High-resolution Junction Photo-voltage Mapping of Sheet Resistance and Leakage Current Variations with ms-timescale Annealing Methods

Size: px
Start display at page:

Download "High-resolution Junction Photo-voltage Mapping of Sheet Resistance and Leakage Current Variations with ms-timescale Annealing Methods"

Transcription

1 High-resolution Junction Photo-voltage Mapping of Sheet Resistance and Leakage Current Variations with ms-timescale Annealing Methods Vladimir Faifer a, Michael Current b, N. Ohno c, Jeffri Halim a, Jason Lu a a Frontier Semiconductor,199 River Oaks Pkwy, San Jose, CA USA b Current Scientific, 179 Comstock Way, San Jose, CA 9514 USA c Frontier Scientific Japan, Noborito 679-4, Kawasaki, JAPAN A non-contact method for measurement of sheet resistance and leakage current (RsL) for ultra-shallow junction characterization is described where high-density (30,000 pixel) sheet resistance maps provide detailed evaluation of local and global variations of dopant activation arising from implant and anneal conditions. Various examples of RTP-spike, flash and laser anneals and new low-dose implant results are discussed. Introduction The needs of advanced ultra-shallow junction (USJ) technology, which uses lowenergy ( 00 ev/dopant) implants and millisecond anneals, has encouraged the development of non-contact junction monitoring metrology. Junction photo-voltage (JPV) measurements of carrier spreading and recombination in p-n junctions provide a non-contact method for evaluation of sheet resistance (Rs) and leakage current (Io) [1,]. The range of Rs measurements span implant doses from threshold adjust ( ions/cm ) to source-drain doping ( ions/cm ), including accurate evaluations of shallowextension ( 10 nm) junctions in halo/well profiles [3]. Leakage current densities, including the effects of carrier recombination and trap-assisted tunneling, can be obtained over a dynamic range of 5 orders of magnitude [3,4]. The analysis of JPV measurements is based on rigorous solutions of a onedimensional Poisson equation governing the absorbtion of light and creation of carrier pairs and by integrating the three-dimensional continuity equations for carrier spreading over vertical spatial coordinates perpendicular to the wafer surface [1]. Excellent correlation of the contact-less RsL technique with contact four-point probe (4PP) measurements was demonstrated for deep (>50 nm) p-n junctions with low-leakage currents []. In the case of USJs formed in heavily-doped regions, e.g., halo or well, no correlation between RsL and 4PP measurements was observed due to probe penetration damage and high p-n junction leakage current [,4]. The analysis methods of RsL measurements has been independently verified and analyzed in detail by analytical modeling and numerical simulation [5]. The advantages of the RsL technique for monitoring of USJs formed with low-energy implants and millisecond anneal and by lowtemperature CVD have been demonstrated [6]. In this work, we will explore the highresolution RsL capabilities for monitoring of micro and global non-uniformities related to implant and annealing process.

2 Measurement Background The basis of the RsL measurement is to use photo excitation of carriers in the p-n junction and wafer substrate and to monitor, in a spatially resolved manner, the JPV signals inside and outside the illumination area, when absorbtion of modulated light flux, Φ (t)= Φ 0 (1-cos(πft)), creates electron hole pairs in the semiconductor material. Two electrodes, a circular transparent electrode (1) with diameter r 0 at the center of the probe and second round arc conducting electrode () subtending an angleβ and coaxial with the first electrode a small distance away, are used to measure JPV voltages V 1 and V (Fig. 1) [1]. (a) Modulated Light Beam V 1 V 1 Junction P+ h Depletion Substrate N e Spreading (b) 1 r 1 r 0? r Figure 1. (a) Photo-excitation and carrier drift with a modulated light source and two capacitor electrodes for monitoring the induced junction photo-voltage in a spatially resolved manner; (b) electrode configuration. The JPV voltages, V 1 and V, under low-level light excitation are: q (1 R) Φ 0RS V1 = η kr k [ 1 I ( kr ) K ( )] 0 (1) (1 R) Φ 0βRS V = qη I1( kr0 )[ r1 K1( kr1 ) r K1( kr )] () πk r 0 k = R G i πfr C (3) S p n + S p n where I 0, I 1, K 0 and K 1 are modified Bessel functions, Φ 0 the incident photon flux density modulated at frequency f, R the reflectivity, η the quantum efficiency, R S, G p-n, C p-n the p-n junction sheet resistance, capacitance and conductance [1,5].

3 By measuring the JPV signals at the two electrodes with different light modulation frequencies, calibrated by with reference to JPV measurements on a wafer with a deep p-n junction with known sheet resistance and low-leakage, the sheet resistance, R s, conductance G p-n and capacitance of the p-n junction, C p-n can be simultaneously determined using measured voltages V 1 and V and Eqs. (1) and (). The measurement sequence is to first analyze V 1 and V under high light modulation frequencies, where R s xc p-n, in Eq. 3 is the dominant term in the solution. This allows for a direct determination of the USJ sheet resistance, R s, independent of junction depth or leakage current effects. The analysis is then repeated for a lower light modulation frequency, where G p-n xr s, is a more important factor. Since R s is already determined at this point, G p-n (and J RsL ) can be determined directly. For high resolution measurements (>1,000 pixels/wafer), a focused laser beam with a diameter < 0.1 mm is used. In this case, the spatial resolution is mainly determined by the diameter of light beam. Collecting Rs data over a test wafer junction, with pixel counts from 1,000 to up to 70,000/ wafer, provides detailed evaluation of local and global dopant activation uniformity for various implant and anneal conditions. Sub-millimeter spatial resolution with these techniques has been demonstrated with scanned laser annealed test structures. High Density Rs Mapping Process effects which have been clearly identified with RsL mapping include: implant dose variations due to insufficient overlap of beam scan paths, variations in local heating during spike-rtp ( 1050 C/ 1 s) and ms-anneals ( 1350 C/ 1 ms) related to heater lamp signatures, laser scan paths (Fig. ) and pulse-to-pulse laser power variations (Fig. 3). Figure. A 973-point Rs map and 11-point Rs line scan along a 45 o diameter across a 300 mm wafer implanted with 0. kev B and annealed with a scanned CW-laser. Laser beam scanning traces resulted in 3% Rs variations over the wafer.

4 Figure point Rs (left) and Io (right) maps for a 0.5 kev B implant annealed with a step-and-pulse laser on a 00 mm wafer. Regions of high Rs and Io are indicated with the darker (blue) colors. Laser pulse-to-pulse power variations resulted in a global 5% variation in Rs around an average of 996 Ohm/square and Io values from <10-7 to x10-5 A/cm [7]. High-resolution (>1,000 pixels/wafer) are essential for local evaluation of densely patterned local annealing conditions which can be achieved by scanned laser annealing (Fig. 4). The use of a high-resolution RsL probe with a suitably designed laser scan pattern can yield process data on dopant activation for hundreds of separate anneal conditions on a single wafer. Such capabilities are vital to achieve rapid process learning for process proto-typing and analysis of in-line problems. Figure 4. High-resolution (30,000 pts/ 300 mm wafer) Rs map of a locally-patterned, scanned-laser-annealed wafer for rapid proto-typing of multiple process conditions.

5 Flash annealers, which heat the entire wafer surface to >1300 C with sub-ms pulses of light from various arc-lamp sources, rely on a highly-uniform distribution of light power over the wafer surface (just as scanned and pulsed laser annealers require tightly controlled laser beam energies and optics). With high-resolution RsL mapping, local variations in dopant activation can be evaluated with mm-scale resolution over 300 mmd areas. In the example shown in Fig. 5, a flash annealer that employed a bank of linear arc lamps resulted in a variety of dopant activation variations; local high (bright) and low (dark) sheet resistance near the wafer edges and a subtle but clearly discernable stripping pattern over the wafer which mirrors the lamp array. Figure 5. High-resolution (30,000 pts/ 300 mm wafer) Rs maps of a flash-annealed wafer (bottom map after 90 o rotation of wafer shown on the top) with a global Rs uniformity of 10.6% and an average of 3,468 Ohms/square. The stripping pattern across the wafer reflects the array of linear arc lamps used in this tool.

6 RTP spike annealers, which anneal wafers at 1050 C for peak temperature exposures of 1 s, often show Rs patterns that reflect the combined effects of multiple halogen lamps controlled in rings centered on a rotating wafer. High-resolution Rs mapping provides data sufficient to allow tuning of individual lamp-array rings. Figure 6. High-resolution (30,000 pts/ 300 mm wafer) Rs maps of wafers annealed in two different RTP-spike annealers using circular arrays of lamps and wafer rotation during annealing. Rs uniformities are 4.8% (top) and.56% (bottom). Although the focus of most high-performance logic processes is optimization of USJ with doping levels of >10 0 dopants/cm 3 and junction depths <15 nm, new areas interest are also developing for high-breakdown voltage circuits for automotive controllers and deep-well optical sensors which call for deep junctions and much lower doping levels than USJs. In this regime of deep and lightly-doped junctions, RsL analysis, with light sources chosen with deep enough penetration to excite carriers throughout the junction and depletion region, provides a unique probe for dopant activation beyond the reach of contact probes and conventional optical analysis. A submm pixel resolution Rs map for a 90 kev B + implanted low-dose (4x10 11 B/cm ) junction (Fig. 7) shows fine details of the local over-doping (dark bands) resulting from the overlap of beam paths in an x-y scanned beam over the wafer.

7 Figure 7. A high-resolution (30,000 pts/150 mmd, 0.6 mm /pixel) Rs map of a 90 kev B +, 4x10 11 B/cm implanted wafer with an x-y scanned ion beam. The average Rs is 57,671 Ohms/square with a uniformity of.4% Summary High resolution ( 30,000 pixels per wafer) Rs maps derived from RsL analysis of JPV signals, coupled with spatial analysis of junction leakage current variations, provides detailed insight into across-wafer process variations arising from implant and annealing with sub-mm resolution. References 1. V.N. Faifer, M.I. Current, D.K. Schroder, Appl. Phys. Lett (006).. V.N. Faifer, M.I. Current, T.M.H. Wong, V.V. Souchkov, J. Vac. Sci. Technol. B4, (006). 3. V.N. Faifer, D.K. Schroder, M.I. Current, T. Clarysse, P.J. Timins, T. Zangerle, W. Vandervorst, T.M.H. Wong, A. Moussa, W. Lerch, S. Paul, D. Bolze, J. Halim, J. Vac. Sci. Technol. B5(5) (007). 4. V.N. Faifer, M.I. Current, D.K. Schroder, T. Clarysse, and W. Vandervorst, in Analytical and Diagnostic Techniques for Semiconductor Materials, Devices, and Processes 7, ECS Transactions 11, (007). 5. T. Clarysse, A. Moussa, T. Zangerle, F. Schaus, W. Vandervorst, V.N. Faifer, M.I. Current, J. Vac. Sci. Technol. B6, (008). 6. T. Clarysse, A. Moussa, F. Leys, R. Loo, W. Vandervorst, M.C. Benjamin, R.J. Hillard, V.N. Faifer, M.I. Current, R. Lin, D.H. Petersen, Mater. Res. Soc. Symp. Proc C05-07 (006). 7. M.I. Current, V.N. Faifer, T.M.H. Wong, T. Nguyen, A. Koo, Proc. in Ion Implantation Technology-006, AIP Proc. CP (006).

Received 16 November 2001; received in revised form 19 October The review of this paper was arranged by Prof. C. Hunt

Received 16 November 2001; received in revised form 19 October The review of this paper was arranged by Prof. C. Hunt Solid-State Electronics 49 (2005) 769 773 www.elsevier.com/locate/sse Ion implantation dose high-resolution monitoring in Si wafers using laser infrared photothermal radiometry with lock-in common-mode-rejection

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET)

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) Zul Atfyi Fauzan M. N., Ismail Saad and Razali Ismail Faculty of Electrical Engineering, Universiti

More information

Simulation and test of 3D silicon radiation detectors

Simulation and test of 3D silicon radiation detectors Simulation and test of 3D silicon radiation detectors C.Fleta 1, D. Pennicard 1, R. Bates 1, C. Parkes 1, G. Pellegrini 2, M. Lozano 2, V. Wright 3, M. Boscardin 4, G.-F. Dalla Betta 4, C. Piemonte 4,

More information

Title detector with operating temperature.

Title detector with operating temperature. Title Radiation measurements by a detector with operating temperature cryogen Kanno, Ikuo; Yoshihara, Fumiki; Nou Author(s) Osamu; Murase, Yasuhiro; Nakamura, Masaki Citation REVIEW OF SCIENTIFIC INSTRUMENTS

More information

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in The two-dimensional systems embedded in modulation-doped heterostructures are a very interesting and actual research field. The FIB implantation technique can be successfully used to fabricate using these

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Low-frequency noises in GaAs MESFET s currents associated with substrate conductivity and channel-substrate junction

Low-frequency noises in GaAs MESFET s currents associated with substrate conductivity and channel-substrate junction Article Optoelectronics April 2011 Vol.56 No.12: 1267 1271 doi: 10.1007/s11434-010-4148-6 SPECIAL TOPICS: Low-frequency noises in GaAs MESFET s currents associated with substrate conductivity and channel-substrate

More information

1 Semiconductor-Photon Interaction

1 Semiconductor-Photon Interaction 1 SEMICONDUCTOR-PHOTON INTERACTION 1 1 Semiconductor-Photon Interaction Absorption: photo-detectors, solar cells, radiation sensors. Radiative transitions: light emitting diodes, displays. Stimulated emission:

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows SXUV Responsivity Stability It is known that the UV photon exposure induced instability of common silicon photodiodes is

More information

Characterisation of Photovoltaic Materials and Cells

Characterisation of Photovoltaic Materials and Cells Standard Measurement Services and Prices No. Measurement Description Reference 1 Large area, 0.35-sun biased spectral response (SR) 2 Determination of linearity of spectral response with respect to irradiance

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy Yasuhiko Terada, Shoji Yoshida, Osamu Takeuchi, and Hidemi Shigekawa*

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Integrated High Speed VCSELs for Bi-Directional Optical Interconnects

Integrated High Speed VCSELs for Bi-Directional Optical Interconnects Integrated High Speed VCSELs for Bi-Directional Optical Interconnects Volodymyr Lysak, Ki Soo Chang, Y ong Tak Lee (GIST, 1, Oryong-dong, Buk-gu, Gwangju 500-712, Korea, T el: +82-62-970-3129, Fax: +82-62-970-3128,

More information

Microscopic Basis for the Mechanism of Carrier Dynamics in an Operating p-n Junction Examined by using Light-Modulated Scanning Tunneling Spectroscopy

Microscopic Basis for the Mechanism of Carrier Dynamics in an Operating p-n Junction Examined by using Light-Modulated Scanning Tunneling Spectroscopy Microscopic Basis for the Mechanism of Carrier Dynamics in an Operating p-n Junction Examined by using Light-Modulated Scanning Tunneling Spectroscopy Shoji Yoshida, Yuya Kanitani, Ryuji Oshima, Yoshitaka

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

Digital micro-mirror device based modulator for microscope illumination

Digital micro-mirror device based modulator for microscope illumination Available online at www.sciencedirect.com Physics Procedia 002 (2009) 000 000 87 91 www.elsevier.com/locate/procedia Frontier Research in Nanoscale Science and Technology Digital micro-mirror device based

More information

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Jan Bogaerts imec

Jan Bogaerts imec imec 2007 1 Radiometric Performance Enhancement of APS 3 rd Microelectronic Presentation Days, Estec, March 7-8, 2007 Outline Introduction Backside illuminated APS detector Approach CMOS APS (readout)

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

High-efficiency, high-speed VCSELs with deep oxidation layers

High-efficiency, high-speed VCSELs with deep oxidation layers Manuscript for Review High-efficiency, high-speed VCSELs with deep oxidation layers Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: Electronics

More information

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

Pattern Transfer CD-AFM. Resist Features on Poly. Poly Features on Oxide. Quate Group, Stanford University

Pattern Transfer CD-AFM. Resist Features on Poly. Poly Features on Oxide. Quate Group, Stanford University Resist Features on Poly Pattern Transfer Poly Features on Oxide CD-AFM The Critical Dimension AFM Boot -Shaped Tip Tip shape is optimized to sense topography on vertical surfaces Two-dimensional feedback

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

Application of CMOS sensors in radiation detection

Application of CMOS sensors in radiation detection Application of CMOS sensors in radiation detection S. Ashrafi Physics Faculty University of Tabriz 1 CMOS is a technology for making low power integrated circuits. CMOS Complementary Metal Oxide Semiconductor

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS. Copyright 2007 Crosslight Software Inc.

Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS. Copyright 2007 Crosslight Software Inc. Modeling Photonic Crystal Light Emitting Diode (PhCLED) Using APSYS Copyright 2007 Crosslight Software Inc. www.crosslight.com 1 2 Model Contents A PhCLED with DBR An InGaN PhCLED with guided multimodes

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Mechanis m Faliures. Group Leader Jepsy 1)Substrate Biasing 2) Minority Injection. Bob 1)Minority-Carrier Guard Rings

Mechanis m Faliures. Group Leader Jepsy 1)Substrate Biasing 2) Minority Injection. Bob 1)Minority-Carrier Guard Rings Mechanis m Faliures Group Leader Jepsy 1)Substrate Biasing 2) Minority Injection As im 1)Types Of Guard Rings Sandra 1)Parasitics 2)Field Plating Bob 1)Minority-Carrier Guard Rings Shawn 1)Parasitic Channel

More information

Development of the Pixelated Photon Detector. Using Silicon on Insulator Technology. for TOF-PET

Development of the Pixelated Photon Detector. Using Silicon on Insulator Technology. for TOF-PET July 24, 2015 Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET A.Koyama 1, K.Shimazoe 1, H.Takahashi 1, T. Orita 2, Y.Arai 3, I.Kurachi 3, T.Miyoshi 3, D.Nio

More information

Proposal of Novel Collector Structure for Thin-wafer IGBTs

Proposal of Novel Collector Structure for Thin-wafer IGBTs 12 Special Issue Recent R&D Activities of Power Devices for Hybrid ElectricVehicles Research Report Proposal of Novel Collector Structure for Thin-wafer IGBTs Takahide Sugiyama, Hiroyuki Ueda, Masayasu

More information

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s16/ecse

More information

Vertical Nanowall Array Covered Silicon Solar Cells

Vertical Nanowall Array Covered Silicon Solar Cells International Conference on Solid-State and Integrated Circuit (ICSIC ) IPCSIT vol. () () IACSIT Press, Singapore Vertical Nanowall Array Covered Silicon Solar Cells J. Wang, N. Singh, G. Q. Lo, and D.

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

arxiv: v1 [physics.ins-det] 21 Nov 2011

arxiv: v1 [physics.ins-det] 21 Nov 2011 arxiv:1111.491v1 [physics.ins-det] 21 Nov 211 Optimization of the Radiation Hardness of Silicon Pixel Sensors for High X-ray Doses using TCAD Simulations J. Schwandt a,, E. Fretwurst a, R. Klanner a, I.

More information

C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE

C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE Whether you require a simple C-V plotter to measure mobile ion contamination or an advanced system to measure multi-frequency C-V, I-V, TVS, or gate oxide

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology Active Pixel Sensors Fabricated in a Standard.18 um CMOS Technology Hui Tian, Xinqiao Liu, SukHwan Lim, Stuart Kleinfelder, and Abbas El Gamal Information Systems Laboratory, Stanford University Stanford,

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

A flexible compact readout circuit for SPAD arrays ABSTRACT Keywords: 1. INTRODUCTION 2. THE SPAD 2.1 Operation 7780C - 55

A flexible compact readout circuit for SPAD arrays ABSTRACT Keywords: 1. INTRODUCTION 2. THE SPAD 2.1 Operation 7780C - 55 A flexible compact readout circuit for SPAD arrays Danial Chitnis * and Steve Collins Department of Engineering Science University of Oxford Oxford England OX13PJ ABSTRACT A compact readout circuit that

More information

CCDS. Lesson I. Wednesday, August 29, 12

CCDS. Lesson I. Wednesday, August 29, 12 CCDS Lesson I CCD OPERATION The predecessor of the CCD was a device called the BUCKET BRIGADE DEVICE developed at the Phillips Research Labs The BBD was an analog delay line, made up of capacitors such

More information

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Sadia Monika Siddharth Rajan ECE, The Ohio State University Andrew Allerman, Michael

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications

Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications G. Pellegrini 1, M. Baselga 1, M. Carulla 1, V. Fadeyev 2, P. Fernández-Martínez 1, M. Fernández García

More information

Super High Vertical Resolution Non-Contact 3D Surface Profiler BW-S500/BW-D500 Series

Super High Vertical Resolution Non-Contact 3D Surface Profiler BW-S500/BW-D500 Series Super High Vertical Resolution Non-Contact 3D Surface Profiler BW-S500/BW-D500 Series Nikon's proprietary scanning-type optical interference measurement technology achieves 1pm* height resolution. * Height

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

A new Vertical JFET Technology for Harsh Radiation Applications

A new Vertical JFET Technology for Harsh Radiation Applications A New Vertical JFET Technology for Harsh Radiation Applications ISPS 2016 1 A new Vertical JFET Technology for Harsh Radiation Applications A Rad-Hard switch for the ATLAS Inner Tracker P. Fernández-Martínez,

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1 Efficient single photon detection from 500 nm to 5 μm wavelength: Supporting Information F. Marsili 1, F. Bellei 1, F. Najafi 1, A. E. Dane 1, E. A. Dauler 2, R. J. Molnar 2, K. K. Berggren 1* 1 Department

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Analysis and Optimization of PIN photodetectors for optical communication Cláudio Miguel Caramona Fernandes

Analysis and Optimization of PIN photodetectors for optical communication Cláudio Miguel Caramona Fernandes Analysis and Optimization of PIN photodetectors for optical communication Cláudio Miguel Caramona Fernandes Abstract 1 The analysis and optimization of photodetectors and their topologies are essential

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applied Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, 2009-06-05, 8-13, FB51 Allowed aids: Compendium Imaging Physics (handed out) Compendium Light Microscopy

More information

MICROVISON-ACTIVATED AUTOMATIC OPTICAL MANIPULATOR FOR MICROSCOPIC PARTICLES

MICROVISON-ACTIVATED AUTOMATIC OPTICAL MANIPULATOR FOR MICROSCOPIC PARTICLES MICROVISON-ACTIVATED AUTOMATIC OPTICAL MANIPULATOR FOR MICROSCOPIC PARTICLES Pei Yu Chiou 1, Aaron T. Ohta, Ming C. Wu 1 Department of Electrical Engineering, University of California at Los Angeles, California,

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Electrical Characterization

Electrical Characterization Listing and specification of characterization equipment at ISC Konstanz 30.05.2016 Electrical Characterization µw-pcd (Semilab) PV2000 (Semilab) - spatially resolved minority charge carrier lifetime -diffusion

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes

Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes Heinz-Christoph Neitzert *, Manuela Ferrara, Biagio DeVivo DIIIE, Università di Salerno, Via Ponte Don Melillo

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 Dummy Gate-Assisted n-mosfet Layout for a Radiation-Tolerant Integrated Circuit Min Su Lee and Hee Chul Lee Abstract A dummy gate-assisted

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Development of Solid-State Detector for X-ray Computed Tomography

Development of Solid-State Detector for X-ray Computed Tomography Proceedings of the Korea Nuclear Society Autumn Meeting Seoul, Korea, October 2001 Development of Solid-State Detector for X-ray Computed Tomography S.W Kwak 1), H.K Kim 1), Y. S Kim 1), S.C Jeon 1), G.

More information

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Jeffrey L. Guttman, John M. Fleischer, and Allen M. Cary Photon, Inc. 6860 Santa Teresa Blvd., San Jose,

More information

Semiconductor TCAD Tools

Semiconductor TCAD Tools Device Design Consideration for Nanoscale MOSFET Using Semiconductor TCAD Tools Teoh Chin Hong and Razali Ismail Department of Microelectronics and Computer Engineering, Universiti Teknologi Malaysia,

More information

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Indian Journal of Pure & Applied Physics Vol. 55, May 2017, pp. 363-367 Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Priyanka Goyal* & Gurjit Kaur

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

Vertical Cavity Surface Emitting Laser (VCSEL) Technology

Vertical Cavity Surface Emitting Laser (VCSEL) Technology Vertical Cavity Surface Emitting Laser (VCSEL) Technology Gary W. Weasel, Jr. (gww44@msstate.edu) ECE 6853, Section 01 Dr. Raymond Winton Abstract Vertical Cavity Surface Emitting Laser technology, typically

More information

Characterisation of Photovoltaic Materials and Cells

Characterisation of Photovoltaic Materials and Cells Standard Measurement Services and Prices Reference 1 Large area, 0.3-sun bias spectral response Wavelength measurement range: 300 1200 nm; Beam power monitoring and compensation; Measurement cell size:

More information

EE-527: MicroFabrication

EE-527: MicroFabrication EE-57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser x-rays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.212.11 Supplementary information Avalanche amplification of a single exciton in a semiconductor nanowire Gabriele Bulgarini, 1, Michael E. Reimer, 1, Moïra Hocevar, 1 Erik P.A.M. Bakkers,

More information

Silicon Sensor Developments for the CMS Tracker Upgrade

Silicon Sensor Developments for the CMS Tracker Upgrade Silicon Sensor Developments for the CMS Tracker Upgrade on behalf of the CMS tracker collaboration University of Hamburg, Germany E-mail: Joachim.Erfle@desy.de CMS started a campaign to identify the future

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C.

March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C. March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C. Wong Quantum and Optical Communications Group MIT Funded by: ARO MURI,

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Tiejun Xu, Jia Wang, Liqun Sun, Jiying Xu, Qian Tian Presented at the th International Conference on Electronic Materials

More information

Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging

Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging Zhuyi Wang, Weidong Cai, Mengwei Zhang and G.P. Li Department of Electrical

More information

SOLVIX ARC AND BIAS SERIES

SOLVIX ARC AND BIAS SERIES CATHODIC ARC DEPOSITION WITH PRECISE PROCESS CONTROL AND SUPERIOR FILM QUALITY Arc Units 60, 100, 210, and 400 A Bias Units 3 to 30 kw Regulation Modes Current, power, and voltage 2018 Advanced Energy

More information

Characterisation of a Novel Reverse-Biased PPD CMOS Image Sensor

Characterisation of a Novel Reverse-Biased PPD CMOS Image Sensor Characterisation of a Novel Reverse-Biased PPD CMOS Image Sensor Konstantin D. Stefanov, Andrew S. Clarke, James Ivory and Andrew D. Holland Centre for Electronic Imaging, The Open University, Walton Hall,

More information

RECENTLY, using near-field scanning optical

RECENTLY, using near-field scanning optical 1 2 1 2 Theoretical and Experimental Study of Near-Field Beam Properties of High Power Laser Diodes W. D. Herzog, G. Ulu, B. B. Goldberg, and G. H. Vander Rhodes, M. S. Ünlü L. Brovelli, C. Harder Abstract

More information

the need for an intensifier

the need for an intensifier * The LLLCCD : Low Light Imaging without the need for an intensifier Paul Jerram, Peter Pool, Ray Bell, David Burt, Steve Bowring, Simon Spencer, Mike Hazelwood, Ian Moody, Neil Catlett, Philip Heyes Marconi

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

Georgia Tech IEN EBL Facility NNIN Highlights 2014 External User Projects

Georgia Tech IEN EBL Facility NNIN Highlights 2014 External User Projects Georgia Tech IEN EBL Facility NNIN Highlights 2014 External User Projects Silicon based Photonic Crystal Devices Silicon based photonic crystal devices are ultra-small photonic devices that can confine

More information

Laser Beam Analysis Using Image Processing

Laser Beam Analysis Using Image Processing Journal of Computer Science 2 (): 09-3, 2006 ISSN 549-3636 Science Publications, 2006 Laser Beam Analysis Using Image Processing Yas A. Alsultanny Computer Science Department, Amman Arab University for

More information

Sensitive measurement of partial coherence using a pinhole array

Sensitive measurement of partial coherence using a pinhole array 1.3 Sensitive measurement of partial coherence using a pinhole array Paul Petruck 1, Rainer Riesenberg 1, Richard Kowarschik 2 1 Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07747 Jena,

More information