Analog to Digital Conversion

Size: px
Start display at page:

Download "Analog to Digital Conversion"

Transcription

1 Analog to Digital Conversion The MSP in the name of our microcontroller MSP430G2554 is abbreviation for Mixed Signal Processor. This means that our microcontroller can be used to handle both analog and digital signals. The analog signal is interfaced with the microcontroller via simple comparators or more complicated analog to digital converters (ADCs). In this lab we are going to introduce to you the ADC module, its design parameters and how to implement analog to digital conversion. Overview Analog to digital converters, as the name implies, are used to convert continuous analog signals to digital values. The transfer function of the ADC is shown in the figure below and also in its equation form. The analog input with a range between Vr- and Vr+ Volts appears on the horizontal axis while the output appears on the vertical axis. The thin line represents the transfer function that would give us an analog output that is proportional to the analog input while the bold stepped line is the transfer function of the actual ADC which would give us a digital output signal. As you can see on the horizontal axis, the input signal is divided into a number of small divisions and each division is represented by a discrete number. The number of divisions is given by the number of bits of the ADC. For example in the diagram we assumed a 10 bit ADC which means the digital output is ranging from 0 to = And the small horizontal division is therefore: (Vr+ - Vr-) /2 10 V. If the input analog signal drops below Vr- the output will be 0, similarly if the analog signal is above Vr+ then the output will be 1023.

2 ... ADC Result NADC (Digital) Vr- Vr+ Signal Input Vin (Analog) Fig 1. Ideal ADC transfer function NADC: Digital representation of sampled analog signal 1023: 2^(10)-1. This number defines the resolution of ADC VIN: Input signal voltage level VR- and VR+: Lower reference and Upper reference. These two values determine the range of input value that can be converted. How Successive Approximation ADC Works There are different workings of ADCs. The ADC we are using is called Successive Approximation (Register) ADC or SAR for short. A short hand block diagram is as shown below.

3 DAC = Digital-to-Analog converter EOC = end of conversion SAR = successive approximation register S/H = sample and hold circuit V in = input voltage V ref = reference voltage Fig2. SAR Block Diagram Briefly speaking, the ADC start with the MSB of SAR initialized to 1 and other bits cleared to 0. The DAC convert the SAR value to analog signal, therefore at this time the DAC output should be Vref/2. The input signal is sampled and hold and then compare with the DAC output through a comparator. If the DAC output exceed the sampled input voltage, the MSB will be reset; otherwise the MSB remains as 1. Then the second MSB is set and compared with the sample. The above procedure is repeated until all the bits are determined. After that, the result is saved in a specified register and the next sample is taken in. Mathematical expression for this procedure is: Let Vin = xvref, so x in [-1, 1] is the normalized input voltage. The objective is to approximately digitize x to an accuracy of 1/2 n. 1. Initial approximation x0 = ith approximation xi = xi-1 - s(xi-1 - x)/2 i. where, s(x) is the signum-function(sgn(x)) (+1 for x 0, -1 for x < 0). It follows using mathematical induction that xn - x 1/2 n.

4 Design Considerations To choose an ADC and its parameters for your design, here are some basic parameters you need to consider: 1. Input Range Input range is the range of analog input your ADC can handle. In most cases we would like to maximize the use of this range to give us finer representation of our analog input by manually setup our upper and lower reference. For example, if you know your signal is in range of 1.5 to 3V, using a reference of 0 to 3.5V will waste a lot of your ADC resolution. The references can be selected from either internal voltage references or from an external supply depending on the mixed signal microcontroller you are using. 2. Signal to Noise Ratio (SNR) Signal to noise ratio is a measure of the percentage actual signal with the noise imposed on the signal. When selecting your ADC, you do not just go for the highest resolution. For example if you have an analog signal which goes from 0 to 3V and a 10 bit ADC then a distinct digital output will be given when your analog signal differs by (3-0)/1024 = 3mV. Think about the case that you have noise super imposed on your signal that in average is 30mV. Then your output values differ by 10 may simply come from noise but not the signal you are converting. Necessary conditioning circuitry is needed to reduce noise level or improve your SNR. 3. Timing Constrains 4. Non ideal ADC There is a limit on how fast you can sample your analog input and convert to digital signal. In the case of SAR, this timing constraint is dependent on the ADC circuitry s time constant. We will give a detailed example in the next section when discussing the ADC module in G2553. Ideally ADC will behave as shown in Fig 1. Real world ADCs can deviates from this ideal behavior. For example, you may have an offset error that the best fit line of your transfer function missing the lower reference. These non ideal parameters can be found in the device specific data sheet. We are not going to cover this in detail, but we recommend reading the text book s section as a supplement.

5 MSP430G2553 ADC Module ADC10 The ADC Module of MSP430G2553 is called ADC10. It is a 10 bit SAR ADC which supports 8 external input channels and 4 internal channels. There are 4 different internal voltage levels that can be used for ADC reference selects: Vss = 0V (ground), 1.5V, 2.5V and Vcc. You can supply external references as well. The block diagram, grouped by functionality can be seen in Fig 3. Here we provide a basic summary for setting up an ADC. Make sure ENC bit is 0 when you modify ADC setups. 1) Input Select (ADC10CTL1, ADC10AE0) a. Decide which channel or channels of input do you want b. Set the pin as analog input pin by setting INCHx bit in ADC10CTL1 and enable corresponding bits in ADC10AE0 register. c. ADC10AE0 register will configure the pin to be analog port and overwrites pin select (PxSEL) and pin direction (PxDIR) d. Select conversion mode via CONSEQx bit in ADC10CTL1. You can choose from: single-channel-single-conversion, sequence-of-channels, repeatsingle-channel and repeat-sequence-of channels. In this lab we will be using repeat-single-chanel. 2) Reference Setup (ADC10CTL0) a. Based on your signal, choose what upper and lower reference you want for your ADC. b. This is done by using SREFx bits in ADC10CTL0: c. If you select to use internal reference, make sure you turn the reference on by setting REFON bits. d. REFBURST can be set to turn off reference buffer when not in use e. You can also output your ADC references via REFOUT bit.

6 Reference Setup ADC Clock S/H Setup Input Select Output Handling

7 3) ADC Clock (ADC10CTL1) a. ADC Clock times the sample and hold and conversion of ADC. b. It can be selected from the internal oscillator (ADC10OSC, around 5MHz), ACLK, MCLK or SMCLK. c. Clock select is done via ADC10SSELx and ADC10DIVx bits in ADC10CTL1 register 4) Sample and Hold Interval (ADC10CTL0, ADC10CTL1) a. At what interval you want to sample and covert your signal (SAMPCON) b. Timing of sample and hold interval can be done via Timer outputs (TA0, TA1) or by software (ADC10SC). This gives you SHI (Sample and Hold Interval). c. SAMPCON is set when it sees a rising edge of SHI. d. SAMPCON needs to be on for long enough time for sampling. SAMPCON should be ON for μs if you use a signal generator and 30.2 μs if you are using the temperature sensor. e. This is found via the following equation: For our microcontroller we use: In the case of signal generator, Rs = 50 Ω. After plugging in the value we find tsample > μs Therefore, SAMPCON needs to be high for at least 0.622μs = 0.2μs μs for sampling to take place properly. Here 0.2μs is the time period of the ADC10CLK which is connected to ADC10OSC in the experiments of this lab. ADC10OSC is running at 5 MHz, 1/(5 MHz) = 0.2μs.

8 f. SAMPCON time period is gotten by multiplying ADC10CLK period by the ADC10SHTx multiplier. g. Normally the sampling time is set by the SHI time period. However we can set the ADC to sample as soon as it it done with the previous sampe and conversion by setting the MSC bit. 5) Output Handling (ADC10MEM, ADC10CTL1, ADC10DTC0 and 1, ADC10SA) a. The result of conversion is stored in ADC10MEM b. The result of ADC can be stored in either straight binary format or 2s compliment format by setting ADC10DF bit in ADC10CTL1 c. (Optional) Set up the ADC10IE interrupt if needed. After all the setup has been put in place, remember to turn on the ADC (ADC10ON). To start conversion there has to be a raising edge on the SHI signal, this can be accomplished by toggling ENC from zero to one after the ADC has been turned enable conversion by setting. In single conversion mode (single-channel-single-conversion and repeated-single-channel-mode), ENC need to be toggled (in an ISR) every time if you want the next conversion. Experiment 1 Repeat Single Channel Mode, Individually Triggered In Experiment 1 we are going to apply analog to digital conversion on a 500Hz sine wave (originating from a signal generator) which varies between 0 to 3.5V, and store two periods of this sine wave into an array of 50 words. First select your input port. Let us use Pin 2 or GPIO P1.0 (ADC s A0 channel) select INCH_0 enable BIT0 of ADC10AE0 for analog port In order to accomplish this conversion we need to setup ADC reference Vr- = 0 and Vr+ = Vcc. use SREF_0 to select Vr+ = Vcc, Vr- = Vss Use internal oscillator for ADC clock.

9 use ADC10SSEL_0 to select ADC10OSC as clock source ADC10OSC is around 5MHz. tsample > 0.422μs if we use a signal generator with a source resistance of 50 ohm. By default ADC10SHTx is set to 00 which corresponds to sample and hold time of 4 times the ADC10CLK period = 4/5 μs = 0.8μs > 0.422μs. Therefore timing constraint for sampling is satisfied. Set conversion mode to be in Repeat Single Channel mode. use CONSEQ_2 to select repeated single channel mode The sample should be triggered on Timer A0 output. We want 25 samples per sine wave period. use SHS_2 to source SHI from TA0 Set Timer A0 clock to SMCLK at 1MHz in up mode. Set TA0 output in toggle mode which gives a period of TTA0OUT = 2 x TACCR0 x TTACLK at Tiner A0 output. TTA0OUT = 2 x TACCR0 x TTACLK > TADC10CLK + tsample + 13TADC10CLK = 0.20μs +.422μs + 13(0.20μs) = 3.2μs To have 25 samples per period, TA0 output period should be (our signal period)/25 = 80 μs2 x TACCR0 x TTACLK = 80 μs > 3.2μs, therefore timing constraint is satisfied. This gives: TACCR0 = 40 Set ADC10 interrupt: set ADC10IE Now check if all the settings and Enable ADC10 by setting ADC10ON Set ENC bit to enable conversion Enable Global Interrupts.

10 Inside the interrupt service routine read the sampled value of the signal from the register ADC10MEM and store the sample result in an array of length 50 samples. Increase your array index, when the array index reaches 50 set the array index to 0 and start saving in the array memory from the beginning again. Set a break point at the line where you reset the index to 0. Observe the digitized array stored in the memory when your program reaches this break point. Plot the array in CCS and include a screenshot in your lab report. Experiment 2 Temperature Sensor There is an on-chip temperature sensor in the G2553. The temperature sensor is connected to an input channel of the ADC by selecting INCH_10. select INCH_10 for ADC input When you select the temperature sensor channel, the on-chip reference for the temperature sensor automatically turns on and gives you a Vref+ = 1.5V. Use this Vref+ and Vref- = 0 as your ADC range. You do not need to setup Vref+ = 1.5V for temperature sensor but you need to enable the reference by setting the REFON bits. Based on the output resistance of the temperature sensor use tsample = 30μs. Modify your code in Experiment 1 to satisfy the temperature sensor constraints. Use 4 ADC10CLK with a clock divider (ADC10DIV) value of 8. Set Sample Timer divider (ADC10SHTx) to be divided by 64. Use the same settings for TimerA that you used in Experiment 1. Collect 50 sampled values of the temperature just as in Experiment 1. Show in your lab report that the above settings satisfy both of the timing constrains introduced in Experiment 1. Is the timing constrain satisfied when ADC10DIV is set to divided by 2? If everything is setup correctly, your sampled data should have a fluctuation of the order of 20 or less. Explain how you have setup your ADC to match the time constraints. Also include a screenshot of the plot of 50 of your temperature sensor sampled readings and show the highest and lowest values on your graph. The datasheet gives the following relationship between the temperatures in degree Celsius vs the sampled value of the temperature:

11 Export the sampled temperature data from the CCS debugger and use MATLAB to convert your data into Celsius degrees. Notice that the temperature sensor has an offset that may deviate from the equation shown above, so your result might not look reasonable. Short Answer Questions 1. What other conversion modes are supported in this microcontroller? Briefly describe each of them. 2. The temperature can now be easily converted into PWM. The PWM signal can, for example drive the motor of a fan. What PWM sampling period and PWM resolution would you use?

Lecture 7: Analog Signals and Conversion

Lecture 7: Analog Signals and Conversion ECE342 Introduction to Embedded Systems Lecture 7: Analog Signals and Conversion Ying Tang Electrical and Computer Engineering Rowan University 1 Analog Signals Everywhere Everything is an analogy in the

More information

9. Data Acquisition. Chapter 9

9. Data Acquisition. Chapter 9 Chapter 9 9. Data Acquisition Microcontrollers offer a complete signal-chain on a chip for a wide range of applications. One of the most important interfaces between the microcontroller and the real word

More information

ME 461 Laboratory #3 Analog-to-Digital Conversion

ME 461 Laboratory #3 Analog-to-Digital Conversion ME 461 Laboratory #3 Analog-to-Digital Conversion Goals: 1. Learn how to configure and use the MSP430 s 10-bit SAR ADC. 2. Measure the output voltage of your home-made DAC and compare it to the expected

More information

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #14: Using the ADC12 Analog-to-Digital Converter

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #14: Using the ADC12 Analog-to-Digital Converter ECE2049: Embedded Computing in Engineering Design C Term Spring 2018 Lecture #14: Using the ADC12 Analog-to-Digital Converter Reading for Today: Davies 9.2-3, 9.7, MSP430 User's Guide Ch 28 Reading for

More information

16.1 ADC ADC ADC10

16.1 ADC ADC ADC10 Chapter 27 The module is a high-performance 10-bit analog-to-digital converter. This chapter describes the operation of the module of the 4xx family. The is implemented on the MSP4340F41x2 devices. Topic

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Lecture 6 Data Acquisition Texas Instruments Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro, Humberto Santos University

More information

Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015.

Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen

More information

Lecture 5 ECEN 4517/5517

Lecture 5 ECEN 4517/5517 Lecture 5 ECEN 4517/5517 Experiment 3 Buck converter Battery charge controller Peak power tracker 1 Due dates Next week: Exp. 3 part 2 prelab assignment: MPPT algorithm Late assignments will not be accepted.

More information

Lab 5 Timer Module PWM ReadMeFirst

Lab 5 Timer Module PWM ReadMeFirst Lab 5 Timer Module PWM ReadMeFirst Lab Folder Content 1) ReadMeFirst 2) Interrupt Vector Table 3) Pin out Summary 4) DriverLib API 5) SineTable Overview In this lab, we are going to use the output hardware

More information

The University of Texas at Arlington Lecture 10 ADC and DAC

The University of Texas at Arlington Lecture 10 ADC and DAC The University of Texas at Arlington Lecture 10 ADC and DAC CSE 3442/5442 Measuring Physical Quantities (Digital) computers use discrete values, and use these to emulate continuous values if needed. In

More information

CHAPTER ELEVEN - Interfacing With the Analog World

CHAPTER ELEVEN - Interfacing With the Analog World CHAPTER ELEVEN - Interfacing With the Analog World 11.1 (a) Analog output = (K) x (digital input) (b) Smallest change that can occur in the analog output as a result of a change in the digital input. (c)

More information

Embedded Control. Week 3 (7/13/11)

Embedded Control. Week 3 (7/13/11) Embedded Control Week 3 (7/13/11) Week 3 15:00 Lecture Overview of analog signals Digital-to-analog conversion Analog-to-digital conversion 16:00 Lab NXT analog IO Overview of Analog Signals Continuous

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -3 1 UNIT 3

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -3 1 UNIT 3 IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -3 1 UNIT 3 Timers of MSP430 3.1. Basic Timer1 3.2. Timer_A 3.3. Edge aligned PWM output 3.4. Measurement in Capture mode ( Time period, duration, frequency)

More information

ME 461 Laboratory #2 Timers and Pulse-Width Modulation

ME 461 Laboratory #2 Timers and Pulse-Width Modulation ME 461 Laboratory #2 Timers and Pulse-Width Modulation Goals: 1. Understand how to use timers to control the frequency at which events occur. 2. Generate PWM signals using Timer A. 3. Explore the frequency

More information

P a g e 1. Introduction

P a g e 1. Introduction P a g e 1 Introduction 1. Signals in digital form are more convenient than analog form for processing and control operation. 2. Real world signals originated from temperature, pressure, flow rate, force

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Lab 10. Speed Control of a D.C. motor

Lab 10. Speed Control of a D.C. motor Lab 10. Speed Control of a D.C. motor Speed Measurement: Tach Amplitude Method References: STM32L100 Data Sheet (pin definitions) STM32L100 Ref. Manual (ADC, GPIO, Clocks) Motor Speed Control Project 1.

More information

Measuring Distance Using Sound

Measuring Distance Using Sound Measuring Distance Using Sound Distance can be measured in various ways: directly, using a ruler or measuring tape, or indirectly, using radio or sound waves. The indirect method measures another variable

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong.

EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong. Department of Electrical Engineering Lecture 10 Analogue Interfacing 1 In this Lecture. Interface 8051 with the following Input/Output Devices Transducer/Sensors Analogue-to-Digital Conversion (ADC) Digital-to-Analogue

More information

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 07 October 26, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Finish Analog to Digital Conversion

More information

MSP430 Interfacing Programs

MSP430 Interfacing Programs IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -5 1 MSP430 Interfacing Programs 1. Blinking LED 2. LED control using switch 3. GPIO interrupt 4. ADC & PWM application speed control of dc motor 5.

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

ADC Resolution: Myth and Reality

ADC Resolution: Myth and Reality ADC Resolution: Myth and Reality Mitch Ferguson, Applications Engineering Manager Class ID: CC19I Renesas Electronics America Inc. Mr. Mitch Ferguson Applications Engineering Manager Specializes support

More information

Real Time Embedded Systems. Lecture 1 January 17, 2012

Real Time Embedded Systems.  Lecture 1 January 17, 2012 Analog Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 1 January 17, 2012 Topic Section Topic Where in the books Catsoulis chapter/page Simon chapter/page Zilog UM197 (ZNEO Z16F Series

More information

MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL. EXPERIMENT 7: Analog-to-Digital Conversion. Research Assistant Müzeyyen KARAMANOĞLU

MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL. EXPERIMENT 7: Analog-to-Digital Conversion. Research Assistant Müzeyyen KARAMANOĞLU MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL EXPERIMENT 7: Analog-to-Digital Conversion Research Assistant Müzeyyen KARAMANOĞLU Electrical&Electronics Engineering Department Marmara University

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

EEE312: Electrical measurement & instrumentation

EEE312: Electrical measurement & instrumentation University of Turkish Aeronautical Association Faculty of Engineering EEE department EEE312: Electrical measurement & instrumentation Digital Electronic meters BY Ankara March 2017 1 Introduction The digital

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK Team Members: Andrew Blanford Matthew Drummond Krishnaveni Das Dheeraj Reddy 1 Abstract: The goal of the project was to build an interactive and mobile

More information

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 1 Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 2 1. DAC In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary

More information

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC)

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) Connecting digital circuitry to sensor devices

More information

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives Electrical and Computer Engineering E E 452. Electric Machines and Power Electronic Drives Laboratory #5 Buck Converter Embedded Code Generation Summary In this lab, you will design the control application

More information

Using Z8 Encore! XP MCU for RMS Calculation

Using Z8 Encore! XP MCU for RMS Calculation Application te Using Z8 Encore! XP MCU for RMS Calculation Abstract This application note discusses an algorithm for computing the Root Mean Square (RMS) value of a sinusoidal AC input signal using the

More information

MICROCONTROLLER TUTORIAL II TIMERS

MICROCONTROLLER TUTORIAL II TIMERS MICROCONTROLLER TUTORIAL II TIMERS WHAT IS A TIMER? We use timers every day - the simplest one can be found on your wrist A simple clock will time the seconds, minutes and hours elapsed in a given day

More information

Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C

Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C Thomas J. Romanko and Mark R. Larson Honeywell International Inc. Honeywell Aerospace, Defense & Space 12001 State Highway 55,

More information

UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING. SENG 466 Software for Embedded and Mechatronic Systems. Project 1 Report. May 25, 2006.

UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING. SENG 466 Software for Embedded and Mechatronic Systems. Project 1 Report. May 25, 2006. UNIVERSITY OF VICTORIA FACULTY OF ENGINEERING SENG 466 Software for Embedded and Mechatronic Systems Project 1 Report May 25, 2006 Group 3 Carl Spani Abe Friesen Lianne Cheng 03-24523 01-27747 01-28963

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

Lab Exercise 6: Digital/Analog conversion

Lab Exercise 6: Digital/Analog conversion Lab Exercise 6: Digital/Analog conversion Introduction In this lab exercise, you will study circuits for analog-to-digital and digital-to-analog conversion Preparation Before arriving at the lab, you should

More information

Exercise 3: Sound volume robot

Exercise 3: Sound volume robot ETH Course 40-048-00L: Electronics for Physicists II (Digital) 1: Setup uc tools, introduction : Solder SMD Arduino Nano board 3: Build application around ATmega38P 4: Design your own PCB schematic 5:

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL INPUT DELTA SIGMA ADC LTC DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL INPUT DELTA SIGMA ADC LTC DESCRIPTION LTC2433-1 DESCRIPTION Demonstration circuit 745 features the LTC2433-1, a 16-bit high performance Σ analog-to-digital converter (ADC). The LTC2433-1 features 0.12 LSB linearity, 0.16 LSB full-scale accuracy,

More information

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE 9S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE In this sequence of three labs you will learn to use the 9S12 S hardware sybsystem. WEEK 1 PULSE WIDTH MODULATION

More information

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Angelo Zucchetti Advantest angelo.zucchetti@advantest.com Introduction Presented in this article is a technique for generating

More information

Energy Efficient and High Performance Current-Mode Neural Network Circuit using Memristors and Digitally Assisted Analog CMOS Neurons

Energy Efficient and High Performance Current-Mode Neural Network Circuit using Memristors and Digitally Assisted Analog CMOS Neurons Energy Efficient and High Performance Current-Mode Neural Network Circuit using Memristors and Digitally Assisted Analog CMOS Neurons Aranya Goswamy 1, Sagar Kumashi 1, Vikash Sehwag 1, Siddharth Kumar

More information

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS R. Holcer Department of Electronics and Telecommunications, Technical University of Košice, Park Komenského 13, SK-04120 Košice,

More information

Microcontroller: Timers, ADC

Microcontroller: Timers, ADC Microcontroller: Timers, ADC Amarjeet Singh February 1, 2013 Logistics Please share the JTAG and USB cables for your assignment Lecture tomorrow by Nipun 2 Revision from last class When servicing an interrupt,

More information

Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions

Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions Digital to Analog Conversions Objective o o o o o To construct and operate a binary-weighted DAC To construct and operate a Digital to Analog Converters Testing the ADC and DAC With DC Input Testing the

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

Improving Loop-Gain Performance In Digital Power Supplies With Latest- Generation DSCs

Improving Loop-Gain Performance In Digital Power Supplies With Latest- Generation DSCs ISSUE: March 2016 Improving Loop-Gain Performance In Digital Power Supplies With Latest- Generation DSCs by Alex Dumais, Microchip Technology, Chandler, Ariz. With the consistent push for higher-performance

More information

Getting Precise with MSP430 Sigma-Delta ADC Peripherals Vincent Chan MSP430 Business Development Manager TI Asia

Getting Precise with MSP430 Sigma-Delta ADC Peripherals Vincent Chan MSP430 Business Development Manager TI Asia Getting Precise with MSP43 Sigma-Delta ADC Peripherals Vincent Chan MSP43 Business Development Manager TI Asia vince-chan@ti.com 25 Texas Instruments Inc, Slide 1 Agenda Sigma-Delta basics & benefits Understanding

More information

Exercise 5: PWM and Control Theory

Exercise 5: PWM and Control Theory Exercise 5: PWM and Control Theory Overview In the previous sessions, we have seen how to use the input capture functionality of a microcontroller to capture external events. This functionality can also

More information

Bend Sensor Technology Electronic Interface Design Guide

Bend Sensor Technology Electronic Interface Design Guide Technology Electronic Interface Design Guide Copyright 2015 Flexpoint Sensor Systems Page 1 of 15 www.flexpoint.com Contents Page Description.... 3 Voltage Divider... 4 Adjustable Buffers.. 5 LED Display

More information

Generating DTMF Tones Using Z8 Encore! MCU

Generating DTMF Tones Using Z8 Encore! MCU Application Note Generating DTMF Tones Using Z8 Encore! MCU AN024802-0608 Abstract This Application Note describes how Zilog s Z8 Encore! MCU is used as a Dual-Tone Multi- (DTMF) signal encoder to generate

More information

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #9. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture #9 Electronics Design Laboratory 1 Notes Finishing Lab 4 this week Demo requires position control using interrupts and two actions Rotate a given angle Move forward

More information

Analog-to-Digital Conversion

Analog-to-Digital Conversion CHEM 411L Instrumental Analysis Laboratory Revision 1.0 Analog-to-Digital Conversion In this laboratory exercise we will construct an Analog-to-Digital Converter (ADC) using the staircase technique. In

More information

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System

CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System Introduction CSE 3215 Embedded Systems Laboratory Lab 5 Digital Control System The purpose of this lab is to introduce you to digital control systems. The most basic function of a control system is to

More information

Experiment P48: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Amplifier, Voltage Sensor)

Experiment P48: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P48-1 Experiment P48: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

More information

Activity P55: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Output, Voltage Sensor)

Activity P55: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Output, Voltage Sensor) Activity P55: Transistor Lab 1 The NPN Transistor as a Digital Switch (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductors P55 Digital Switch.DS

More information

SOLAR PATIO UMBRELLA

SOLAR PATIO UMBRELLA SOLAR PATIO UMBRELLA By Viren Mascarenhas Christian Ngeleza Luis Pe-Ferrer Final Report for ECE 445, Senior Design, Spring 2016 TA: Brady Salz 04 May 2016 Project No. 37 Abstract The project aims at designing

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM a FEATURES Complete 8-Bit A/D Converter with Reference, Clock and Comparator 30 s Maximum Conversion Time Full 8- or 16-Bit Microprocessor Bus Interface Unipolar and Bipolar Inputs No Missing Codes Over

More information

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits & Modulation Techniques Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits 2 Digital systems are being used

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 esson 19 Analog Interfacing Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would be able

More information

University of Texas at El Paso Electrical and Computer Engineering Department

University of Texas at El Paso Electrical and Computer Engineering Department University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 05 Pulse Width Modulation Goals: Bonus: Pre Lab Questions: Use Port

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

UNISONIC TECHNOLOGIES CO., LTD M1008 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD M1008 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO, LTD M8 Preliminary CMOS IC 6-BIT CCD/CIS ANALOG SIGNAL PROCESSOR DESCRIPTION The M8 is a 6-bit CCD/CIS analog signal processor for imaging applications A 3-channel architecture

More information

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239).

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). DSP Project eminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). Budget: $150 for project. Free parts: Surplus parts from previous year s project are available on

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Timer A (0 and 1) and PWM EE3376

Timer A (0 and 1) and PWM EE3376 Timer A (0 and 1) and PWM EE3376 General Peripheral Programming Model l l l l Each peripheral has a range of addresses in the memory map peripheral has base address (i.e. 0x00A0) each register used in

More information

Analyzing A/D and D/A converters

Analyzing A/D and D/A converters Analyzing A/D and D/A converters 2013. 10. 21. Pálfi Vilmos 1 Contents 1 Signals 3 1.1 Periodic signals 3 1.2 Sampling 4 1.2.1 Discrete Fourier transform... 4 1.2.2 Spectrum of sampled signals... 5 1.2.3

More information

Experiment 15: Diode Lab Part 1

Experiment 15: Diode Lab Part 1 Experiment 15: Diode Lab Part 1 Purpose Theory Overview EQUIPMENT NEEDED: Computer and Science Workshop Interface Power Amplifier (CI-6552A) (2) Voltage Sensor (CI-6503) AC/DC Electronics Lab Board (EM-8656)

More information

The PmodIA is an impedance analyzer built around the Analog Devices AD bit Impedance Converter Network Analyzer.

The PmodIA is an impedance analyzer built around the Analog Devices AD bit Impedance Converter Network Analyzer. 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com PmodIA Reference Manual Revised April 15, 2016 This manual applies to the PmodIA rev. A Overview The PmodIA is an impedance analyzer

More information

ANALOG TO DIGITAL CONVERTER ANALOG INPUT

ANALOG TO DIGITAL CONVERTER ANALOG INPUT ANALOG INPUT Analog input involves sensing an electrical signal from some source external to the computer. This signal is generated as a result of some changing physical phenomenon such as air pressure,

More information

PIC ADC to PWM and Mosfet Low-Side Driver

PIC ADC to PWM and Mosfet Low-Side Driver Name Lab Section PIC ADC to PWM and Mosfet Low-Side Driver Lab 6 Introduction: In this lab you will convert an analog voltage into a pulse width modulation (PWM) duty cycle. The source of the analog voltage

More information

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes Purpose The intent of this course is to provide you with information about the main features of the S08 Timer/PWM (TPM) interface module and how to configure and use it in common applications. Objectives

More information

AN3137 Application note

AN3137 Application note Application note Analog-to-digital converter on STM8L and STM8AL devices: description and precision improvement techniques Introduction This application note describes the 12-bit analog-to-digital converter

More information

Gentec-EO USA. T-RAD-USB Users Manual. T-Rad-USB Operating Instructions /15/2010 Page 1 of 24

Gentec-EO USA. T-RAD-USB Users Manual. T-Rad-USB Operating Instructions /15/2010 Page 1 of 24 Gentec-EO USA T-RAD-USB Users Manual Gentec-EO USA 5825 Jean Road Center Lake Oswego, Oregon, 97035 503-697-1870 voice 503-697-0633 fax 121-201795 11/15/2010 Page 1 of 24 System Overview Welcome to the

More information

Data Logger Subsystems Mark Buccini February 2012

Data Logger Subsystems Mark Buccini February 2012 Data Logger Subsystems Mark Buccini February 2012 Full Disclosure Mark E. Buccini ULP Staff at TI 25+ years strategy, applications, marketing, sales, and management experience Lead MSP430 worldwide introduction

More information

Embedded Test System. Design and Implementation of Digital to Analog Converter. TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao

Embedded Test System. Design and Implementation of Digital to Analog Converter. TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao Embedded Test System Design and Implementation of Digital to Analog Converter TEAM BIG HERO 3 John Sopczynski Karim Shik-Khahil Yanzhe Zhao EE 300W Section 1 Spring 2015 Big Hero 3 DAC 2 INTRODUCTION (KS)

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

AE Agricultural Customer Services Play-by-Play Tekscope Manual

AE Agricultural Customer Services Play-by-Play Tekscope Manual 1 2012 AE Agricultural Customer Services Play-by-Play Tekscope Manual TABLE OF CONTENTS I. Definitions II. Waveform Properties 1 III. Scientific Notation... 2 IV. Transient Levels of Concern a. ASAE Paper

More information

PreLab 6 PWM Design for H-bridge Driver (due Oct 23)

PreLab 6 PWM Design for H-bridge Driver (due Oct 23) GOAL PreLab 6 PWM Design for H-bridge Driver (due Oct 23) The overall goal of Lab6 is to demonstrate a DC motor controller that can adjust speed and direction. You will design the PWM waveform and digital

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 11: Sampling, ADCs, and DACs Oct 7, 2014 Some slides adapted from Mark Brehob, Jonathan Hui & Steve Reinhardt

More information

Input Drive Circuitry for SAR ADCs. Section 8

Input Drive Circuitry for SAR ADCs. Section 8 for SAR ADCs Section 8 SAR ADCs in particular have input stages that have a very dynamic behavior. Designing circuitry to drive these loads is an interesting challenge. We ve been looking at this for some

More information

EE445L Spring 2018 Final EID: Page 1 of 7

EE445L Spring 2018 Final EID: Page 1 of 7 EE445L Spring 2018 Final EID: Page 1 of 7 Jonathan W. Valvano First: Last: This is the closed book section. Calculator is allowed (no laptops, phones, devices with wireless communication). You must put

More information

ES /2 DMM. Features. General Description. Absolute Maximum Ratings

ES /2 DMM. Features. General Description. Absolute Maximum Ratings Features 22000 counts, adjustable PEAK Hold function with calibration mode Input signal full scale = 220 mv (sensitivity = 10 uv/count) X10 function (sensitivity = 1 uv/count) Conversion rate selectable

More information

MAX1002/MAX1003 Evaluation Kits

MAX1002/MAX1003 Evaluation Kits 9-50; Rev 0; 6/97 MAX00/MAX00 Evaluation Kits General Description The MAX00/MAX00 evaluation kits (EV kits) simplify evaluation of the 60Msps MAX00 and 90Msps MAX00 dual, 6-bit analog-to-digital converters

More information

DC - 20 GHz Programmable 1,2,4,8 Binary Prescaler

DC - 20 GHz Programmable 1,2,4,8 Binary Prescaler UXD20P Datasheet CENTELLAX DC - 20 GHz Programmable 1,2,4,8 Binary Prescaler Features Wide Operating Range: DC - 20GHz Low SSB Phase Noise: -153 dbc @ 10kHz Large Output Swings: 750mV ppk/side Single-Ended

More information

Complete 14-Bit CCD/CIS Signal Processor AD9822

Complete 14-Bit CCD/CIS Signal Processor AD9822 a FEATURES 14-Bit 15 MSPS A/D Converter No Missing Codes Guaranteed 3-Channel Operation Up to 15 MSPS 1-Channel Operation Up to 12.5 MSPS Correlated Double Sampling 1 6x Programmable Gain 350 mv Programmable

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version 2 EE IIT, Kharagpur 1 Lesson 37 Sine PWM and its Realization Version 2 EE IIT, Kharagpur 2 After completion of this lesson, the reader shall be able to: 1. Explain

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab The purpose of this lab is to learn about sensors and use the ADC module to digitize the sensor signals. You will use the digitized signals

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Abstract Several types

More information

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

More information