR guarantees that steady state temperature is reached /12/28

23 Comparison ANSYS vs MOR (dynamic) Transient regime The number of Ritz vectors determine the precision of the transient regime Computing time (3 nodes) ANSYS : 1 minutes (3 V) Ritz : immediate MOR provides a significant gain of computing time without loss of precision and allows the integration of the model in CAD softwares -23-

24 Influence of the mounting of the transistor Zin Ritz MOR 5 Re{Zth Kovar} 5 % Re{Zth Cu} Mounting impact Im{Zth Cu} Time constants of the transistor -1 Im{Zth Kovar}

25 Low Frequency S-parameters for a HBT 1 Magnitude S11 (db) E1 db( S11) 1E2 1E3 1E4 1E5 1E6 1E7 freq, Hz 1E8 12 (db) Magnitude S Measures -2 1E1 ET model Isothermal model db( S12) 1E2 1E3 1E4 1E5 1E6 1E7 freq, Hz 1E8 5 2 Phase S ϕ ( S ) 12 ( ) Phase S ϕ( S12) -2 1E1 1E2 1E3 1E4 1E5 1E6 1E7 freq, Hz 1E8-2 1E1 1E2 1E3 1E4 1E5 1E6 1E7 freq, Hz 1E /12/28

26 Trapping Effects -26-

27 GaN HEMTs Characterization Some issues of GaN HEMTs - Various electrical effects (traps, thermal) which cover a large frequency band from BF to RF - Serously impact the power behavior Useful characterization tools: - Pulsed I-V and S-parameters - Load Pull frequency domain measurements - Load Pull time domain measurements (LSNA) -27-

28 Trapping Effects (1/3) Origin: Chemical defects which induce electrical defects. Impact: Slow current transient Ids= f (Vgs, Vds) Ids= f(vgs, Vds, trapping state, t ) -28-

29 Trapping Effects (2/3) Origin: Chemical defects which induce electrical defects. Impact: Slow current transient Ids= f (Vgs, Vds) Ids= f(vgs, Vds, trapping state, t ) fast capture -29-

30 Trapping Effects (3/3) Origin: Chemical defects which induce electrical defects. Impact: Slow current transient Ids= f (Vgs, Vds) Ids= f(vgs, Vds, trapping state, t ) Fast t capture (~ ns) Slow emission (up to second) -3-

31 Evidence of trapping effects Gate-lag: decrease of drain current Drain-lag: increase of Vknee g µ Vgs=+1. V.8 Vgs= +.nv.8 Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V Vgs=-5. V.6 Vgs=-6. V Vgs=-7. V Vgs=-8. V.6 Vgs=+1. V Vgs= +.nv Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V.4 Vgs=-5. V Vgs=-6. V Vgs=-7. V.4 Vgs=-8. V Vgs=-8V to +1V, Vgs=-8V, Vds=2V Vgs=-8V to +1V, Vgs=-8V, Vds=25V Vgs=-8V to +1V, Vgs=-8V, Vds=3V Vgs=-8V to +1V, Vgs=-8V, Vds=35V Gate-lag Vert (Vgs=V,Vds=V) rouge (Vgs=-8 V, Vds=V) Mise en évidence des pièges During the pulses capture takes place, emission i freezed Drain-lag Vgs=-8 V, Vds=15 15, 2, 25, 3V τcapture << t IMPULSION << τémission -31-

32 Nonlinear electrothermal model with trapping effects Ibk Igd(T ) Lg Rg Cgd Rgd Rd(T ) Ld Cpg Vgs Vds Cpd Igs(T ) Cgs Gate- & Drain-lag Vgs_int Ids (Vgs_int(t-τ), Vds(t), T ) Cds Ri Transistor intrinsèque Rs(T ) Ls -Nonlinear capacitances -Current sources -Thermal dependence -Trapping sub circuits -32-

33 d Mesure Modele x75 POLAR Vgs=-4.41 V, Vds= V, Id =+.163 A Vgs=+1. V Vgs= +.nv Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V Vgs=-5. V Vgs=-6. V Vgs=-7. V Vgs=-8. V Vds en Volts Cgs_1D Vgs 6,E-13 5,E-13 4,E-13 3,E-13 2,E-13 1,E-13,E+ Mesure Modele Cgd_1D Vgd 1,4E-13 1,2E-13 1,E-13 8,E-14 6,E-14 4,E-14 2,E-14,E+ 1,6 1,55 1,5 1,45 1,4 1,35 1,3 1,25 1,2 y = -,24x + 1, ,5E-14 3,E-14 2,5E-14 2,E-14 1,5E-14 1,E-14 5,E-15,E+ y= 1,6E-16+1,4973E-16*EXP(T/26,3157) 16 1,4973E 16 EXP(T/26,3157) C²S² Steps of the modeling process Étapes de modélisation db (S(2,1)) db (S(1,2)) Modèle petit-signal Modèle I-V Capacités NL Modèle thermique Modèles de pièges S(1,1) ; S(2,2) freq, GHz Phase (S(1,2)) Pha se (S(2,1)) freq, GHz freq, GHz freq, GHz Ids (A) Vds (V) Id en Amperes Cgs (F) Cgd (F) Idss Is_gs 6.E-2 5.9E-2 5.8E E-2 5.6E-2 5.5E-2 5.4E-2.E+ 2.E-6 4.E-6 6.E-6 8.E-6 1.E- k Vds + k + Vgs_int Rfill Vgs Vds Rempty C Vds freq (2.GHz to 4.GHz) Rg Lg Cpg Ls Cpd Ld Rs Rd Ri Cds τ Gm Gd Cgs Cgd Rgd Dgs=f(Vgs) Dgd=f(Vgd) Ids=f(Vgs,Vds) Cgs=f(Vgs) Cgd=f(Vgd) Dgs=f(Vgs) Dgd=f(Vgd) g Ids=f(Vgs,Vds,T) Rs=f(T) Rd=f(T) Rgd=f(T) Ids=f(Vgs_pièges,Vds,T) Various parasitics effects are successively added -33-

34 Thermal effects modelled through 3D FE simulation Thermal simulations (3-5 lab) Zth [ C/W] Heating as a function of time HEMT 1t8x75_35µm - 7W/mm_3 C GaN1.2µm/SiC44µm/AuSn45µm/Al2mm ANSYS FIT RC 1.E-3 1.E-2 1.E-1 1.E+ 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 temps [µs] Mise en équation avec des formes exponentielles Thermal subcircuit R1 R2 R3 R4 R5 TEMP = 22,8.(1-e-t/τ1) +217(1e 21,7.(1-e-t/τ2) + 7.(1-e-t/τ3) + C1 C2 C3 C4 C5 I = P dissipée U=T chuck_ C T C -34-

35 Transistor parameters dependence on temperature various temperatures Thermal laws Id en Amperes Id en Am mperes x75 POLAR Vgs=+.163 V, Vds=+1.97mV, Id =-.55mA Vgs=+1. V Vgs= +.nv Vgs=-1. V Vgs=-2. V Vgs=-3. V Vgs=-4. V Vgs=-5. V Vgs=-6. V Vgs=-7. V Vgs=-8. V Vds en Volts. 25 C x75 POLAR Vgs=+.165 V, Vds=+9.79mV, Id =-.44mA Rs, Rd Idss Rd y =.49x Rs y =.29x T C. Equations Thermal parameters - Access resistances - Current sources - Diodes. Rs= Rs + α _Rs.T Rd= Rd + α_rd.t T Vgs=+1. V Vgs= +.nv Idss= Idss Vgs=-1. V Vgs=-2. V + Idss t.t y = -.8x Vgs=-3. V Vgs=-4. V P=P Vgs=-5. V Vgs=-6. V +P t.t Vgs=-7. V Vgs=-8. V Ngs=Ngs +Ngs t.t Vds en Volts 15 C T C. Ngd=Ngd +Ngd t.t Isgs=Isgs +Isgs t.e (T/Tsgs) Isgd=Isgd +Isgd t.e (T/Tsgd) -35-

36 Topology of the trapping effects model Trapping effects modify the gate command (back gating) transients on Vgs Transients of the drain current Charge of the capacitance= Ionized traps Charge through Rcapture, Emission through Rémission Diode= dissymetry of the capture and emission process Tuning of the magnitude of the trapping effects Fundamental assumption : dissymetry of the capture and emission process -36-

37 The model takes the knee walk out into account Measured Drain Lag Ids (A/m mm) Vgs=-7V, Vds=25V Vgs=-7V, Vds=V Ids (A/m mm) Simulations drain-lag ON/OFF Vds (V) Pulsed Measurements - Vgs=-7V, Vds=V V (bleu) - Vgs=-7V, Vds=25V (rouge) Vds (V) Simulated I-V Vgs=-7V, Vds=V Vgs=-7V, Vds=25V (rouge) Vgs=-7V, Vds=25V (bleu) -37-

38 Large signal impact of traps (1) Load pull measurements at various loads 3 4 1: Z 1 OPT 2 2 : Z 5 2_VSWR= : Z 3_VSWR=2.5 4 :Z 4_VSWR=1.6 5: Z 5_VSWR=2.5 6: Z 6 _ VSWR=2.5 Class AB, Vds=25 V, DC Bias, RF CW, 1 GHz -38-

39 Large signal impact of traps (2) Load tuned for optimum power Load.8 Pièges ON Pièges OFF Mesure Zload int.i reseau_iv_sdd..ids_ cycle (. to.) indep(cycle) X1.Vd_int PAE(%) 2 IDS (ma) Phase (Gamma a_in) Pin (dbm) 3 Pin (dbm).95 Pin (dbm) Gain(dB) Pin (dbm) Pout (W) Pin (W) in) Mag (Gamma_i Pin (dbm)

40 Explanantion of the decrease of the average current 22 ID DS (ma) Pin (dbm) 25-4-

41 Explanantion of the decrease of the average current 22 ID DS (ma) Pin (dbm)

42 Explanantion of the decrease of the average current 22 ID DS (ma) Pin (dbm)

43 Explanantion of the decrease of the average current 22 ID DS (ma) Pin (dbm)

44 Validation of the model with mismatched loads TOS=1,6 Load.8 Pièges ON Pièges OFF Mesure Zload s_int.i reseau_iv_sdd..id cycle (. to.) -16 indep(cycle) X1.Vd_int PAE(%) IDS (ma) Phase (Gamma in) Pin (dbm) 2.5 Pin (dbm).98 Pin (dbm) Gain(dB) 19 Pout (W) Pin (dbm) Pin (W) Mag (Gamma_in) Pin (dbm)

45 Validation of the model with mismatched loads TOS=2,5.8 Pièges ON Pièges OFF Mesure Zload Load reseau_iv_sdd d..ids_int.i cycle (. to.) indep(cycle) X1.Vd_int PAE(%) 2 1 ) IDS (ma) Phase (Gamma a_in) Pin (dbm) 2.5 Pin (dbm).85 Pin (dbm) Gain(dB) 1 8 Pout (W) Pin (dbm) Pin (W) -45- Mag (Gamma_in) Pin (dbm)

46 LSNA Measurements 5 GHz, 25V, dc/cw Igs Igs Ids (ma) Vgs Vds Vgs Vds Pe (dbm) -46- Vds Ids Ids Ids Pièges ON Pièges OFF Mesure TOS 4 5dB compression TOS 3,3 7dB compression TOS 2 8dB compression

47 Design of a 2 stages AlGaN/GaN MMIC HPA Output power, PAE & Gain at 9 GHz Drain Bias 32V ) Power (dbm m) & gain (db) 5 45 Pout gain PAE Input Power (dbm) PAE (%) Pout = 47.7 dbm ( 58 W) PAE = 38 % 6.5 W/mm Chip size : 16.5 mm² 43x38 µm² 1 st stage : 2.4 mm 2 nd stage : 8.96 mm Gain = 14.6 db =23A State-of-the-Art Output Power with Vds = 32V, Ids 2.3A AlGaN/GaN N MMIC HPA at X Band -47-

48 Impact Ionization -48-

49 Impact Ionization in GaAs HEMTs [ ] R Y 22.2A.15 4x75 POLAR Vgs= V, Vds=+6.7 V, Id =+41.25µA Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V Vgs=+.75 V.1 Id en Amperes ( 5.5 I DS ( V ) DS 5V Vds en Volts I Interaction between II and Traps [ Y ] Temperature dependence 22 Frequency dispersion of output conductance /12/28

50 PHEMT GaAs/GaInAs Model for Impact Ionization Impact ionization i is frequency dependent d Model with impact ionization source Model with impact ionization filtered around 2 GHz Lowpass filter with a cut-off frequency of 2 GHz -5-

51 Conclusions Dispersive effects have a strong impact on transistors performances Thermal Effects in all devices Trapping effects in HEMTs (GaN and GaAs) Impact ionization effects coupled with trapping effects Require specialized characterization tools Pulsed I-V and S-parameters measurements Load Pull Frequency and Time Domains Low Frequency Characterization Physical and thermal simulation Need further investigations for checking the consistency of different kinds of characterization and modeling. To provide usefull tools for the technology assessment and improvement as well as optimization of PA performances /12/28

ARFTG - Microwave Measurement Conference. System Modeling and Measurement for High Accuracy Verification

ARFTG - Microwave Measurement Conference. System Modeling and Measurement for High Accuracy Verification ARFTG - Microwave Measurement Conference System Modeling and Measurement for High Accuracy Verification December 1st - 4th, 29, Broomfield/Boulder, Colorado OUTLINE PART I : Pulsed IV and S parameters

More information

Pulse IV and pulsed S-parameter Parametric Analysis with AMCAD PIV & AGILENT PNA-X

Pulse IV and pulsed S-parameter Parametric Analysis with AMCAD PIV & AGILENT PNA-X Pulse IV and pulsed S-parameter Parametric Analysis with AMCAD PIV & AGILENT PNA-X Tony Gasseling gasseling@amcad-engineering.com 1 Components PA Design Flow Measurement system Measurement Data base Circuits

More information

Nonlinear Characterization and Modeling Through Pulsed IV/S-Parameters

Nonlinear Characterization and Modeling Through Pulsed IV/S-Parameters Nonlinear Characterization and Modeling Through Pulsed IV/S-Parameters OUTLINE Introduction Core device model extraction Model Enhancement Model Validation Types of Large-Signal Transistor Models Convergence

More information

Méthodes avancées de caractérisation et de modélisation des transistors HEMT GaN

Méthodes avancées de caractérisation et de modélisation des transistors HEMT GaN Méthodes avancées de caractérisation et de modélisation des transistors HEMT GaN Jean Christophe NALLATAMBY, Julien COUVIDAT, Sylvain LAURENT, Raphaël SOMMET, Michel PRIGENT & Raymond QUERE XLIM, CNRS

More information

Measurements for Optimization of Solid-State Power Amplifiers

Measurements for Optimization of Solid-State Power Amplifiers Session 3: Characterization and modeling Measurements for Optimization of Solid-State Power Amplifiers Jean-Pierre Teyssier, Tibault Reveyrand, Denis Barataud XLIM C²S², University of Limoges, 127 avenue

More information

Very small duty cycles for pulsed time domain transistor characterization

Very small duty cycles for pulsed time domain transistor characterization EUROPEAN MICROWAVE ASSOCIATION Very small duty cycles for pulsed time domain transistor characterization Fabien De Groote 1, Olivier Jardel 2, Tibault Reveyrand 2, Jean-Pierre Teyssier 1, 2 and Raymond

More information

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier Pout (dbm), PAE(%) Functional Block Diagram Main Features 0.25µm GaN HEMT Technology 8.3 10.3 GHz full performances Frequency Range 60W Output Power @ Pin 40.5 dbm PAE > 33% @ Pin 40.5 dbm Linear Gain

More information

A new nonlinear HEMT model allowing accurate simulation of very low IM 3 levels for high-frequency highly linear amplifiers design

A new nonlinear HEMT model allowing accurate simulation of very low IM 3 levels for high-frequency highly linear amplifiers design A new nonlinear HEMT model allowing accurate simulation of very low IM 3 levels for high-frequency highly linear amplifiers design J. Lhortolary 1, C. Chang 1, T. Reveyrand 2, M. Camiade 1, M. Campovecchio

More information

DC - 20 GHz Discrete power phemt

DC - 20 GHz Discrete power phemt DC - 20 GHz Discrete power phemt Product Description The TriQuint is a discrete 0.6 mm phemt which operates from DC-20 GHz. The is designed using TriQuint s proven standard 0.3um power phemt production

More information

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless 12 Watt Discrete Power GaN on SiC HEMT Key Features Frequency Range: DC - 18 GHz > 41 dbm Nominal Psat 55% Maximum PAE 15 db Nominal Power Gain Bias: Vd = 28-40 V, Idq = 250 ma, Vg = -3 V Typical Technology:

More information

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless 6 Watt Discrete Power GaN on SiC HEMT Key Features Frequency Range: DC - 18 GHz > 38 dbm Nominal Psat 55% Maximum PAE 15 db Nominal Power Gain Bias: Vd = 28-40 V, Idq = 125 ma, Vg = -3 V Typical Technology:

More information

X-Parameters with Active and Hybrid Active Load Pull

X-Parameters with Active and Hybrid Active Load Pull X-Parameters with Active and Hybrid Active Load Pull Gary Simpson, CTO Maury Microwave EuMW 2012 www.maurymw.com 1 General Load Pull Overview 2 Outline 1. Introduction to Maury Microwave 2. Basics and

More information

Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program

Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program Using Large-Signal Measurements for Transistor Characterization and Model Verification in a Device Modeling Program Maciej Myśliński1, Giovanni Crupi2, Marc Vanden Bossche3, Dominique Schreurs1, and Bart

More information

Low Frequency Parasitic Effects in RF Transistors and their Impact on Power Amplifier Performances

Low Frequency Parasitic Effects in RF Transistors and their Impact on Power Amplifier Performances Low Frequency Parasitic Effects in Transistors and their Impact on Power Amplifier Performances Raymond Quéré, Raphael Sommet, Philippe Bouysse, Tibault Reveyrand, Denis Barataud, Jean Pierre Teyssier,

More information

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Primary Applications Defense & Aerospace Broadband Wireless. Product Description

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Primary Applications Defense & Aerospace Broadband Wireless. Product Description 50 Watt Discrete Power GaN on SiC HEMT Key Features Frequency Range: DC - 18 GHz 47 dbm Nominal Psat 55% Maximum PAE 8.7 db Nominal Power Gain Bias: Vd = 28-35 V, Idq = 1 A, Vg = -3.6 V Typical Technology:

More information

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications Main Features 0.25µm GaN HEMT Technology 4.1 5.9 GHz full performances Frequency Range W Output Power @ Pin 27.5 dbm 37% PAE @ Pin 27.5 dbm % PAE @ Pout Watt 27 db Small Signal Gain Product Description

More information

D1H010DA1 10 W, 6 GHz, GaN HEMT Die

D1H010DA1 10 W, 6 GHz, GaN HEMT Die D1H010DA1 10 W, 6 GHz, GaN HEMT Die D1H010DA1 by Dynax is a Gallium Nitride (GaN) high electron mobility transistor (HEMT). The D1H010DA1, operating at 48 V, offers high efficiency, great gain, easy of

More information

& ) > 35W, 33-37% PAE

& ) > 35W, 33-37% PAE Outline Status of Linear and Nonlinear Modeling for GaN MMICs Presented at IMS11 June, 11 Walter R. Curtice, Ph. D. Consulting www.curtice.org State of the Art Modeling considerations, types of models,

More information

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios The University Of Cincinnati College of Engineering Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios Seth W. Waldstein The University of Cincinnati-Main Campus Miguel A. Barbosa

More information

EC2612 RoHS COMPLIANT

EC2612 RoHS COMPLIANT 40GHz Super Low Noise PHEMT Pseudomorphic High Electron Mobility Transistor EC2612 RoHS COMPLIANT Description The EC2612 is based on a 0.15µm gate pseudomorphic high electron mobility transistor (0.15µm

More information

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications S.DELAGE / S.PIOTROWICZ Summary III-V Lab presentation Motivations Technology for L & S band applications Technology

More information

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features: Product Description: The Nxbeam is a Ku-band high power GaN MMIC fabricated in 0.2um GaN HEMT on SiC. This part is ideally suited for satellite communications, point-to-point radios, and radar applications.

More information

1W High Linearity and High Efficiency GaAs Power FETs

1W High Linearity and High Efficiency GaAs Power FETs 1W High Linearity and High Efficiency GaAs Power FETs FEATURES! 1W Typical Power at 6 GHz PHOTO ENLARGEMENT! Linear Power Gain: G L = 13 db Typical at 6 GHz! High Linearity: IP3 = 4 dbm Typical at 6 GHz!

More information

techniques, and gold metalization in the fabrication of this device.

techniques, and gold metalization in the fabrication of this device. Up to 6 GHz Medium Power Silicon Bipolar Transistor Chip Technical Data AT-42 Features High Output Power: 21. dbm Typical P 1 db at 2. GHz 2.5 dbm Typical P 1 db at 4. GHz High Gain at 1 db Compression:

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Progress In Electromagnetics Research Letters, Vol. 38, 151 16, 213 ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Ahmed Tanany, Ahmed Sayed *, and Georg Boeck Berlin Institute of Technology,

More information

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W CMPA006005D 5 W, 0 MHz - 6.0 GHz, GaN MMIC, Power Amplifier Cree s CMPA006005D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

LOW NOISE L TO K-BAND GaAs MESFET SYMBOLS PARAMETERS AND CONDITIONS UNITS MIN TYP MAX NFOPT 1

LOW NOISE L TO K-BAND GaAs MESFET SYMBOLS PARAMETERS AND CONDITIONS UNITS MIN TYP MAX NFOPT 1 FEATURES LOW NOISE FIGURE NF = 1.6 db TYP at f = 1 GHz HIGH ASSOCIATED GAIN GA = 9.5 db TYP at f = 1 GHz LG = 0.3 µm, WG = 80 µm EPITAXIAL TECHNOLOGY LOW PHASE NOISE DESCRIPTION The features a low noise

More information

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features: Product Description: The Nxbeam is a Ku-band high power GaN MMIC fabricated in 0.2um GaN HEMT on SiC. This part is ideally suited for satellite communications, point-to-point radios, and radar applications.

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

PART I - DOUBLE- PULSE GAN FET NONLINEAR CHARACTERIZATION AND MODELING

PART I - DOUBLE- PULSE GAN FET NONLINEAR CHARACTERIZATION AND MODELING Nonlinear Characteriza/on and Modelling of Microwave Electron Devices for Large Signal and Low Noise Applica/ons PART I - DOUBLE- PULSE GAN FET NONLINEAR CHARACTERIZATION AND MODELING Prof. Alberto Santarelli

More information

Features. Specifications. Applications

Features. Specifications. Applications ATF-531P8 High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package Data Sheet Description Avago Technologies ATF 531P8 is a single-voltage high linearity, low noise E phemt housed

More information

Large-Signal Network Analysis Technology for HF analogue and fast switching components

Large-Signal Network Analysis Technology for HF analogue and fast switching components Large-Signal Network Analysis Technology for HF analogue and fast switching components Applications This slide set introduces the large-signal network analysis technology applied to high-frequency components.

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package ATF-3189 Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-3189 is a single-voltage high linearity, low noise E-pHEMT FET packaged in a low cost

More information

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features: NPA1-D Product Description: The Nxbeam NPA1-D is a Ka-band high power GaN MMIC fabricated in.2um GaN HEMT on SiC. This part is ideally suited for satellite communications, point-to-point radios, and radar

More information

Data Sheet ATF-511P8. High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package. 1Px. Features.

Data Sheet ATF-511P8. High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package. 1Px. Features. ATF-511P8 High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package Data Sheet Description Avago Technologies s ATF-511P8 is a single-voltage high linearity, low noise E-pHEMT

More information

Fnl(VGo,VDo,Vg,Vd,W) Fnl(VGo,VDo,Vg,Vd,W,T)

Fnl(VGo,VDo,Vg,Vd,W) Fnl(VGo,VDo,Vg,Vd,W,T) What about Temperature What about Temperature Static Dynamic Geometry Self Heating L.F. Dispersion Channel Geometry Scaling Rules Fnl(VGo,VDo,Vg,Vd,W) Large Signal Static & Dynamic EXTERNAL & INTERNAL

More information

Advance Datasheet Revision: October Applications

Advance Datasheet Revision: October Applications APN149 Applications Military SatCom Phased-Array Radar Applications Point-to-Point Radio Point-to-Multipoint Communications Terminal Amplifiers Product Description X = 4.4mm Y = 2.28mm Product Features

More information

Advance Datasheet Revision: May 2013

Advance Datasheet Revision: May 2013 Applications Military SatCom Phased-Array Radar Applications Point-to-Point Radio Point-to-Multipoint Communications Terminal Amplifiers X = 4.4mm Y = 2.28mm Product Features RF frequency: 18 to 23 GHz

More information

Advance Datasheet Revision: April 2015

Advance Datasheet Revision: April 2015 APN 1-1 GHz Advance Datasheet Revision: April Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios VSAT Test Instrumentation X = 3 um Y = 3 um Product Features RF frequency: 1

More information

ARFTG Workshop, Boulder, December 2014

ARFTG Workshop, Boulder, December 2014 ARFTG Workshop, Boulder, December 2014 Design and measurements of high-efficiency PAs with high PAR signals Zoya Popovic, Tibault Reveyrand, David Sardin, Mike Litchfield, Scott Schafer, Andrew Zai Department

More information

E-PHEMT GHz. Ultra Low Noise, Low Current

E-PHEMT GHz. Ultra Low Noise, Low Current Ultra Low Noise, Low Current E-PHEMT 0.45-6GHz Product Features Low Noise Figure, 0.5 db Gain, 16 db at 2 GHz High Output IP3, + dbm Low Current, ma Wide bandwidth External biasing and matching required

More information

MMA GHz, 0.1W Gain Block Data Sheet

MMA GHz, 0.1W Gain Block Data Sheet Features: Frequency Range: 6 22 GHz P1dB: 18.5 dbm @Vds=5V Psat: 19.5 dbm @ Gain: 14 db Vdd =3 to 6 V Ids = 13 ma Input and Output Fully Matched to 5 Ω Applications: Communication systems Microwave instrumentations

More information

transistor is available in a flange and pill package. Package Types: & PN s: CGH40045F & CGH40045P

transistor is available in a flange and pill package. Package Types: & PN s: CGH40045F & CGH40045P Rev 4.0 - May 2015 CGH40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CGH40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40045, operating from a 28 volt rail,

More information

PRELIMINARY. Cree s CGHV59070 is an internally matched gallium nitride (GaN) high electron mobility transistor

PRELIMINARY. Cree s CGHV59070 is an internally matched gallium nitride (GaN) high electron mobility transistor PRELIMINARY CGHV597 7 W, 4.4-5.9 GHz, 5 V, RF Power GaN HEMT Cree s CGHV597 is an internally matched gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV597, operating from a 5 volt

More information

drain supply terminal impedance at signal envelope frequencies

drain supply terminal impedance at signal envelope frequencies WSM: Characterization of transistor drain supply terminal impedance at signal envelope frequencies Zoya Popovic, Scott Schafer, David Sardin, Tibault Reveyrand * University it of Colorado, Boulder *XLIM,

More information

= 25 C) Parameter 8.0 GHz 9.0 GHz 10.0 GHz 11.0 GHz Units Small Signal Gain db P OUT. = 25 dbm W Power P IN

= 25 C) Parameter 8.0 GHz 9.0 GHz 10.0 GHz 11.0 GHz Units Small Signal Gain db P OUT. = 25 dbm W Power P IN CMPA80B05D 5 W, 8.0 -.0 GHz, GaN MMIC, Power Amplifier Cree s CMP80B05D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has

More information

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C PD-94236C RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-) IRHN5725SE 2V, N-CHANNEL 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID IRHN5725SE K Rads (Si).6Ω 3A SMD- International

More information

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching PD-9586D RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) IRHNJ673 JANSR2N7587U3 V, N-CHANNEL REF: MIL-PRF-95/746 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID QPL Part Number

More information

IRHG V, Quad N-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036) PD-94432C. 1 TECHNOLOGY. Product Summary MO-036AB

IRHG V, Quad N-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036) PD-94432C.  1 TECHNOLOGY. Product Summary MO-036AB PD-94432C RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-36) Product Summary Part Number Radiation Level RDS(on) ID IRHG57 K Rads (Si).29Ω.6A IRHG53 3K Rads (Si).29Ω.6A IRHG54 5K Rads (Si).29Ω.6A IRHG58

More information

Preliminary Datasheet Revision: January 2016

Preliminary Datasheet Revision: January 2016 Preliminary Datasheet Revision: January 216 Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios SATCOM Terminals X = 3.65mm Y = 2.3mm Product Features RF frequency: 27 to 31 GHz

More information

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image.

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image. AMMC-525 3KHz 8 GHz TWA Data Sheet Description The AMMC-525 MMIC is a 3KHz to 8GHz ultra broadband traveling wave amplifier. In this operational frequency band, AMMC-525 provides 8dB gain with better than

More information

100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015

100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015 Innovating with III-V s 100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015 By Dr Fabien ROBERT Sales & Application Team Manager,

More information

Large-signal PHEMT and HBT modeling for power amplifier applications. Ce-Jun Wei Skyworks Inc. Sept

Large-signal PHEMT and HBT modeling for power amplifier applications. Ce-Jun Wei Skyworks Inc. Sept Large-signal PHEMT and HBT modeling for power amplifier applications Ce-Jun Wei Skyworks Inc. Sept. 9 2002 Agenda Introduction Phemt modeling issues Empirical model vs table-based model; Charge model vs

More information

well as multi-octave bandwidth amplifiers up to 4 GHz. The transistor is available in a 2-lead flange and = 25 C), 50 V

well as multi-octave bandwidth amplifiers up to 4 GHz. The transistor is available in a 2-lead flange and = 25 C), 50 V CGHV40050 50 W, DC - 4.0 GHz, 50 V, GaN HEMT Cree s CGHV40050 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40050, operating from a 50 volt rail, offers a general

More information

40W Power Packaged Transistor. GaN HEMT on SiC

40W Power Packaged Transistor. GaN HEMT on SiC Gain (db), Pout (dbm) & PAE (%) Id (A) Description 40W Power Packaged Transistor The is an unmatched packaged Gallium Nitride High Electron Mobility Transistor. It offers general purpose and broadband

More information

Parameter 5.2 GHz 5.5 GHz 5.9 GHz Units. Small Signal Gain db. Output Power W. Efficiency

Parameter 5.2 GHz 5.5 GHz 5.9 GHz Units. Small Signal Gain db. Output Power W. Efficiency CMPA5259025F 25 W, 5200-5900 MHz, 28 V, GaN MMIC for Radar Power Amplifiers Cree s CMPA5259025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated

More information

TECHNOLOGY SURFACE MOUNT (LCC-6) 0.89A -0.65A 0.89A -0.65A

TECHNOLOGY SURFACE MOUNT (LCC-6) 0.89A -0.65A 0.89A -0.65A 2N7632UC IRHLUC767Z4 RADIATION HARDENED 6V, Combination N-P-CHANNEL LOGIC LEVEL POWER MOSFET TECHNOLOGY SURFACE MOUNT (LCC-6) Product Summary Part Number Radiation Level R DS(on) I D CHANNEL IRHLUC767Z4

More information

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P Rev 0.0 - May 2017 CG2H40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CG2H40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40045, operating from a 28 volt

More information

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D PD-9379D RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-39) Product Summary Part Number Radiation Level RDS(on) ID QPL Part Number IRHF5734 K Rads (Si).48Ω 2A* JANSR2N7492T2 IRHF5334 3K Rads (Si).48Ω 2A*

More information

25W Power Packaged Transistor. GaN HEMT on SiC

25W Power Packaged Transistor. GaN HEMT on SiC 25W Power Packaged Transistor GaN HEMT on SiC Description The is an unmatched packaged Gallium Nitride High Electron Mobility Transistor. It offers general purpose and broadband solutions for a variety

More information

Stuart Glynn Power Amplifier Design Engineer

Stuart Glynn Power Amplifier Design Engineer Stuart Glynn Power Amplifier Design Engineer Keysight Technologies 2017 How to Design an X-band MMIC PA Stuart Glynn and Liam Devlin Introduction Target specification and application Design approach Device

More information

CGH40006P. 6 W, RF Power GaN HEMT APPLICATIONS FEATURES

CGH40006P. 6 W, RF Power GaN HEMT APPLICATIONS FEATURES Rev 3. May 15 CGHP W, RF Power GaN HEMT Cree s CGHP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHP, operating from a volt rail, offers a general purpose, broadband

More information

Data Sheet AMMC GHz Output 2 Active Frequency Multiplier. Description. Features. Applications

Data Sheet AMMC GHz Output 2 Active Frequency Multiplier. Description. Features. Applications AMMC-1 GHz Output Active Frequency Multiplier Data Sheet Chip Size: x µm ( x mils) Chip Size Tolerance: ± µm (±. mils) Chip Thickness: ± µm ( ±. mils) Pad Dimensions: 1 x µm (x3 ±. mils) Description Avago

More information

Product Data Sheet August 5, 2008

Product Data Sheet August 5, 2008 TriQuint Recommends the TGA4516 be used for New Designs 33-36 GHz 2W Power Amplifier Key Features 0.25 um phemt Technology 17 db Nominal Gain 31 dbm Pout @ P1dB, Psat 33dBm @ 6V, 34dBm @7V Bias 6-7V @

More information

CHA F RoHS COMPLIANT

CHA F RoHS COMPLIANT Pout (dbm) & PAE(%) & Gain(dB) RoHS COMPLIANT GaAs Monolithic Microwave IC Description The is a monolithic two-stage GaAs medium power amplifier designed for X-band applications. The MPA provides typically

More information

On pulsed RF measurements

On pulsed RF measurements On pulsed RF measurements Mario Weiß, Sébastien Fregonese, Marco Santorelli, Amit Kumar Sahoo, Cristell Maneux and Thomas Zimmer Laboratoire IMS, CNRS - UMR 5218, Université de Bordeaux 1, Cours de la

More information

T1G FS 30W, 28V, DC 6 GHz, GaN RF Power Transistor

T1G FS 30W, 28V, DC 6 GHz, GaN RF Power Transistor Applications Military radar Civilian radar Professional and military radio communications Test instrumentation Wideband or narrowband amplifiers Jammers Product Features Frequency: DC to 6 GHz Output Power

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV4PP W, 5 V, GaN HEMT Cree s CGHV4PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV4PP, operating from a 5 volt rail, offers a general purpose, broadband solution

More information

17-26GHz Medium Power Amplifier. GaAs Monolithic Microwave IC

17-26GHz Medium Power Amplifier. GaAs Monolithic Microwave IC Description The CHA5050-99F is a four stage monolithic MPA that provides typically 25.5dBm of output power associated to 20% of power added efficiency at 3dB gain compression. It is designed for a wide

More information

2N7606U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, N-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

2N7606U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, N-CHANNEL TECHNOLOGY. Absolute Maximum Ratings PD-973B RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-.5) Product Summary Part Number Radiation Level RDS(on) ID IRHLNJ7734 K Rads (Si).35Ω 22A* IRHLNJ7334 3K Rads (Si).35Ω 22A* 2N766U3

More information

GaN-HEMT VSWR Ruggedness and Amplifier Protection

GaN-HEMT VSWR Ruggedness and Amplifier Protection GaN-HEMT VSWR Ruggedness and Amplifier Protection Microwave Technology and Techniques Workshop 2010 10-12 May 2010 ESA-ESTEC, Noordwijk, The Netherlands O. Bengtsson (1), G. van der Bent (2), M. Rudolph

More information

Ceramic Packaged GaAs Power phemt DC-12 GHz

Ceramic Packaged GaAs Power phemt DC-12 GHz Ceramic Packaged GaAs Power phemt DC-12 GHz DESCRIPTION AMCOM s is a discrete GaAs phemt that has a total gate width of 1.mm. It is in a ceramic BH package for operating up to 12 GHz. The BH package has

More information

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet HMMC-12 DC 5 GHz Variable Attenuator Data Sheet Description The HMMC-12 is a monolithic, voltage variable, GaAs IC attenuator that operates from DC to 5 GHz. It is fabricated using MWTC s MMICB process

More information

= 25 C) of Demonstration Amplifier. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units. 43 dbm

= 25 C) of Demonstration Amplifier. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units. 43 dbm Rev 3.1 - June 2015 CGH25120F 120 W, 2300-2700 MHz, GaN HEMT for WiMAX and LTE Cree s CGH25120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency,

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

60-W, GHz Push-Pull Amplifier for IMT-2000 Base Station Application using the FLL600IQ-2C GaAs FET

60-W, GHz Push-Pull Amplifier for IMT-2000 Base Station Application using the FLL600IQ-2C GaAs FET 60-W, 2.11 2.17 GHz Push-Pull Amplifier for IMT-2000 Base Station Application using the FLL600IQ-2C GaAs FET FEATURES Targeted WCDMA ACPR at 6 W Average Over 60 Watts P out over entire band High gain Easy

More information

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045P & CG2H40045F

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045P & CG2H40045F Rev 0.0 - May 2017 CG2H40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CG2H40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40045, operating from a 28 volt

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV42PP 2 W, 5 V, GaN HEMT Cree s CGHV42PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV42PP, operating from a 5 volt rail, offers a general purpose, broadband

More information

IRHF57133SE THRU-HOLE (TO-39) REF: MIL-PRF-19500/706. Absolute Maximum Ratings

IRHF57133SE THRU-HOLE (TO-39) REF: MIL-PRF-19500/706. Absolute Maximum Ratings PD - 94334B RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-39) IRHF5733SE JANSR2N7497T2 3V, N-CHANNEL REF: MIL-PRF-95/76 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID QPL Part Number

More information

MMA D 30KHz-50GHz Traveling Wave Amplifier With Output Power Detector Preliminary Data Sheet

MMA D 30KHz-50GHz Traveling Wave Amplifier With Output Power Detector Preliminary Data Sheet Features: Frequency Range: 30KHz 50 GHz P1dB: +22 dbm Vout: 7V p-p @50Ω Gain: 15.5 db Vdd =7 V Ids = 200 ma Input and Output Fully Matched to 50 Ω On-Chip Output Power Voltage Detector Die Size 2.35mm

More information

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications AMMC-6333 18 33 GHz.2 W Driver Amplifier Data Sheet Chip Size: x 13 m (1 x 51 mils) Chip Size Tolerance: ± 1 m (±.4 mils) Chip Thickness: 1 ± 1 m (4 ±.4 mils) Pad Dimensions: 1 x 1 m (4 x 4 ±.4 mils) Description

More information

CHA5294 RoHS COMPLIANT

CHA5294 RoHS COMPLIANT 30-40GHz Medium Power Amplifier GaAs Monolithic Microwave IC CHA5294 RoHS COMPLIANT Description The CHA5294 is a high gain four-stage monolithic medium power amplifier. It is designed for a wide range

More information

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

High-Efficiency L-Band 200-W GaN HEMT for Space Applications INFOCOMMUNICATIONS High-Efficiency L-Band 200-W GaN HEMT for Space Applications Ken OSAWA*, Hiroyuki YOSHIKOSHI, Atsushi NITTA, Tsuneyuki TANAKA, Eizo MITANI, and Tomio SATOH ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

80-W, GHz Push-Pull Amplifier for IMT-2000 Base Station Application Using the FLL800IQ-2C GaAs FET

80-W, GHz Push-Pull Amplifier for IMT-2000 Base Station Application Using the FLL800IQ-2C GaAs FET 80-W, 2.11 2.17 GHz Push-Pull Amplifier for IMT-2000 Base Station Application Using the FLL800IQ-2C GaAs FET FEATURES Targeted WCDMA ACPR at 8W Average Pout Over 80 Watts P out over entire band High gain

More information

CMPA1D1E025F. 25 W, GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features.

CMPA1D1E025F. 25 W, GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. CMPA1D1E025F 25 W, 13.75-14.5 GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier Cree s CMPA1D1E025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated

More information

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings PD - 94294C RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) IRHNJ5733SE JANSR2N7485U3 3V, N-CHANNEL REF: MIL-PRF-95/74 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID QPL Part

More information

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications AMMC - 518-2 GHz Amplifier Data Sheet Chip Size: 92 x 92 µm (.2 x.2 mils) Chip Size Tolerance: ± 1µm (±.4 mils) Chip Thickness: 1 ± 1µm (4 ±.4 mils) Pad Dimensions: 8 x 8 µm (.1 x.1 mils or larger) Description

More information

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features.

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features. ATF-58143 Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package Data Sheet Description Avago Technologies ATF-58143 is a high dynamic range, low noise E-PHEMT housed in a 4-lead

More information

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P CGHV1425 25 W, 12-14 MHz, GaN HEMT for L-Band Radar Systems Cree s CGHV1425 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and

More information

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC CHA8611-99F GaN Monolithic Microwave IC Description V+ The CHA8611-99F is a two stage High Power Amplifier operating between 8.5 and 11GHz and providing typically 18W of saturated output power and 43%

More information

Agilent Technologies Gli analizzatori di reti della serie-x

Agilent Technologies Gli analizzatori di reti della serie-x Agilent Technologies Gli analizzatori di reti della serie-x Luigi Fratini 1 Introducing the PNA-X Performance Network Analyzer For Active Device Test 500 GHz & beyond! 325 GHz 110 GHz 67 GHz 50 GHz 43.5

More information

IRHNJ V, N-CHANNEL POWER MOSFET SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/703. Absolute Maximum Ratings. Product Summary

IRHNJ V, N-CHANNEL POWER MOSFET SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/703. Absolute Maximum Ratings. Product Summary PD-93754G RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) Product Summary Part Number Radiation Level RDS(on) ID QPL Part Number IRHNJ573 K Rads (Si).6Ω 22A* JANSR2N748U3 IRHNJ533 3K Rads (Si).6Ω

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

6-18 GHz High Power Amplifier TGA9092-SCC

6-18 GHz High Power Amplifier TGA9092-SCC 6-18 GHz High Power Amplifier Key Features and Performance Dual Channel Power Amplifier 0.25um phemt Technology 6-18 GHz Frequency Range 2.8 W/Channel Midband Pout 5.6 W Pout Combined 24 db Nominal Gain

More information

Gallium Nitride MMIC Power Amplifier

Gallium Nitride MMIC Power Amplifier Gallium Nitride MMIC Power Amplifier August 2015 Rev 4 DESCRIPTION AMCOM s is an ultra-broadband GaN MMIC power amplifier. It has 21dB gain, and >41dBm output power over the 0.03 to 6GHz band. This MMIC

More information

2N7624U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, P-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

2N7624U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, P-CHANNEL TECHNOLOGY. Absolute Maximum Ratings PD-9732 RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-.5) 2N7624U3 IRHLNJ79734 6V, P-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) ID IRHLNJ79734 K Rads (Si).72Ω

More information

VGS = 4.5V, TC = 25 C Continuous Drain Current 2.6 A

VGS = 4.5V, TC = 25 C Continuous Drain Current 2.6 A PD-9726A RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (LCC-28) Product Summary Part Number Radiation Level RDS(on) ID IRHLQ7724 K Rads (Si).Ω 2.6A IRHLQ7324 3K Rads (Si).Ω 2.6A International

More information

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P CGHV1425 25 W, 12-14 MHz, GaN HEMT for L-Band Radar Systems Cree s CGHV1425 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and

More information