Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland

Size: px
Start display at page:

Download "Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland"

Transcription

1 Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland Center for proton therapy - PSI Gantry 2, the next generation gantry of PSI: a new system for promoting pencil beam scanning as a universal beam delivery technique IOP Half-Day Meeting on Hadron Therapy Friday 10 June 2011 Manchester

2 Layout of the presentation Gantry 1 experience Facility expansion at PSI - new SC cyclotron The new Gantry 2 of PSI Layout Beam optics and beam size Energy variations with the beam Sweeper magnets calibration Advanced beam scanning techniques Possible future clinical use of Gantry 2 Scanning as a universal beam delievery Page 2

3 Early 90's GANTRY 1 USED FOR PATIENT TREATMENTS SINCE 1996 GOAL in 1989 SHOW THE BASIC FEASIBILITY OF PENCIL BEAM SCANNING Page 3

4 The long term experience of PSI of using scanning Gnatry 1 designed in 1991 for protons On the basis of the scanning experience with pion therapy using inverse planning - based on CT data Gantry 1 Page 4

5 Upstream scanning System characteristics of Gantry 1 Magnetic scanning started before the last bending magnet Eccentric mounting of patient table on the gantry front wheel (with counter-rotation) Gantry radius reduced to 2 m Still the smallest proton gantry in the world α rotation β rotation φ rotation Page 5

6 Pencil beam scanning Small pencil beam: 3 mm σ (7-8 mm FWHM) Cartesian scanning (infinite SSD) Discrete spot scanning step and shoot,method - on a 5 mm grid From 1996 until May 2008 the only scanning gantry in the world Elements of scanning: Dose Monitor+Kicker X Sweeper magnet 5 ms / step fast Y Range shifter 30 ms average Z Patient table 1 cm/s slow 100 us reaction time Page 6

7 Clinical use of GANTRY 1 In use since1996 Full fractionation ~30 fractions Treatments 8:00 16:00 Max 19 patients/day (2.5 per hour) 2.8 fields/fractions in average 1/3 of patients are children Under anesthesia 1/3 of treatments are IMPT Courtesy of B. Timmermann Weak points of Gantry 1 Table motion is part of scanning Not possible to use collimators Not possible to apply repainting We treat only non moving targets! Page 7

8 Main goal: Delivery of IMPT and IGPT Dose shaping within the target IMPT (intensity modulated PT) The term of comparison with IMRT (conventional therapy) Biological targeting (image guided proton therapy) Intentional non-homogeneous dose distributions Dose proportional to the tumor activity (biological signal) The topic for the future Courtesy of A. Lomax PSI Page 8

9 Major disadvantage of scanning : organ motion sensitivity Interference of organ motion with the scanning sequence M.Phillips PSI 1992 Disturbance of the dose homogeneity within the target With Gantry 1 we treat only immobilized lesions attached to bony structures Tumors in the head, spinal chord and low pelvis We accept only movements < + -2 mm for treatments with full fractionation! Can we overcome this drawback? Possible remedies : Fast Scanning (Repainting) Gating Tracking? or a combination of those the possible points to be developed with Gantry 2 The point of scanning to be improved Page 9

10 2000 EXPANSION OF THE PROTON FACILITY AT PSI SUPERCONDUCTING CYCLOTRON FAST DEGRADER LAMINATED BEAM LINES GOALS: Stable DC beam Modulation of the beam intensity at the ion source Very fast energy changes Page 10

11 Layout of the newly expanded proton facility COMET - dedicated superconducting cyclotron [ACCEL - design H. Blosser] Beam for Gantry 1 all the year through patients treatments restarted in February 2007 no shut-downs since August 07 Horizontal beam line for OPTIS 2 transfer from OPTIS 1 last year Next generation scanning gantry : Gantry 2 1. patient planned for 2012 Medical cyclotron Exp. Area (PIF) OPTIS 2 Gantry 2 Disconnected from PSI ring cyclotron in 2006 Gantry 1 Page 11

12 Facility specifications were derived for the new Gantry 2 Super-conducting cyclotron Very stable beam at the ion source Aiming at 2-3% at the µs scale Deflector plate in the first orbit Dynamic control of the beam intensity µs time scale Fast degrader (moving carbon wedges) Continuous choice of the beam energy Beam line with laminated magnets Providing fast changes of beam energy Page 12

13 Excellent beam current stability an example Change of paradigm of testing the beam monitors Use the inherent stability of the beam to check the fine tuning of the electronics (capacitive matching) Result: improved linearity of the dose < 0.5% down to a 0.1 Gy dose Ideal beam for scanning with 100% duty factor Dose measurements for diff. Plugin configurations 600 µs 33 nf 1.01 m e a s u re d D o s e /m e a s u re d D o s 1 G y applied Dose [cgy] ISO, 22pf ISO, 47 pf ISO, 33 pf ISO, 39 pf 22 nf Page 13

14 2005 A NEW PSI GANTRY - GANTRY 2 MAIN GOAL DEVELOP FURTHER SCANNING TO BECOME A UNIVERSAL BEAM DELIVERY TECHNIQUE Page 14

15 GANTRY 2 TOPIC 1: INNOVATIVE GANTRY LAYOUT READINESS FOR IMAGE GUIDED PROTON THERAPY VERY EFFICIENT PATIENT HANDLING Page 15

16 Design started from the patient table ANIMATION Beam Line Support Bearing axle From -30 to +180 Patient table Room with fixed floor 0 to +180 would have been a better choice (cheaper) Page 16

17 Layout of the Gantry 2 room: patient table, compact nozzle Small compact nozzle Same patient table as at RPTC in Munich (Schär Engineering) Easy access to the patient table on fixed floor Fixed walls and ceiling for mounting commercial equipment (Vision RT?) A system open on both sides - lateral and front - Optimal for using an in-room sliding CT Page 17

18 In-room sliding CT - within reach of the patient table Beginning of IGPT? Patient positioning (tumor in soft tissues region) Setup for treating moving targets - 4D CT (relation external gate - internal motion) Page 18

19 BEV X-ray - synchronized with proton beam delivery BEV imaging - equivalent to portal imaging with photons Very large field-of-view (26 cm x 16 cm) not masked by equipment or collimators in the beam path QA control of gating and tracking (scanning + pulsed X-rays) Fluoroscopy mode Beam guidance? Proton beam Sweepers UPSTREAM SCANNING Bend and scan X rays tube Yoke hole Bending magnet Scan and bend Sweeper or Scatterer IGPT nozzle Patient Imager a) compact gantry b) long throw gantry Collimator Page 19

20 BEV - imager Check patient position at the isocenter Photograph of the retractable arm for holding the X-ray panel behind the patient on the side opposite to the nozzle (BEV X-ray). Page 20

21 GANTRY 2 TOPIC 2: PENCIL BEAM AND BEAM OPTICS GOALS: SMALL PENCIL BEAM FOR PRECISION THERAPY PARALLELISM OF SCANNING Page 21

22 GANTRY 2 beam optics X M A 3 2 Q 6 W P T A 3 P M 1 Q C Q 4 S Q 5 Q 3 M2 H Q 7 W U 3.2 m S Q 1 Q 2 A 1 SPECIFICATIONS Rotational symmetric (large) phase space +- 3mm mrad % dp/p Complete achromatism Scanning-invariant beam focus Orthogonal (x-,y-) focal planes in T and U Focus to focus with 1:1 imaging from the coupling point of the gantry to the iso-center 2D- parallelism of scanning (in T and U) (on Gantry 1 only U) Page 22

23 GANTRY 2 beam optics (TRANSPORT and RAYTRACE) Q C A 1 A 2 W T W U H S Double parallel scanning A 3 Point to point focus Achromatic Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Double parallel scanning TRANSPORT beam envelopes through the Gantry 2 Page 23

24 The difficult piece: the last 90 bending magnet A big beast - 34 tons 15 cm gap To accommodate a scan area of 20 x 12 cm Lamination leaks but in the end Vacuum problems well solved! Photograph of the mounting of the 90 bending magnet. Integrated vacuum chamber embracing the poles of the magnet 180 tons mechanical isocenter within mm Page 24

25 Compact optimized nozzle Vacuum up to the patient Sharp pencil beam - 3 mm sigma Two monitors and a strip monitor 2 mm strips (TERA collaboration) Removable pre-absorber IN and OUT of beam For ranges below 4 cm Telescopic motion of the nozzle To reduce air gap (keep patient at isocenter) Option to add collimators and compensators To shield OAR on top of scanning To simulate passive scattering with a scanning beam Collision protection to treat patients remotely (multiple fields in one go) Page 25

26 Results: pencil beam size (on axis) Minimize material in the nozzle for having a sharp lateral fall-off beam size between mm sigma at all energies ( MeV) Region MeV 0.6 Adding piece by piece the materials in the nozzle Page 26

27 GANTRY 2 TOPIC 3 : ENERGY VARIATIONS WITH THE BEAM LINE COMPENSATED INTENSITY-ENERGY LOSSES VERY FAST ENERGY CHANGES Page 27

28 Compensation of beam losses in the range MeV na Constant ratio SC cyclotron Degrader Beam analysis Gantry 2 Coupling point na Rate Monitor Collimators for Intensity suppression khz Goal : reserve the use of the deflector plate for intensity modulated dose painting Energy [MeV] Page 28

29 Taking into account hysteresis effects ( MeV) Energy loop Red: up-down Blue: down-up Uncorrected 1 mm Corrected Page 29

30 With very fast energy changes. 80 ms But - we observe Slow change of lateral beam position after big energy changes in the range MeV 1-3 mm shift with exponential decay with decay time of ~2 s < 0.3 mm position change after small energy changes within the SOBP We plan to correct these shift with sweeper offsets as a function of the time after the last energy change Strategy: Fixed targets - range precision of < 0.5 mm while working with full ramp MeV Moving targets - repainting - precision ~ 1mm repaint only the SOBP up and down VIDEO Scintillator block the beam of Gantry 2 seen with a TV camera Page 30

31 GANTRY 2 TOPIC 4 : SWEEPER MAGNETS COMMISSIONING ISSUES NON LINEARITIES OF THE SWEEPERS Page 31

32 Need of a very precise mapping of the sweeper's action MEV 210 MeV MeV 150 MEV T (cm) 0 T (cm) U (cm) 80 MeV 8 80 MEV T (cm) U (cm) U (cm) Measured (red) and calculated (blue) spot maps of the (linear input) action of the sweeper magnets on the scanned beam position. The non linearities are due to a curvature of the effective boundary of the magnetic field of the 90 bending magnet which is changing with energy (changing sign) Page 32

33 After a proper mapping of the sweepers 70 MEV 120 MEV 170 MEV 220 MEV Beam spots (2 cm steps) at the isocenter covering the scan region of 12 cm x 20 cm Page 33

34 GANTRY 2 Topic 5 : the main goal of Gantry 2 NEW ADVANCED BEAM DELIVERY TECHNIQUES TO PROMOTE SCANNING AS A UNIVERSAL BEAM DELIVERY TECHNIQUE Page 34

35 Aiming for highest repainting From spots For reducing organ motion errors Goal - Fast painting with volumetric repainting Painting lines < 5-10 ms per line (10cm + line change) Painting energy layers 200 ms per plane (20 lines x 5 mm) Change of energy (100 ms - 5mm range) Painting of volume 6 s per liter (20 energies at 5mm steps) Volumetric repainting capability (aim) repaintings / liter in 2 minutes To lines To contours Page 35

36 Use of FPGAs for dose painting Vertical deflector plate for intensity modulation Installed inside accelerator after the first turn close to the ion source Fast intensity control at the time scale of 100 µs Requires flexible control system Synchronous control of fast actuators (sweepers, deflector plate) with 100 khz Tabulated dose delivery based on state-of-the-art electronics (FPGA) Example: Painting shaped energy iso-layer Page 36

37 Dose delivery as a function of the real time Time driven beam delivery Beam path downloaded as tables of the sweepers U - T and of the beam intensity I Dose control with a feed-back loop: Monitor 1 required dose -> vertical deflector plate A) If sweeper speed is the limit we use variable intensity (IM) B) If beam dose rate is the limit we use variable sweeper speed (SSM) C) or we use both! Full range of dynamic dose control from zero IM to any dose SSM Delivered MUs Dose linearity of simple T-lines Required Dose 5ms - 10 cm lines - painted with IM 23 times Max T speed Variable intensity Page 37

38 feed-forward only Video showing fast conformal line scanning VIDEO Page 38

39 GANTRY 2 POSSIBLE CLINICAL USE OF GANTRY 2 GOAL: PROMOTE SCANNING AS A UNIVERSAL BEAM DELIVERY TECHNIQUE make scattering obsolete Page 39

40 Often required Improve lateral fall-off for treating static targets Prostate sharp lateral fall-off at the boundary between tumor and sensitive structure at high energy scanning alone is better (edge enhancement with pencil beam) at low energy scanning with added collimation better (beam size limitations) Scanning with varying beam energy superior to scattering? less material in the beam path Brain stem FWHM mm Idealized scattering (zero phase space) Realistic scanning Factor 1.4 gain Difference Gauss to error-function (1.7) Scanning with collimation better Scanning alone better Range mm Page 40

41 Very big tumors Combine the use of fast scanning with patient table displacements Needs remote control of the patient table (collision detection) Take advantage of the parallelism of the beam trivial patching - shift table - and apply intensity filter to spot pattern Medulloblastoma Dorsal irradiation VIDEO Example: a paediatric case treated in 2004 with Gantry 1 Page 41

42 Moderately moving targets (~5 mm) Discrete spot scanning applied with iso-layered repainting (max dose per spot visit) Treatments in the trunk (pancreas, cervix, colon), breast, lymph nodes, etc. Advantage of having fast energy changes -> Volumetric repainting FAST SCANNING IS MORE THAN JUST TARGET REPEATING COMPARE G1 spots, scaled G2 spots, scaled G2 spots, iso-layer G2 lines, scaled Pancreas Rectum Breast From Simulation of repainting strategies S. Zenklusen's thesis work PMB 55 (2010) Page 42

43 Largely moving targets Volume painting within a single breath hold? (repeated) Using Conformal line painting Speed of painting Gy in a sphere of ½ liter (17 layers) in 7 secs If not working, Gating Lung liver 7s Page 43

44 Simulated scattering Dose shaping using compensators But applying uniform scanning Energy layer with homogeneous fluence Magnetic line scanning at max. speed Very high repainting number Collimator is optional As a sub-mode of conformal scanning To simulate scattering on a scanning-gantry To render scattering based gantries obsolete Retinoblastoma? Page 44

45 Feasibility demonstration of "simulated scattering" 8 cm diameter sphere Field shape = target projection minimal neutron background Variable modulation of the range Layer shrinking Parallel beam no compensator dose errors Highly repainted Distal layer: repainted 48 times in 30s From S. Zenklusen PhD - Medical Physics 2011 Page 45

46 Gantry 2 coming soon On behalf of the Gantry 2 team D. Meer, C. Bula, S.Safai, S. König, M.Rejzek, S. Zenklusen. THANK YOU Page 46

Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland

Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland Pedroni Eros Paul Scherrer Institute - Villigen PSI, Switzerland Center for proton therapy - PSI GANTRY DESIGN AND RECENT EXPERIENCE AT PSI 2nd Workshop on Hadron Beam Therapy of Cancer ERICE May 23 th,

More information

Gantry design and experience at PSI

Gantry design and experience at PSI Gantry design and experience at PSI Eros Pedroni for the R&D Technology Team Center for Proton Therapy Paul Scherrer Institute Villigen-PSI SWITZERLAND Workshop on Hadron Beam Therapy of Cancer Erice April

More information

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron The VARIAN 250 MeV Superconducting Compact Proton Cyclotron VARIAN Medical Systems Particle Therapy GmbH Friedrich-Ebert-Str. 1 D-51429 BERGISCH GLADBACH GERMANY OUTLINE 1. Why having a Superconducting

More information

Beam Delivery Techniques: Passive Scattering Proton Beams. Zuofeng Li and Roelf Slopsema University of Florida Proton Therapy Institute

Beam Delivery Techniques: Passive Scattering Proton Beams. Zuofeng Li and Roelf Slopsema University of Florida Proton Therapy Institute Beam Delivery Techniques: Passive Scattering Proton Beams Zuofeng Li and Roelf Slopsema University of Florida Proton Therapy Institute 1 Disclaimer UFPTI uses IBA Proton Therapy System Proton Beam: production,

More information

HITACHI Proton Therapy System with Spot Scanning

HITACHI Proton Therapy System with Spot Scanning Workshop on Hadron Therapy of Cancer 27 th April, Erice, Sicily, Italy HITACHI Proton Therapy System with Spot Scanning Kazuo Hiramoto Energy & Environmental Systems Laboratory, Hitachi, Ltd. Contents

More information

Evaluation of STPA in the Safety Analysis of the Gantry 2 Proton Radiation Therapy System Martin Rejzek, Paul Scherrer Institute, Switzerland

Evaluation of STPA in the Safety Analysis of the Gantry 2 Proton Radiation Therapy System Martin Rejzek, Paul Scherrer Institute, Switzerland Evaluation of STPA in the Safety Analysis of the Gantry 2 Proton Radiation Therapy System Martin Rejzek, Paul Scherrer Institute, Switzerland 11.04.2012 STAMP/STPA Workshop - Massachusetts Institute of

More information

Monte Carlo study on a new concept of a scanning photon beam system for IMRT

Monte Carlo study on a new concept of a scanning photon beam system for IMRT NUKLEONIKA 2011;56(4):291 297 ORIGINAL PAPER Monte Carlo study on a new concept of a scanning photon beam system for IMRT Anna M. Wysocka-Rabin, Günter H. Hartmann Abstract. Intensity-modulated radiation

More information

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center A. Garonna, A. Wastl, C. Kurfuerst, T. Kulenkampff, C. Schmitzer, L. Penescu, M. Pivi, M. Kronberger, F. Osmic, P. Urschuetz On

More information

Initial setup and subsequent temporal position monitoring using implanted RF transponders

Initial setup and subsequent temporal position monitoring using implanted RF transponders Initial setup and subsequent temporal position monitoring using implanted RF transponders James Balter, Ph.D. University of Michigan Has financial interest in Calypso Medical Technologies Acknowledgements

More information

CyberKnife Iris Beam QA using Fluence Divergence

CyberKnife Iris Beam QA using Fluence Divergence CyberKnife Iris Beam QA using Fluence Divergence Ronald Berg, Ph.D., Jesse McKay, M.S. and Brett Nelson, M.S. Erlanger Medical Center and Logos Systems, Scotts Valley, CA Introduction The CyberKnife radiosurgery

More information

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K,

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K, New Tracking Gantry-Synchrotron Idea G H Rees, ASTeC, RAL, U.K, Scheme makes use of the following: simple synchrotron and gantry magnet lattices series connection of magnets for 5 Hz tracking one main

More information

Aperture Based Inverse Planning AAPM Summer School 2003

Aperture Based Inverse Planning AAPM Summer School 2003 Aperture Based Inverse Planning AAPM Summer School 003 D.M. Shepard, M.A. Earl, Y. Xiao, C.X. Yu Acknowledgements Ziping Jiang Allen Li Shahid Naqvi James Galvin Di Yan Prowess, Inc. University of Maryland

More information

IMRT Delivery System QA. IMRT Dose Delivery. Acceptance testing. Why: specific tests for IMRT? Accuracy of leaf positioning (gaps) MLC Alignment

IMRT Delivery System QA. IMRT Dose Delivery. Acceptance testing. Why: specific tests for IMRT? Accuracy of leaf positioning (gaps) MLC Alignment 1 IMRT Delivery System Q Thomas LoSasso, PhD Memorial Sloan Kettering Cancer Center IMRT Dose Delivery cceptance testing Commissioning Quality assurance Verification Q Why: specific tests for IMRT? 2.

More information

The Current State of EPID-Based Linear Accelerator Quality Assurance. Disclosures. Purpose of this First Talk 8/3/2017

The Current State of EPID-Based Linear Accelerator Quality Assurance. Disclosures. Purpose of this First Talk 8/3/2017 The Current State of EPID-Based Linear Accelerator Quality Assurance Timothy Ritter, PhD, DABR, FAAPM 1 Disclosures Employed by the Veterans Health Administration Faculty appointment with the University

More information

The on-line detectors of the beam delivery system for the Centro Nazionale di Adroterapia Oncologica(CNAO)

The on-line detectors of the beam delivery system for the Centro Nazionale di Adroterapia Oncologica(CNAO) The on-line detectors of the beam delivery system for the Centro Nazionale di Adroterapia Oncologica(CNAO) A. Ansarinejad1,2, A. Attili1, F. Bourhaleb2,R. Cirio1,2,M. Donetti1,3, M. A. Garella1, S. Giordanengo1,

More information

Volumetric Modulated Arc Therapy. David Shepard Swedish Cancer Institute Seattle, WA

Volumetric Modulated Arc Therapy. David Shepard Swedish Cancer Institute Seattle, WA Volumetric Modulated Arc Therapy David Shepard Swedish Cancer Institute Seattle, WA Disclaimer Our VMAT work has been sponsored in part by Elekta. Outline David Shepard VMAT Basics and VMAT Plan Quality

More information

SUPERCONDUCTING GANTRY AND OTHER DEVELOPMENTS AT HIMAC

SUPERCONDUCTING GANTRY AND OTHER DEVELOPMENTS AT HIMAC SUPERCONDUCTING GANTRY AND OTHER DEVELOPMENTS AT HIMAC Y. Iwata *, K. Noda, T. Shirai, T. Murakami, T. Fujita, T. Furukawa, K. Mizushima, Y. Hara, S. Suzuki, S. Sato, and K. Shouda, NIRS, 4-9-1 Anagawa,

More information

A Fast Monolithic System for Proton Imaging. Fritz DeJongh ProtonVDA Inc October 2017

A Fast Monolithic System for Proton Imaging. Fritz DeJongh ProtonVDA Inc October 2017 A Fast Monolithic System for Proton Imaging Fritz DeJongh ProtonVDA Inc October 2017 Disclosures I am a cofounder and co-owner of ProtonVDA Inc We hold intellectual property rights on our proton imaging

More information

COMPUTED TOMOGRAPHY 1

COMPUTED TOMOGRAPHY 1 COMPUTED TOMOGRAPHY 1 Why CT? Conventional X ray picture of a chest 2 Introduction Why CT? In a normal X-ray picture, most soft tissue doesn't show up clearly. To focus in on organs, or to examine the

More information

NIRS accelerator present and future activities

NIRS accelerator present and future activities NIRS accelerator present and future activities Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences 2 nd Workshop on Hadron Therapy of Cancer, Erice, 23rd

More information

The Current Cyclotron Development Activities at CIAE. Current acyclotron

The Current Cyclotron Development Activities at CIAE. Current acyclotron Current Cyclotron Development Activities Shizhong An, Tianjue Zhang China Institute of Atomic Energy (CIAE) Beijing 2010-11.22 Greatful acknowledged is very fruitful and long lasting collaboration with

More information

Distributed source x-ray tube technology for tomosynthesis imaging

Distributed source x-ray tube technology for tomosynthesis imaging Distributed source x-ray tube technology for tomosynthesis imaging Authors: F. Sprenger a*, X. Calderon-Colon b, Y. Cheng a, K. Englestad a, J. Lu b, J. Maltz c, A. Paidi c, X. Qian b, D. Spronk a, S.

More information

Superconducting Medical Accelerators at IBA

Superconducting Medical Accelerators at IBA Superconducting Medical Accelerators at IBA Wiel Kleeven and Eric Forton on behalf of IBA 1), AIMA 2) JINR 3) ASG 4) Sigmaphi 5) 1) Ion Beam Applications, Louvain-la-Neuve, Belgium 2) AIMA, Developpement,

More information

Beam Production, Characteristics and Shaping

Beam Production, Characteristics and Shaping Beam Production, Characteristics and Shaping Dr. Manfred Sassowsky Outline X-ray production 60 Co units Linear Accelerators Beam characteristics Beam shaping Beam Production, Characteristics and Shaping

More information

MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and mas with APR menu programmed.

MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and mas with APR menu programmed. R/F TV X-RAY SYSTEM DIAGNOSTIC RADIOGRAPHIC FLUOROSCOPIC TV SYSTEM MXHF-1500RF SYSTEM OUTLINE Product Data No. 041021-01 MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and

More information

SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS

SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS SUBCHAPTER 14. THERAPEUTIC INSTALLATIONS 7:28-14.1 Scope (a) This subchapter covers therapeutic installations used in the healing arts. These therapeutic installations include x-ray, accelerator and teletherapy

More information

1.8 MW Upgrade of the PSI Proton Accelerator Facility

1.8 MW Upgrade of the PSI Proton Accelerator Facility 1.8 MW Upgrade of the PSI Proton Accelerator Facility Pierre A. Schmelzbach for the PSI Accelerator Divisions This talk: analyzes the potential for improvements from the ion source to the spallation target

More information

8/3/2016. The EPID Strikes Back. Novel Applications for Current EPID Technology. Joerg Rottmann, PhD. Disclosures and acknowledgements

8/3/2016. The EPID Strikes Back. Novel Applications for Current EPID Technology. Joerg Rottmann, PhD. Disclosures and acknowledgements The EPID Strikes Back Joerg Rottmann Brigham and Women s Hospital / Dana-Farber Cancer Institute Harvard Medical School Disclosures and acknowledgements Disclosures Varian MRA grant Acknowledgements Boston

More information

3D Diode Array Commissioning: Building Confidence in 3D QA Technology

3D Diode Array Commissioning: Building Confidence in 3D QA Technology 3D Diode Array Commissioning: Building Confidence in 3D QA Technology Caroline Yount, MS CANCER CENTER 3D QA The complex three-dimensional (3D) shapes of intensity modulated radiation therapy (IMRT) dose

More information

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist Proton beam for UCN UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist PSI Accelerator Division Department of Large Research Facilities Introduction Important parameters of the PSI proton

More information

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images Aiping Ding, Bin Han, Lei Wang, Lei Xing Department of Radiation Oncology, Stanford University School of

More information

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility the Large Hadron Collider project CERN CH-2 Geneva 23 Switzerland CERN Div./Group RadWG EDMS Document No. xxxxx Radiation Test Report Paul Scherer Institute Proton Irradiation Facility Responsibility Tested

More information

Thermionic x-ray. Alternative technologies. Electron Field Emission. CNT Based Field Emission X-Ray Source

Thermionic x-ray. Alternative technologies. Electron Field Emission. CNT Based Field Emission X-Ray Source Energy Level (ev) Multi-beam x-ray source array based on carbon nanotube field emission O. Zhou, JP Lu, X. Calderon-Colon, X. Qian, G. Yang, G. Cao, E. Gidcumb, A. Tucker, J. Shan University of North Carolina

More information

OPTIMIZED MAGNET FOR A 250 MEV PROTON RADIOTHERAPY CYCLOTRON

OPTIMIZED MAGNET FOR A 250 MEV PROTON RADIOTHERAPY CYCLOTRON OPTIMIZED MAGNET FOR A 250 MEV PROTON RADIOTHERAPY CYCLOTRON J. Kim and H. Blosser 1. Introduction The design of a K250 superconducting cyclotron has been recently improved from the original design of

More information

CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY

CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY 14 CHAPTER 2 COMMISSIONING OF KILO-VOLTAGE CONE BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED RADIOTHERAPY 2.1 INTRODUCTION kv-cbct integrated with linear accelerators as a tool for IGRT, was developed to

More information

QC Testing for Computed Tomography (CT) Scanner

QC Testing for Computed Tomography (CT) Scanner QC Testing for Computed Tomography (CT) Scanner QA - Quality Assurance All planned and systematic actions needed to provide confidence on a structure, system or component. all-encompassing program, including

More information

ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS. J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers.

ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS. J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers. 295 ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers. CERN, CH-1211 Geneva 23, Switzerland Introduction Electromagnets

More information

Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010

Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010 Commissioning and Calibrating a Linear Accelerator State-of-the-Art in 2010 Indra J. Das, PhD, FACR Department of Radiation Oncology Indiana University of School of Medicine & Midwest Proton Radiation

More information

Characterization, Commissioning and Evaluation of Delta 4 IMRT QA System. Ram Sadagopan 1 UTMD Anderson Cancer Center Houston, TX.

Characterization, Commissioning and Evaluation of Delta 4 IMRT QA System. Ram Sadagopan 1 UTMD Anderson Cancer Center Houston, TX. Characterization, Commissioning and Evaluation of Delta 4 IMRT QA System Ram Sadagopan 1 UTMD Anderson Cancer Center Houston, TX. 1 Acknowledgements Collaborators: Jose Bencomo, Rafael. M. Landrove, Peter

More information

Study the Compact Photon Source Radiation Using FLUKA

Study the Compact Photon Source Radiation Using FLUKA Study the Compact Photon Source Radiation Using FLUKA Jixie Zhang, Donal Day, Rolf Ent Nov 30, 2017 This is a summary of radiation studies done for both the UVa target alone (for electron and photon beams)

More information

Prompt-Gamma Based Range Verification in Particle Therapy: New prospects (also) for 4D?

Prompt-Gamma Based Range Verification in Particle Therapy: New prospects (also) for 4D? Prompt-Gamma Based Range Verification in Particle Therapy: New prospects (also) for 4D? Guntram Pausch 1-3 1 OncoRay National Center for Radiation Research in Oncology, Dresden 2 Technische Universität

More information

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian Yerevan Physics Institute Yerevan Physics Institute S.Arutunian, VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION BIW 2008, Lake Tahoe, USA

More information

COMMISSIONING OF THE ACCEL 250 MEV PROTON CYCLOTRON

COMMISSIONING OF THE ACCEL 250 MEV PROTON CYCLOTRON COMMISSIONING OF THE ACCEL 250 MEV PROTON CYCLOTRON A.E. Geisler, J. Hottenbacher, H.-U. Klein, D. Krischel, H. Röcken, M. Schillo, T. Stephani, J.H. Timmer, Accel Instruments GmbH, Bergisch Gladbach,

More information

Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy

Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy Thomas LoSasso, a) Chen-Shou Chui, and C. Clifton Ling Department

More information

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 4, Sep 2013, 1-6 Impact Journals MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION

More information

I. Introduction.

I. Introduction. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 1, 2014 Accuracy of measuring half- and quarter-value layers and appropriate aperture width of a convenient method using a lead-covered case

More information

Circumference 187 m (bending radius = 8.66 m)

Circumference 187 m (bending radius = 8.66 m) 4. Specifications of the Accelerators Table 1. General parameters of the PF storage ring. Energy 2.5 GeV (max 3.0 GeV) Initial stored current multi-bunch 450 ma (max 500 ma at 2.5GeV) single bunch 70 ma

More information

Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator

Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator Isocenter and Field of View Accuracy Measurement Software for Linear Accelerator Aleksei E. Zhdanov 1 and Leonid G. Dorosinskiy 1 Ural Federal University named after the first President of Russia B. N.

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Michael W. Kissick, a Sarah A. Boswell, Robert Jeraj, and T. Rockwell Mackie Department of Medical

More information

PD233: Design of Biomedical Devices and Systems

PD233: Design of Biomedical Devices and Systems PD233: Design of Biomedical Devices and Systems (Lecture-8 Medical Imaging Systems) (Imaging Systems Basics, X-ray and CT) Dr. Manish Arora CPDM, IISc Course Website: http://cpdm.iisc.ac.in/utsaah/courses/

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

Electron Linacs for Cargo Inspection and Other Industrial Applications

Electron Linacs for Cargo Inspection and Other Industrial Applications Electron Linacs for Cargo Inspection and Other Industrial Applications Chuanxiang Tang 1, Huaibi Chen 1,Yaohong Liu 2 Tang.xuh@tsinghua.edu.cn 1 Department of Engineering Physics, Tsinghua U., Beijing

More information

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours X rays X-ray properties X-rays are part of the electromagnetic spectrum. X-rays have a wavelength of the same order of magnitude as the diameter of an atom. X-rays are ionising. Different materials absorb

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University Outline Experimental apparatus, current status Installation plan Draft run plan Summary PRad Experimental Setup Main detectors and elements:

More information

X-RAYS - NO UNAUTHORISED ENTRY

X-RAYS - NO UNAUTHORISED ENTRY Licencing of premises Premises Refer Guidelines A radiation warning sign and warning notice, X-RAYS - NO UNAUTHORISED ENTRY must be displayed at all entrances leading to the rooms where x-ray units are

More information

Bunch-Shape Measurements at PSI s High Power Cyclotrons and Proton Beam Lines

Bunch-Shape Measurements at PSI s High Power Cyclotrons and Proton Beam Lines Bunch-Shape Measurements at PSI s High Power Cyclotrons and Proton Beam Lines Rudolf Dölling, Paul Scherrer Institut, CH-5232 Villigen-PSI technique - measurement locations, measurement principle - setup

More information

Beam Transfer to Targets

Beam Transfer to Targets Volume III Update Report Chapter 3 Beam Transfer to Targets 3-1 Authors and Contributors Beam Transfer to Targets The executive summary was prepared by: R Maier 1 and KN Clausen 3 on behalf of the Beam

More information

Design and performance of a system for two-dimensional readout of gas electron multiplier detectors for proton range radiography

Design and performance of a system for two-dimensional readout of gas electron multiplier detectors for proton range radiography NUKLEONIKA 2012;57(4):513 519 ORIGINAL PAPER Design and performance of a system for two-dimensional readout of gas electron multiplier detectors for proton range radiography Piotr Wiącek, Władysław Dąbrowski,

More information

Norbert Meyners, DESY. LCTW 09 Orsay, Nov. 2009

Norbert Meyners, DESY. LCTW 09 Orsay, Nov. 2009 DESY Test Beam Facilities - Status and Plan Norbert Meyners, DESY LCTW 09 Orsay, 3.-5. Nov. 2009 DESY Test Beam DESY provides three test beam lines with 1-5 (-6) GeV/c electrons Very simple system, no

More information

JEDI. Status of the commissioning of the waveguide RF Wien Filter

JEDI. Status of the commissioning of the waveguide RF Wien Filter COSY Beam Time Request For Lab. use Exp. No.: Session No. E 005.4 7 Collaboration: JEDI Status of the commissioning of the waveguide RF Wien Filter Spokespersons for the beam time: Ralf Gebel (Jülich)

More information

The trigger system of the muon spectrometer of the ALICE experiment at the LHC

The trigger system of the muon spectrometer of the ALICE experiment at the LHC The trigger system of the muon spectrometer of the ALICE experiment at the LHC Francesco Bossù for the ALICE collaboration University and INFN of Turin Siena, 09 June 2010 Outline 1 Introduction 2 Muon

More information

The CMS Silicon Strip Tracker and its Electronic Readout

The CMS Silicon Strip Tracker and its Electronic Readout The CMS Silicon Strip Tracker and its Electronic Readout Markus Friedl Dissertation May 2001 M. Friedl The CMS Silicon Strip Tracker and its Electronic Readout 2 Introduction LHC Large Hadron Collider:

More information

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT Ji-Gwang Hwang, Tae-Keun Yang, Seon Yeong Noh Korea Institute of Radiological and Medical Sciences,

More information

Phantoms in Medical Physics (RT) U. Oelfke. Division of Radiotherapy & Imaging

Phantoms in Medical Physics (RT) U. Oelfke. Division of Radiotherapy & Imaging in partnership with Phantoms in Medical Physics (RT) U. Oelfke Division of Radiotherapy & Imaging uwe.oelfke@icr.ac.uk Making the discoveries that defeat cancer 1. Introduction What is a phantom? Wiki:

More information

QUALITY CONTROL PHANTOMS FOR RADIOTHERAPY AND MEDICAL IMAGING

QUALITY CONTROL PHANTOMS FOR RADIOTHERAPY AND MEDICAL IMAGING 1 QUALITY CONTROL PHANTOMS FOR RADIOTHERAPY AND MEDICAL IMAGING QualiFormeD Phantoms A selection of test objects facilitating regulatory quality controls in radiation therapy and medical imaging Practical,

More information

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT Quality control of Gamma Camera By Dr/ Ibrahim Elsayed Saad 242 NMT WHAT IS QUALITY? The quality of a practice is to fulfill the expectations and demands from: Patient Clinicain Your self Quality assurance

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

WE BRING QUALITY TO LIGHT DTS 500. Positioner Systems AUTOMATED DISPLAY AND LIGHT MEASUREMENT

WE BRING QUALITY TO LIGHT DTS 500. Positioner Systems AUTOMATED DISPLAY AND LIGHT MEASUREMENT WE BRING QUALITY TO LIGHT DTS 500 Positioner Systems AUTOMATED DISPLAY AND LIGHT MEASUREMENT Standalone XYZ positioners (260 to 560 mm max. travel range) Standalone 2-axis goniometers (up to 70 cm diagonal

More information

A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup

A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009 A positioning QA procedure for 2D/2D (kv/mv) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup Huaiqun Guan,

More information

Beam Production, characteristics and shaping

Beam Production, characteristics and shaping Kantonsspital Luzern Beam Production, characteristics and shaping Dr. Manfred Sassowsky Cantonal Hospital Lucerne (KSL) Institute for Radio-Oncology 3.9.2007 X-ray production 60 Co units Linear Accelerators

More information

Development of toroidal bending magnets for Hadron Beam Therapy. L. Bromberg, P. Michael, J.V. Minervini MIT E. Pearson, E.

Development of toroidal bending magnets for Hadron Beam Therapy. L. Bromberg, P. Michael, J.V. Minervini MIT E. Pearson, E. Development of toroidal bending magnets for Hadron Beam Therapy L. Bromberg, P. Michael, J.V. Minervini MIT E. Pearson, E. Forton IBA IntroducEon Toroidal magnets Array of idenecal coils, revolved around

More information

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm M. Vretenar, CERN for the HF-RFQ Working Group (V.A. Dimov, M. Garlasché, A. Grudiev, B. Koubek, A.M. Lombardi, S. Mathot, D. Mazur, E. Montesinos, M. Timmins, M. Vretenar) 1 1988-92 Linac2 RFQ2 202 MHz

More information

Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array

Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array Evaluation of dosimetry parameters of photons and electron beams using a linear ionization chamber array José A. Bencomo, * Geoffrey Ibbott, Seungsoo Lee, and Joao A. Borges Department of Radiation Physics.

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

The CMS Outer HCAL SiPM Upgrade.

The CMS Outer HCAL SiPM Upgrade. The CMS Outer HCAL SiPM Upgrade. Artur Lobanov on behalf of the CMS collaboration DESY Hamburg CALOR 2014, Gießen, 7th April 2014 Outline > CMS Hadron Outer Calorimeter > Commissioning > Cosmic data Artur

More information

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades for High Luminosity LHC Upgrades R. Carney, K. Dunne, *, D. Gnani, T. Heim, V. Wallangen Lawrence Berkeley National Lab., Berkeley, USA e-mail: mgarcia-sciveres@lbl.gov A. Mekkaoui Fermilab, Batavia, USA

More information

SYLLABUS. 1. Identification of Subject:

SYLLABUS. 1. Identification of Subject: SYLLABUS Date/ Revision : 30 January 2017/1 Faculty : Life Sciences Approval : Dean, Faculty of Life Sciences SUBJECT : Biophysics 1. Identification of Subject: Name of Subject : Biophysics Code of Subject

More information

8/3/2017. Use of EPIDs for Non-Routine Linac QA. Disclosure. Learning Objectives. Parts of this project received support from Varian Medical System.

8/3/2017. Use of EPIDs for Non-Routine Linac QA. Disclosure. Learning Objectives. Parts of this project received support from Varian Medical System. Use of EPIDs for Non-Routine Linac QA Bin Cai PhD Disclosure Parts of this project received support from Varian Medical System. Learning Objectives Learn the recent development of EPID based Non-routine

More information

ArcCHECKTM. The Ultimate 4D QA Solution. Your Most Valuable QA and Dosimetry Tools. VMAT RapidArc TomoTherapy Pinnacle 3 SmartArc Conventional IMRT

ArcCHECKTM. The Ultimate 4D QA Solution. Your Most Valuable QA and Dosimetry Tools. VMAT RapidArc TomoTherapy Pinnacle 3 SmartArc Conventional IMRT TM The Ultimate 4D QA Solution A 4D isotropical cylindrical detector array for arc delivery QA and Dosimetry U.S.Patent No. 8,044,359 What is? The world s first true 4D detector array The world s first

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

RF CAVITY SIMULATIONS FOR SUPERCONDUCTING CYCLOTRON C400 Y. Jongen, M. Abs, W. Kleeven, S. Zaremba IBA, Louvain-la-Neuve, Belgium

RF CAVITY SIMULATIONS FOR SUPERCONDUCTING CYCLOTRON C400 Y. Jongen, M. Abs, W. Kleeven, S. Zaremba IBA, Louvain-la-Neuve, Belgium Ó³ Ÿ. 2011.. 8, º 4(167).. 647Ä654 ˆ ˆŠ ˆ ˆŠ Š ˆ RF CAVITY SIMULATIONS FOR SUPERCONDUCTING CYCLOTRON C400 Y. Jongen, M. Abs, W. Kleeven, S. Zaremba IBA, Louvain-la-Neuve, Belgium A. A. Glazov, S. V. Gurskiy,

More information

MIMS Workshop F. Hillion. MIMS Workshop

MIMS Workshop F. Hillion. MIMS Workshop MIMS Workshop 23 - F. Hillion MIMS Workshop 1/ Practical aspects of N5 Tuning Primary column : small probe, high current, influence of Z. Dynamic Transfer and scanning. Cy and P2/P3. LF4, Q and chromatic

More information

Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector

Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector ORIGINAL ARTICLES Comparison of peripheral dose measurements using Ionization chamber and MOSFET detector Gopiraj ANNAMALAI 1, Ramasubramanian VELAYUDHAM 2 ABSTRACT Received: 7.07.2009 Accepted: 2.11.2009

More information

Laser Installation Engineers, CT Room Designers and Contractors

Laser Installation Engineers, CT Room Designers and Contractors Page 1 of 10 Title Room Preparation For LS Laser System Installation in CT Environments Scope Centralite LS Laser Systems Target Group Laser Installation Engineers, CT Room Designers and Contractors Page

More information

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image Introduction Chapter 16 Diagnostic Radiology Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther In diagnostic radiology

More information

Enhanced Functionality of High-Speed Image Processing Engine SUREengine PRO. Sharpness (spatial resolution) Graininess (noise intensity)

Enhanced Functionality of High-Speed Image Processing Engine SUREengine PRO. Sharpness (spatial resolution) Graininess (noise intensity) Vascular Enhanced Functionality of High-Speed Image Processing Engine SUREengine PRO Medical Systems Division, Shimadzu Corporation Yoshiaki Miura 1. Introduction In recent years, digital cardiovascular

More information

SCINTILLATING FIBER DOSIMETER ARRAY

SCINTILLATING FIBER DOSIMETER ARRAY SCINTILLATING FIBER DOSIMETER ARRAY FIELD OF THE INVENTION [0001] This invention relates generally to the field of dosimetry and, more particularly, to rapid, high-resolution dosimeters for advanced treatment

More information

EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM

EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM EXPERIENCE WITH AND STUDIES OF THE SNS* TARGET IMAGING SYSTEM W. Blokland, ORNL, Oak Ridge, TN 37831, USA Abstract The Target Imaging System (TIS) shows the size and position of the proton beam by using

More information

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

CHAPTER 6 QUALITY ASSURANCE OF VARIAN ON-BOARD IMAGER

CHAPTER 6 QUALITY ASSURANCE OF VARIAN ON-BOARD IMAGER 127 CHAPTER 6 QUALITY ASSURANCE OF VARIAN ON-BOARD IMAGER 6.1 INTRODUCTION Accurate and repeatable setup of patients is a requisite in radiotherapy. In the treatment of head-and-neck tumors, accurate setup

More information

Mapping of the New IBA Superconducting Synchrocyclotron (S2C2) for Proton Therapy

Mapping of the New IBA Superconducting Synchrocyclotron (S2C2) for Proton Therapy Mapping of the New IBA Superconducting Synchrocyclotron (S2C2) for Proton Therapy J. Van de Walle, W. Kleeven, C. L'Abbate, Y. Paradis, V. Nuttens - IBA M. Conjat, J. Mandrillon, P. Mandrillon - AIMA Developpement

More information

SIMULATION OF A SIGNAL IN THE BEAM LOSS

SIMULATION OF A SIGNAL IN THE BEAM LOSS RADIATION ASPECTS OF LHC SIMULATION OF A SIGNAL IN THE BEAM LOSS MONITORS OF THE MOMENTUM CLEANING INSERTION FOR THE NEW COLLIMATOR JAWS DESIGN IHEP, Protvino, Russia Summary of the presentation Page 1

More information

RESULTS ON FIELD MEASUREMENTS IN A FLAT POLE MAGNET WITH THE CURRENT CARING SHEETS

RESULTS ON FIELD MEASUREMENTS IN A FLAT POLE MAGNET WITH THE CURRENT CARING SHEETS CBN 14-01 March 10, 2014 RESULTS ON FIELD MEASUREMENTS IN A FLAT POLE MAGNET WITH THE CURRENT CARING SHEETS Alexander Mikhailichenko Abstract. The results of measurements with a gradient magnet, arranged

More information

Philips XPER FD10C R7.0.4

Philips XPER FD10C R7.0.4 Philips XPER FD10C R7.0.4 Reconditioned 2005 System- Upgraded to R7 in Oct 2010 The Allura Xper FD10 (Ceiling) single-plane cardiovascular system is comprised of a ceiling mounted C-arm stand and digital

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

2010 Philips BrightView XCT SPECT/CT

2010 Philips BrightView XCT SPECT/CT 2010 Philips BrightView XCT SPECT/CT Unit was purchased from Philips training center in 2015. Installed but never been used by the current facility. (Scroll for pictures) BrightView XCT Camera with PinPoint

More information

The most Comprehensive, Reliable, Economical and Easy to use GAFCHROMIC film based RT QA system Updated Feb 08 BUSINESS UNIT OF ISP

The most Comprehensive, Reliable, Economical and Easy to use GAFCHROMIC film based RT QA system Updated Feb 08 BUSINESS UNIT OF ISP The most Comprehensive, Reliable, Economical and Easy to use GAFCHROMIC film based RT QA system Updated Feb 08 GAFCHROMIC EBT dosimetry film Designed and optimized for ALL RT procedures Can be cut into

More information