Lecture-44. EE5325 Power Management Integrated Circuits

Size: px
Start display at page:

Download "Lecture-44. EE5325 Power Management Integrated Circuits"

Transcription

1 ecture-44 EE5325 Power Management Integrated Circuits Dr. Qadeer Ahmad Khan Integrated Circuits and Systems Group Department of Electrical Engineering IIT Madras DC-DC Converter Wish ist High Power Density Higher efficiency to reduce heat dissipation Smaller passive components to reduce board space Shrinking die size by innovative controller and integrating more features on single PMIC Source:Vishay Stable Supply High performance controller design Output Voltage oad Current ± 5% Time 2

2 Technology Trends in PMIC Scaling semiconductor process technology Higher speed Power FETs Smaller Size 0.5µm 0.35µm 0.8µm ow parasitic packaging technologies (WP, BGA) Smaller Parasitic DIP SOP QFN WP 3 PMIC vs Passive Size PMIC Power Management Module Passive Components (Inductors and Capacitors) Source: TechInsights Inc. Samsung Galaxy S8 External Passive components ( and C) occupy 2/3 rd of the total power module size 4 2

3 Passive Size Reduction Output ripple is a function of inductor (), capacitor (C) and switching frequency (FSW) Doubling switching frequency reduces passive components by 4x for the same output ripple VSW VO ΔVO I VO CO Output Ripple: VO Source: Micrel FSW=MHz FSW=4MHz PMIC PMIC 2 FSW PMIC FSW=8MHz Increasing FSW 5 imitations of Analog Controller PID Compensator Analog PWM VRAMP Area/power inefficient VIN Voltage-to-Time Conversion MP VPWM Gate Driver VSW Error Amplifier (EA) VO CO MN C VCTR R CD EA RD VREF Type-III (PID) Compensator Bandwidth limits transient response Ramp Generator imits switching frequency PWM Comparator Delay limits output range 6 3

4 imitations of Analog Controller Voltage-to-Time Conversion V RAMP Analog PWM V CTR C Gate Driver R EA V SW MP MN C D R D Type-III (PID) Compensator PID Compensator Area/power inefficient Error Amplifier (EA) Bandwidth limits transient response Ramp Generator imits switching frequency PWM Comparator Delay limits output range Significant power penalty at high F SW 7 Digital Controller Design Challenges Digital-to-Time Conversion DC[M:0] DPWM CK Digital PWM - z - Gate Driver Kp Ki Kd MP V SW MN DE[N:0] ADC V e + - Small controller area at low Fsw Non-linear loop dynamics Steady state is a bounded limit cycle large ripple ADC res. > reg. accuracy 0.% accuracy 0bit DPWM res. inverter delay arge area and power - -z PID Compensator F CK >> F SW 8 4

5 Digital Controller Design Challenges Digital-to-Time Conversion DC[M:0] DPWM CK Digital PWM - z - Gate Driver Kp Ki Kd MP V SW MN DE[N:0] ADC V e + - Small controller area at low Fsw Non-linear loop dynamics Steady state is a bounded limit cycle large ripple ADC res. > reg. accuracy 0.% accuracy 0bit DPWM res. inverter delay arge area and power - -z PID Compensator F CK >> F SW Significant power & area penalty at high F SW 9 Time Based Controlled DC-DC Converter Vin - V e Time Domain Voltage-to-Time Processing Conversion + f PWM Gate Driver V SW SP SN Voltage is directly converted into Time Processing is done in Time Domain Since resultant output is Time, it doesn t require any PWM modulator Preserves benefits of both analog (low power, high accuracy) and digital (process scaling, low voltage operation, area efficient) without using any A/D or error amplifier Implicit PWM generation Eliminates PWM modulator hence minimum delay 0 5

6 Time Based Controlled DC-DC Converter Power and area efficient Vin - V e Time Domain Voltage-to-Time Processing Conversion + f PWM Gate Driver V SW SP SN Voltage is directly converted into Time Processing is done in Time Domain Since resultant output is Time, it doesn t require any PWM modulator Preserves benefits of both analog (low power, high accuracy) and digital (process scaling, low voltage operation, area efficient) without using any A/D or error amplifier Implicit PWM generation Eliminates PWM modulator hence minimum delay VCO as Time-based Integrator OUT H VCO (s) ω OUT = K VCO VCO ω OUT = d OUT dt ω UGB = K VCO K VCO H VCO s = OUT(s) s = K VCO s Frequency VCO acts as an ideal V-to-Φ integrator 2 6

7 VCO Behavior in Time Domain V-to- CK VCO -to-d D OUT VCO CK REF DOUT CKREF = K VCO 0 t τ dτ D OUT = D OUT CKREF 2π D OUT = K VCO 2π 0 t τ dτ CK REF CK VCO D OUT 3 Example of Phase Accumulation f o =0MHz (free running frequency of VCO) Or ω o = 2π 0MHz K VCO =2πMrad/s/V V-to- CKVCO -to-d D OUT Then phase difference will become 2π every 0 th cycle of the clock VCO CK REF Phase difference becomes 2π 4 7

8 Opamp-RC vs Time Based Integrator Voltage Based Integrator Input voltage is integrated as voltage Integral Gain = /RC Time Based Integrator Input voltage is integrated as phase (time) by VCO Integral Gain = K VCO R C UT VCO VCO CKCTR CKREF PWM ow-pass Filter UT VIN VREF CKCTR f > f REF ; f 2 < f REF f f 2 f UT CKREF PWM f REF VOUT 5 Buck w/ Time-based Type-I Controller FVCO CTR REF REF CTR T ON T OFF T ON RVCO 2π 6 8

9 Time Based PID Controller Need 3 functions to realize time based PID compensator:. Time based Integrator VCO 2. Time based Proportional (Gain)? 3. Time based Differentiator? 7 Time-based Proportional Control CK REF VCD OUT H VCD (s) K VCD Frequency VCD acts as an ideal V-to-Φ converter 8 9

10 Time-based Differentiator C D V D R D OUT H DIFF (s) CK REF VCD K VCD R D C D Frequency H.P. filter + VCD acts as an ideal V-to-Φ differentiator 9 Buck Converter with T-PID Controller C D R D FVCO VCD VCD2 Φ I Φ I +Φ P Φ I +Φ P +Φ D I P D Φ CTR Φ REF RVCO Integral gain K VCO of FVCO Proportional gain K VCD of VCD Derivative gain R D C D and K VCD of VCD

11 Mapping V-PID to T-PID () C 2 C R 2 R V C T R E A V R E F C 3 R 3 V F B PID Compensator Ignoring w p and simplifying 2 Mapping V-PID to T-PID () C 2 C R 2 R V C T R E A V R E F C 3 R 3 V F B PID Compensator Ignoring w p and simplifying Proportional Integral Derivative 22

12 Mapping V-PID to T-PID (2) V FB VCO C D R D VCD VCD 2 CTR 23 T-PID Transfer Function + - V e + H TPID(s) TPID Compensator K VCD K VCO s K R C s ɸ VCD2 D D D (s) R C s D D ɸ P (s) P ɸ I (s) I D ɸ CTR (s) 2 Phase Detector Driver V SW V H C (s) O C Filter H TPID (s) -20dB/dec Gain +20dB/dec 0dB wp PM RD CD 0 Phase -90 w UGB w Zw Z2 w P w(rad/s) ; ; KVCO K I K VCD K I wz wz2 K VCD2 R C D D w z w z2 24 2

13 Circuit Implementation R FB R FB2 i D V FB i P V FB i I R D G MD G MP G MI C D V D D P I MP MN DEAD TIME OGIC Q S R CTR+ CTR- VCD+ VCO- VCD- VCO+ Phase detector is implemented with SR latch Fully differential control eliminates reference clock Shared VCD for proportional and derivative control 25 Prototype Buck Converter in 80nm CMOS Controller 2mm Gate Driver & Power FETs 250µm CCO and CCD 2.5mm PMOS 450µm Gm Cells V FB UT GND NMOS 50µm 400µm A 0 25 MHz, 600 ma buck converter using time-based PID compensator with 2µA/MHz quiescent current, 94% peak efficiency, and MHz BW, Symposium on VSI Circuits (VSIC), June 204. "High frequency buck converter design using time-based control techniques," IEEE JSSC, Apr

14 Steady-State Waveforms ( = V) =V 2π D= T ON T OFF =58.2% T SW T ON T OFF V VCO+ V VCO- 27 oad Transient Response V UN =60mV V =65mV T S =3.5µs 00mV 20µs I OAD 600mA V ripple =3.5mV 2mV 50ns 00mA 28 4

15 Oscillator Frequency Spectra F SW = MHz Open oop F VCO+ Open oop F VCO- Closed oop F VCO+ Closed oop F VCO- 29 Efficiency vs. Output Current Efficiency [%] Fsw=MHz@Vo=V Fsw=MHz@Vo=0.6V 70 Fsw=MHz@Vo=.4V Fsw=5MHz@Vo=V 65 Fsw=20MHz@Vo=V Fsw=25MHz@Vo=V Output Current [ma] 30 5

16 Performance Summary Publication ISSCC 204 This Work Control oop Voltage mode PID Time based PID Process 0.3µm CMOS 0.8µm CMOS Supply Voltage 3.3V.8V Output Voltage 0.37V 2.85V 0.6V.5V F SW 0MHz(30MHz) -5MHz / C 330nH/3.3µF(uF) 220nH/4.7µF Max. oad Current.5A@ =2.4V 600mA Settling Time n/a 3.5µs Output Ripple n/a 3.5mV Controller Current n/a 23µA@MHz Peak Efficiency 9.8%(86.6%) 94%@ =V Active Area n/a 0.24mm 2 3 Application in Multi-Phase Since VCOs come inherently with multiple phases, different phases from VCOs can be tapped All phases use common integrator (VCO) but separate VCDs ɸ 4 ɸ 3 RVCO ɸ 2 ɸ 0 ɸ ɸ REF4 ɸ REF3 ɸ REF2 ɸ REF ɸ REF0 ɸ REF4 ɸ CTR4 ɸ REF3 ɸ CTR3 ɸ REF2 ɸ CTR2 ɸ REF ɸ CTR ɸ CTR4 ɸ CTR3 ɸ CTR2 ɸ I4 ɸ I3 ɸ I2 FVCO ɸ 0 ɸ 4 ɸ CTR ɸ CTR0 VCD2 R D C D VCD ɸ I ɸ I0 ɸ ɸ 2 ɸ 3 MUTI-PHASE TPID Controller 32 6

17 mm 30-70MHz 4-Phase Time-Based Buck -4 R4 VPWM4 MPG R3 PGVPWM3 VO F4 R2 PG F4 VPWM2 F3 R H EN4 R PG F3 VPWM 3 F2 H EN3 F2 PG C 2 2 R~4 F H EN2 F 0 H EN RFB R 3 F~4 D H EN~4 Phase RFB2 2 2 F CSD 0 Controller 0 2 VREF VREF CD F B2T GMI GM RD DAC Z - VREF CCDF CCOF D-to-I 8 F CCDR CCOR R FD Compensator mm Gate Cascoded Diver Output Driver F Gate Cascoded Diver Output Driver Type-III Compensator Gate Cascoded MPG, CSD Diver Output Driver Gate Cascoded Phase Ctrl Diver Output Driver Process Control Synchronization Number of Phases Input Supply [V].8.2/ Output Voltage [V] / FSW[MHz] Inductance [nh] oad Current [A] /0.4 Controller Current Peak Efficiency [%] This Work 65nm CMOS T-PID PWM 90µA@30MHz 87@VO=V JSSC `05 Hazucha 90nm CMOS Hysteretic N/A 83.2/84.5 JSSC `09 P. i 0.5µm CMOS Hysteretic N/A 83@VO=3.3V Power Density [W/mm 2 ] /3.4.2 VSI`4 Harish 22nm CMOS Digital PWM MPG Injection D DPWM Capacitance [nf] N/A N/A 68@VO=V A.8V 30-to-70MHz 87% Peak Efficiency 0.32mm2 4-Phase Time-Based Buck Converter Consuming 3uA/MHz Quiescent Current in 65nm CMOS, ISSCC-205. A 4-phase MHz switching frequency buck converter using a time-based compensator," IEEE JSSC, Dec. 205 N/A 33 7

A 4 µa-quiescent-current Dual- Mode Digitally-Controlled Buck Converter IC for Cellular Phone Applications

A 4 µa-quiescent-current Dual- Mode Digitally-Controlled Buck Converter IC for Cellular Phone Applications A 4 µa-quiescent-current Dual- Mode Digitally-Controlled Buck Converter IC for Cellular Phone Applications Jinwen Xiao Angel Peterchev Jianhui Zhang Prof. Seth Sanders Power Electronics Group Dept. of

More information

Converter IC for Cellular Phone. Mode Digitally-Controlled Buck. A 4 µa-quiescent-current Dual- Applications. Jianhui Zhang Prof.

Converter IC for Cellular Phone. Mode Digitally-Controlled Buck. A 4 µa-quiescent-current Dual- Applications. Jianhui Zhang Prof. A 4 µa-quiescent-current Dual- Mode Digitally-Controlled Buck Converter IC for Cellular Phone Applications Jinwen Xiao Angel Peterchev Jianhui Zhang Prof. Seth Sanders Power Electronics Group Dept. of

More information

MIC38C42A/43A/44A/45A

MIC38C42A/43A/44A/45A MIC38C42A/43A/44A/45A BiCMOS Current-Mode PWM Controllers General Description The MIC38C4xA are fixed frequency, high performance, current-mode PWM controllers. Micrel s BiCMOS devices are pin compatible

More information

Mobile 용 PMIC 설계 년도 AIPRC Power IC 설계기술 Workshop 2010 년 12 월 9 일. 서울시립대학교 최중호 1/ AIPRC Power IC 설계기술 Workshop

Mobile 용 PMIC 설계 년도 AIPRC Power IC 설계기술 Workshop 2010 년 12 월 9 일. 서울시립대학교 최중호 1/ AIPRC Power IC 설계기술 Workshop /35 Mobile 용 PMIC 설계 200 년도 AIPRC Power IC 설계기술 Workshop 200 년 2 월 9 일 서울시립대학교 최중호 jchoi@uos.ac.kr Power Sources for Mobile Devices 2/35 Typical Battery Characteristics 3.6V.2V One Cell Enough Regulation

More information

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter MIC2193 4kHz SO-8 Synchronous Buck Control IC General Description s MIC2193 is a high efficiency, PWM synchronous buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows

More information

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 15.7 A 4µA-Quiescent-Current Dual-Mode Buck Converter IC for Cellular Phone Applications Jinwen Xiao, Angel Peterchev, Jianhui Zhang, Seth Sanders

More information

MP V, 700kHz Synchronous Step-Up White LED Driver

MP V, 700kHz Synchronous Step-Up White LED Driver The Future of Analog IC Technology MP3306 30V, 700kHz Synchronous Step-Up White LED Driver DESCRIPTION The MP3306 is a step-up converter designed for driving white LEDs from 3V to 12V power supply. The

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

Features. 5V Reference UVLO. Oscillator S R

Features. 5V Reference UVLO. Oscillator S R MIC38C42/3/4/5 BiCMOS Current-Mode PWM Controllers General Description The MIC38C4x are fixed frequency, high performance, current-mode PWM controllers. Micrel s BiCMOS devices are pin compatible with

More information

Digital PWM IC Control Technology and Issues

Digital PWM IC Control Technology and Issues Digital PWM IC Control Technology and Issues Prof. Seth R. Sanders (sanders@eecs.berkeley.edu) Angel V. Peterchev Jinwen Xiao Jianhui Zhang EECS Department University of California, Berkeley Digital Control

More information

MP A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit

MP A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit The Future of Analog IC Technology MP2490 1.5A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit DESCRIPTION The MP2490 is a monolithic step-down switch mode converter with a programmable

More information

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5)

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5) MIC38HC42/3/4/5 BiCMOS 1A Current-Mode PWM Controllers General Description The MIC38HC4x family are fixed frequency current-mode PWM controllers with 1A drive current capability. Micrel s BiCMOS devices

More information

Digital PWM IC Control Technology and Issues

Digital PWM IC Control Technology and Issues Digital PWM IC Control Technology and Issues Prof. Seth R. Sanders Angel V. Peterchev Jinwen Xiao Jianhui Zhang Department of EECS University of California, Berkeley Digital Control Advantages implement

More information

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED 5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED General Description The is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power

More information

EM5812/A. 12A 5V/12V Step-Down Converter. Applications. General Description. Pin Configuration. Ordering Information. Typical Application Circuit

EM5812/A. 12A 5V/12V Step-Down Converter. Applications. General Description. Pin Configuration. Ordering Information. Typical Application Circuit 12A 5V/12V Step-Down Converter General Description is a synchronous rectified PWM controller with a built in high-side power MOSFET operating with 5V or 12V supply voltage. It achieves 10A continuous output

More information

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter FEATURES High Efficiency: Up to 96% 1.2MHz Constant Switching Frequency 3.3V Output Voltage at Iout=100mA from a Single AA Cell; 3.3V Output Voltage at Iout=400mA from two AA cells Low Start-up Voltage:

More information

ADT7351. General Description. Applications. Features. Typical Application Circuit. Oct / Rev0.

ADT7351. General Description. Applications. Features. Typical Application Circuit.   Oct / Rev0. General Description The ADT735 is a step-down converter with integrated switching MOSFET. It operates wide input supply voltage range from 4.5 to 28 with 3A continuous output current. It includes current

More information

A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls

A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls A Fast, Self-stabilizing, Boost DC-DC Converter - Sliding-mode Vs Hysteretic Controls Neeraj Keskar Advisor: Prof. Gabriel A. Rincón-Mora Analog and Power IC Design Lab School of Electrical and Computer

More information

MP A, 24V, 1.4MHz Step-Down Converter

MP A, 24V, 1.4MHz Step-Down Converter The Future of Analog IC Technology DESCRIPTION The MP8368 is a monolithic step-down switch mode converter with a built-in internal power MOSFET. It achieves 1.8A continuous output current over a wide input

More information

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor The Future of Analog IC Technology MPM3840 2.8V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor DESCRIPTION The MPM3840 is a DC/DC module that includes a monolithic, step-down,

More information

An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers

An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers Georgia Tech Analog Consortium Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora Georgia Tech Analog

More information

Design of DC-DC Boost Converter in CMOS 0.18µm Technology

Design of DC-DC Boost Converter in CMOS 0.18µm Technology Volume 3, Issue 10, October-2016, pp. 554-560 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Design of DC-DC Boost Converter in

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Voltage-mode/Current-mode vs D-CAP2 /D-CAP3 Spandana Kocherlakota Systems Engineer, Analog Power Products 1 Contents Abbreviation/Acronym

More information

Features MIC2194BM VIN EN/ UVLO CS OUTP VDD FB. 2k COMP GND. Adjustable Output Buck Converter MIC2194BM UVLO

Features MIC2194BM VIN EN/ UVLO CS OUTP VDD FB. 2k COMP GND. Adjustable Output Buck Converter MIC2194BM UVLO MIC2194 400kHz SO-8 Buck Control IC General Description s MIC2194 is a high efficiency PWM buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows it to efficiently step

More information

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN 1.Introduction: CMOS Switching Power Supply The course design project for EE 421 Digital Engineering

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

G MHz 1A Synchronous Step-Down Regulator. Features High Efficiency: Up to 93% Low Quiescent Current: Only 50µA During Operation

G MHz 1A Synchronous Step-Down Regulator. Features High Efficiency: Up to 93% Low Quiescent Current: Only 50µA During Operation MHz A Synchronous Step-Down Regulator Features High Efficiency: Up to 93% Low Quiescent Current: Only 5µA During Operation Internal Soft Start Function A Output Current.5V to 6V Input Voltage Range MHz

More information

1.5MHz, 1A Synchronous Step-Down Regulator

1.5MHz, 1A Synchronous Step-Down Regulator 1.5MHz, 1A Synchronous Step-Down Regulator FP6161 General Description The FP6161 is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference

More information

1.5MHz, 3A Synchronous Step-Down Regulator

1.5MHz, 3A Synchronous Step-Down Regulator 1.5MHz, 3A Synchronous Step-Down Regulator FP6165 General Description The FP6165 is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

Digital Control Technologies for Switching Power Converters

Digital Control Technologies for Switching Power Converters Digital Control Technologies for Switching Power Converters April 3, 2012 Dr. Yan-Fei Liu, Professor Department of Electrical and Computer Engineering Queen s University, Kingston, ON, Canada yanfei.liu@queensu.ca

More information

Thermally enhanced Low V FB Step-Down LED Driver ADT6780

Thermally enhanced Low V FB Step-Down LED Driver ADT6780 Thermally enhanced Low V FB Step-Down LED Driver General Description The is a thermally enhanced current mode step down LED driver. That is designed to deliver constant current to high power LEDs. The

More information

Voltage-Mode Buck Regulators

Voltage-Mode Buck Regulators Voltage-Mode Buck Regulators Voltage-Mode Regulator V IN Output Filter Modulator L V OUT C OUT R LOAD R ESR V P Error Amplifier - T V C C - V FB V REF R FB R FB2 Voltage Mode - Advantages and Advantages

More information

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

LX12973 V 800mV, 1.5A, 1.1MHZ PWM

LX12973 V 800mV, 1.5A, 1.1MHZ PWM The LX12973 operates as a Current Mode PWM Buck regulator that switches to PFM mode with light loads. The entire regulator function is implemented with few external components. The LX12973 responds quickly

More information

Dead-Time Control System for a Synchronous Buck dc-dc Converter

Dead-Time Control System for a Synchronous Buck dc-dc Converter Dead-Time Control System for a Synchronous Buck dc-dc Converter Floriberto Lima Chipidea Microelectronics berto@chipidea.com Marcelino Santos IST / INESC-ID marcelino.santos@ist.utl.pt José Barata IST,

More information

MP2314 High Efficiency 2A, 24V, 500kHz Synchronous Step Down Converter

MP2314 High Efficiency 2A, 24V, 500kHz Synchronous Step Down Converter The Future of Analog IC Technology MP2314 High Efficiency 2A, 24V, 500kHz Synchronous Step Down Converter DESCRIPTION The MP2314 is a high frequency synchronous rectified step-down switch mode converter

More information

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection Hamid Nejati and Mahmood Barangi 4/14/2010 Outline Introduction System level block diagram Compressive

More information

Lecture 23: PLLs. Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class

Lecture 23: PLLs. Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 23: PLLs Announcements Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class Open book open notes Project

More information

Lecture-36 EE5325 Power Management Integrated Circuits

Lecture-36 EE5325 Power Management Integrated Circuits Lecture-36 EE5325 Power Management Integrated Circuits Dr. Qadeer Ahmad Khan Integrated Circuits and Systems Group Department of Electrical Engineering IIT Madras Buck-Boost Converter Types of DC-DC converter

More information

EM5301. Pin Assignment

EM5301. Pin Assignment 5V/2V Synchronous Buck PWM Controller General Description is a synchronous rectified PWM controller operating with 5V or 2V supply voltage. This device operates at 200/300/500 khz and provides an optimal

More information

High-Speed Serial Interface Circuits and Systems

High-Speed Serial Interface Circuits and Systems High-Speed Serial Interface Circuits and Systems Design Exercise4 Charge Pump Charge Pump PLL ɸ ref up PFD CP LF VCO down ɸ out ɸ div Divider Converts PFD phase error pulse (digital) to charge (analog).

More information

LSP5502 2A Synchronous Step Down DC/DC Converter

LSP5502 2A Synchronous Step Down DC/DC Converter FEATURES 2A Output Current Wide 4.5V to 27V Operating Input Range Integrated 20mΩ Power MOSFET Switches Output Adjustable from 0.925V to 24V Up to 96% Efficiency Programmable Soft-Start Stable with Low

More information

Features. R1 10k. 10nF. R2 3.83k

Features. R1 10k. 10nF. R2 3.83k High Efficiency 1MHz Synchronous Buck Regulator General Description The Micrel is a high efficiency 1MHz PWM synchronous buck switching regulator. The features low noise constant frequency PWM operation

More information

1.5MHz, 800mA Synchronous Step-Down Regulator

1.5MHz, 800mA Synchronous Step-Down Regulator 1.5MHz, 800mA Synchronous Step-Down Regulator General Description The is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference voltage

More information

Background (What Do Line and Load Transients Tell Us about a Power Supply?)

Background (What Do Line and Load Transients Tell Us about a Power Supply?) Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 3443 Keywords: line transient, load transient, time domain, frequency domain APPLICATION NOTE 3443 Line and

More information

AME. 3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter AME5287. General Description. Typical Application. Features.

AME. 3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter AME5287. General Description. Typical Application. Features. 587 General Description Typical Application The 587 is a Synchronous Rectified Step-Down Converter with internal power MOSFETs. It achieves 3A continuous output current over a wide switching frequency

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

A7534 DC-DC CONVERTER/BOOST(STEP-UP) 0.9V STARTUP, 1MHZ, 300MA IOUT, LOW IQ, SYNCHRONOUS BOOST CONVERTER

A7534 DC-DC CONVERTER/BOOST(STEP-UP) 0.9V STARTUP, 1MHZ, 300MA IOUT, LOW IQ, SYNCHRONOUS BOOST CONVERTER DESCRIPTION The is a step-up converter that provides a boosted output voltage from a low voltage source. Because of its proprietary design, it starts up at a very low input voltage down to 0.9V, and only

More information

3W, 0.85V Startup Voltage, Synchronous Step-Up Converter with Real-Shutdown and Short-Circuit Protection

3W, 0.85V Startup Voltage, Synchronous Step-Up Converter with Real-Shutdown and Short-Circuit Protection Description The ACE719E is a high efficiency synchronous step-up converter that can provide up to 3W of power to a boosted output from a low voltage source. Unlike most step-up converter, not only it starts

More information

PACKAGE REFERENCE. ELECTRICAL CHARACTERISTICS V IN = 12V, T A = +25 C, unless otherwise noted.

PACKAGE REFERENCE. ELECTRICAL CHARACTERISTICS V IN = 12V, T A = +25 C, unless otherwise noted. PACKAGE REFERENCE TOP VIEW TOP VIEW BST 1 SW BST 1 SW GND 2 5 GND 2 5 FB 3 EN FB 3 EN MP2259_PD01_TSOT23 MP2259_PD02_SOT23 Part Number* Package Temperature MP2259DJ TSOT23-0 C to 85 C * For Tape & Reel,

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology

A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology A Multi-phase VCO Quantizer based Adaptive Digital LDO in 65nm CMOS Technology Somnath Kundu and Chris H. Kim University of Minnesota Dept. of ECE 1 Presentation Outline Analog vs. digital Low DropOut

More information

180KHz, 5A Step-down Converter With Cable Dropout Compensation

180KHz, 5A Step-down Converter With Cable Dropout Compensation 180KHz, 5A Step-down Converter With Cable Dropout Compensation General Description The is a compact, high efficiency, high speed synchronous monolithic step-down switching regulator designed to power 5V

More information

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect The Future of Analog IC Technology MP3414 1.8A,1MHz, Synchronous, Step-up Converter with Output Disconnect DESCRIPTION The MP3414 is a high-efficiency, synchronous, current mode, step-up converter with

More information

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6 MP2456 0.5A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6 DESCRIPTION The MP2456 is a monolithic, step-down, switchmode converter with a built-in power MOSFET. It achieves a 0.5A peak-output current over

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter DESCRIPTION The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

MP A, 24V, 1.4MHz Step-Down Converter in a TSOT23-6

MP A, 24V, 1.4MHz Step-Down Converter in a TSOT23-6 The Future of Analog IC Technology MP2359 1.2A, 24V, 1.4MHz Step-Down Converter in a TSOT23-6 DESCRIPTION The MP2359 is a monolithic step-down switch mode converter with a built-in power MOSFET. It achieves

More information

Improvement of SBC Circuit using MPPT Controller

Improvement of SBC Circuit using MPPT Controller Improvement of SBC Circuit using MPPT Controller NOR ZAIHAR YAHAYA & AHMAD AFIFI ZAMIR Electrical & Electronic Engineering Department Universiti Teknologi PETRONAS Bandar Seri Iskandar, 3750 Tronoh, Perak

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M. Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.Nagabhushan #2 #1 M.Tech student, Dept. of ECE. M.S.R.I.T, Bangalore, INDIA #2 Asst.

More information

MPQ2454-AEC1 36V, 0.6A Step-Down Converter AEC-Q100 Qualified

MPQ2454-AEC1 36V, 0.6A Step-Down Converter AEC-Q100 Qualified MPQ2454-AEC1 36V, 0.6A Step-Down Converter AEC-Q100 Qualified DESCRIPTION The MPQ2454 is a frequency-programmable (350kHz to 2.3MHz) step-down switching regulator with an integrated internal high-side,

More information

AN032 An Overview of AAM Mode Advanced Asynchronous Modulation Application Note

AN032 An Overview of AAM Mode Advanced Asynchronous Modulation Application Note AN032 An Overview of AAM Mode Advanced Asynchronous Modulation Application Note AN032 Rev. 1.0 www.monolithicpower.com 1 AN032 An Overview of AAM Mode ABSTRACT The increasing demand for high-efficiency

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Bangda Yang for the degree of Master of Science in Electrical and Computer Engineering presented on December 1, 2010. Title: Feedforward Noise Cancelling Techniques. Abstract

More information

MP2324 High Efficiency 2A, 24V, 500kHz Synchronous Step-Down Converter

MP2324 High Efficiency 2A, 24V, 500kHz Synchronous Step-Down Converter MP2324 High Efficiency 2A, 24V, 500kHz Synchronous Step-Down Converter DESCRIPTION The MP2324 is a high frequency synchronous rectified step-down switch mode converter with built in internal power MOSFETs.

More information

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION SR2026 5A, 30V, 420KHz Step-Down Converter DESCRIPTION The SR2026 is a monolithic step-down switch mode converter with a built in internal power MOSFET. It achieves 5A continuous output current over a

More information

1.5MHz, 600mA Synchronous Step-Down Regulator

1.5MHz, 600mA Synchronous Step-Down Regulator 1.5MHz, 600mA Synchronous Step-Down Regulator FP6160B General Description The FP6160B is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback

More information

EUP A,40V,200KHz Step-Down Converter

EUP A,40V,200KHz Step-Down Converter 3A,40V,200KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The operates with an input

More information

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter The Future of Analog IC Technology MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter DESCRIPTION The MP2313 is a high frequency synchronous rectified step-down switch mode converter

More information

1MHz, 3A Synchronous Step-Down Switching Voltage Regulator

1MHz, 3A Synchronous Step-Down Switching Voltage Regulator FEATURES Guaranteed 3A Output Current Efficiency up to 94% Efficiency up to 80% at Light Load (10mA) Operate from 2.8V to 5.5V Supply Adjustable Output from 0.8V to VIN*0.9 Internal Soft-Start Short-Circuit

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis

Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis July 27, 1998 Rafael J. Betancourt Zamora and Thomas H. Lee Stanford Microwave Integrated Circuits Laboratory jeihgfdcbabakl Paul G. Allen

More information

A Fast-Transient Wide-Voltage-Range Digital- Controlled Buck Converter with Cycle- Controlled DPWM

A Fast-Transient Wide-Voltage-Range Digital- Controlled Buck Converter with Cycle- Controlled DPWM A Fast-Transient Wide-Voltage-Range Digital- Controlled Buck Converter with Cycle- Controlled DPWM Abstract: This paper presents a wide-voltage-range, fast-transient all-digital buck converter using a

More information

MP A, 24V, 1.4MHz Step-Down White LED Driver

MP A, 24V, 1.4MHz Step-Down White LED Driver MP2370 1.2A, 24V, 1.4MHz Step-Down White LED Driver DESCRIPTION The MP2370 is a monolithic step-down white LED driver with a built-in power MOSFET. It achieves 1.2A peak output current over a wide input

More information

MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold The Future of Analog IC Technology MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold DESCRIPTION The MP2497-A is a monolithic step-down switch mode converter with a programmable

More information

Wide Input Voltage Boost Controller

Wide Input Voltage Boost Controller Wide Input Voltage Boost Controller FEATURES Fixed Frequency 1200kHz Voltage-Mode PWM Operation Requires Tiny Inductors and Capacitors Adjustable Output Voltage up to 38V Up to 85% Efficiency Internal

More information

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators Advanced Regulating Pulse Width Modulators FEATURES Complete PWM Power Control Circuitry Uncommitted Outputs for Single-ended or Push-pull Applications Low Standby Current 8mA Typical Interchangeable with

More information

Application Notes: AN_SY8208A

Application Notes: AN_SY8208A Application Notes: High Efficiency Fast Response 8A Continuous, 16A Peak, 28V Input Synchronous Step Down Regulator General Description The SY8208A develops a high efficiency synchronous step-down DC-DC

More information

MP A, 15V, 800KHz Synchronous Buck Converter

MP A, 15V, 800KHz Synchronous Buck Converter The Future of Analog IC Technology TM TM MP0.5A, 5, 00KHz Synchronous Buck Converter DESCRIPTION The MP0 is a.5a, 00KHz synchronous buck converter designed for low voltage applications requiring high efficiency.

More information

MP2131 High Efficiency, 4 A, 5.5 V, 1.2 MHz Synchronous Step-Down Converter

MP2131 High Efficiency, 4 A, 5.5 V, 1.2 MHz Synchronous Step-Down Converter The Future of Analog IC Technology MP2131 High Efficiency, 4 A, 5.5 V, 1.2 MHz Synchronous Step-Down Converter DESCRIPTION The MP2131 is a monolithic step-down, switchmode converter with built-in internal

More information

Dual Channel PWM Controller with SCP / DTC Function

Dual Channel PWM Controller with SCP / DTC Function Dual Channel PWM Controller with SCP / DTC Function General Description The FP545A is a dual channel PWM buck controller with short circuit protection (SCP) and adjustable maximum duty control (DTC) function.

More information

MP A, 24V, 1.4MHz Step-Down White LED Driver

MP A, 24V, 1.4MHz Step-Down White LED Driver The Future of Analog IC Technology DESCRIPTION The MP2370 is a monolithic step-down white LED driver with a built-in power MOSFET. It achieves 1.2A peak output current over a wide input supply range with

More information

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS Sang-Min Yoo, Jeffrey Walling, Eum Chan Woo, David Allstot University of Washington, Seattle, WA Submission Highlight A fully-integrated

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

The Road to Integrated Power Conversion via the Switched Capacitor Approach. Prof. Seth Sanders EECS Department, UC Berkeley

The Road to Integrated Power Conversion via the Switched Capacitor Approach. Prof. Seth Sanders EECS Department, UC Berkeley The Road to Integrated Power Conversion via the Switched Capacitor Approach Prof. Seth Sanders EECS Department, UC Berkeley 1 Integrated Power Integration has benefits: Reduce passives -> save board real

More information

LED LIGHTING APPLICATION SOLUTION

LED LIGHTING APPLICATION SOLUTION LED LIGHTING APPLICATION SOLUTION 2009. V02 General Illumination LED Drivers Technology Overview Product Highlights Application Information Design Examples Overview Regardless of type, color, size or power,

More information

MP2494 2A, 55V, 100kHz Step-Down Converter

MP2494 2A, 55V, 100kHz Step-Down Converter The Future of Analog IC Technology MP2494 2A, 55V, 100kHz Step-Down Converter DESCRIPTION The MP2494 is a monolithic step-down switch mode converter. It achieves 2A continuous output current over a wide

More information

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B HIGH PERFORMANCE CURRENT MODE CONTROLLERS DESCRIPTION The UTC UC3842B/3843B are specifically designed for off-line and dc-to-dc converter applications offering

More information

23V, 2A, 600KHz Asynchronous Synchronous Step-Down DC/DC Converter

23V, 2A, 600KHz Asynchronous Synchronous Step-Down DC/DC Converter 23V, 2A, 600KHz Asynchronous Synchronous StepDown DC/DC Converter Description The is a monolithic stepdown switch mode converter with a builtin power MOSFET. It achieves 2A output current over a wide input

More information

AOZ High Voltage LED Driver IC

AOZ High Voltage LED Driver IC High Driver IC General Description The AOZ1977-1 is a high-efficiency driver controller for high voltage backlighting applications. It is designed to drive high-brightness light bar in TV applications.

More information

R5 4.75k IN OUT GND 6.3V CR1 1N4148. C8 120pF AD8517. Figure 1. SSTL Bus Termination

R5 4.75k IN OUT GND 6.3V CR1 1N4148. C8 120pF AD8517. Figure 1. SSTL Bus Termination Tracking Bus Termination Voltage Regulators by Charles Coles Introduction This application note presents both low noise linear and high efficiency switch mode solutions for the SSTL type tracking bus termination

More information

AIC1580/L. Step-Down DC/DC Controller with Shutdown FEATURES DESCRIPTION APPLICATIONS

AIC1580/L. Step-Down DC/DC Controller with Shutdown FEATURES DESCRIPTION APPLICATIONS Step-Down DC/DC Controller with Shutdown FEATURES Operation Voltage up to 15V. Simple Voltage-Mode PWM Control. Fast Transient Response. 2V and 1.3V ± 2% Feedback Voltage Reference Option. Adjustable Current

More information

1.5MHz, 2A Synchronous Step-Down Regulator

1.5MHz, 2A Synchronous Step-Down Regulator 1.5MHz, 2A Synchronous Step-Down Regulator General Description The is a high efficiency current mode synchronous buck PWM DC-DC regulator. The internal generated 0.6V precision feedback reference voltage

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER DESCRIPTION The is a fully integrated, high efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

Design of High Gain Low Voltage CMOS Comparator

Design of High Gain Low Voltage CMOS Comparator Design of High Gain Low Voltage CMOS Comparator Shahid Khan 1 1 Rustomjee Academy for Global Careers Abstract: Comparators used in most of the analog circuits like analog to digital converters, switching

More information