N. Pingel, K. Rajwade, D.J. Pisano, D. Lorimer West Virginia University

Size: px
Start display at page:

Download "N. Pingel, K. Rajwade, D.J. Pisano, D. Lorimer West Virginia University"

Transcription

1 Brian D. Jeffs, R. Black, J. Diao, M. Ruzindanna, K. Warnick Brigham Young University R. Prestage, J. Ford, S. White, R. Simon, W. Shillue, A. Roshi, V. Van Tonder NRAO: Green Bank Observatory and Central Development Laboratory N. Pingel, K. Rajwade, D.J. Pisano, D. Lorimer West Virginia University NaGonal Science FoundaGon Award

2 FLAG SpecificaGons Overview 19 dual polarized elements,.7λ hex grid spacing 15 MHz instantaneous BW in the range of 1.3 to 1.8 GHz Cryogenically cooled LNAs, room temperature antennas 7 real- Gme beams with XX *, YY * & XY * pol. Many beams using post- correlagon beamforming (PCB) FPGA - GPU real- Gme digital receiver/correlator/ beamformer back end.

3 FLAG SpecificaGons Overview 5 coarse frequency channels 33 khz BW each, 15 Mhz total for PCB and real- Gme beamformer Fine polyphase filter bank: 32 channels, 9.5 khz BW each, 3 MHz total for PCB Commensal transient search and HI survey modes 9 arcmin beamwidth, 3 beam- width field of view diameter Element design opgmized for best sensigvity and average acgve array impedance match across beams

4 FLAG SpecificaGons Overview Digital back end: 5 ROACH II FPGAs for DDL digital fiber communicagon and PFB frequency channelizagon 5 high performance PCs 1 GPUS for fine PFB, real- Gme beam- former, and real- Gme correlator Ideal beamformer architecture for RFI miggagon

5 Phase I Commissioning Goals Tests over Jul 5 31 at Green Bank Outdoor Test Facility and on GBT First light demonstragon Hardware, firmware, and sojware integragon and funcgonal tests Full- up array, digital downlink, FPGA 2- HPC reduced BW 6 MHz PCB correlator IdenGfy and debug issues

6 Future Commissioning Goals Phase II: November / December 216 Phase I hardware configuragon (6 MHz BW, 2 HPC) Performance characterizagon for a range of HI and pulsar observagons Coarse channel operagon only Real- Gme beamformer tests EvaluaGon of sensigvity, T sys, beampalerns, and calibragon Phase III: Final commissioning, May / June 217 Full bandwdith back end: 15 MHz Commensal transient detector real- Gme beamformer and PCB fine channel HI observagon

7 FLAG Block Diagram Ant. Ant. LN A Cryostat LN A I- Q mix, ADC, Serialize & OpGcal Xmit ( 4) LO I- Q mix, ADC, Serialize & OpGcal Xmit LO Array aperture, Antenna elements, LNAs, Cryo system, Down converters Ch. 1 Ch. 8 Ch. 33 Ch. 4 Signal Transport: GBT prime focus to Jansky Lab fiber link 8 Fiber Digital OpGcal Rcvr Card 8 Fiber Digital OpGcal Rcvr Card ROACH II FPGA ( 5) ROACH II FPGA In Mezzanine I/F Slot 4 x 1 Gbe I/F Card 4 x 1 Gbe I/F Card F Engine: DDL deserializagon, boun- dary alignment, polyphase filter bank and 1 Gbe I/O 4 X 1 GbE 4 Gbe Ethernet Switch Melanox SX X 4 GbE ports Rack Mount PC 12 TB SATA RAID Disk Array 4 X 1 GbE 4 GbE System control and data storage CPU/GPU (Blade server + 2 nvidia GTX79) ( 5) CPU/GPU (Blade server + 2 nvidia GTX79) XB Engine: Correlator/ Beamformer, Spectrometer NRAO DDL System BYU Correlator Beamformer

8 Digital Back End

9 First- of- its- kind Architecture Packets from 5 ROACH IIs: 25 out of 5 channels from all 4 input ports Ethernet Switch Melanox SX X 1 GbE Hashpipe instance 2 Hashpipe instance 1 3 Channel SelecGon (k =... ) Channel SelecGon (k =... ) All 25 Coarse Channels, 7.5 MHz total BW All 25 samp/s Channels, 7.5 MHz total samp/s Fine PFB 32 point FFT, 256 tap 32 point Filter FFT, 256 tap 5 Selected Coarse Filter Channels Fine PFB Real- Gme Beamformer b k, Real- Gme j [n] = w Beamformer H k, j x k [n] b k, j [n] = Coarse/ Fine 5 Selected Coarse Channels 1 w H k, j x k [n] Correlator / Integrator Coarse/ (XGPU code) Fine x k [n] R k = 1 N 1 x k [n] x H k [n] (XGPU N code) n= Integrator c S k,( j, j ) = 1Integrator N 1 * c b k, j b k, j NS k,( j, j ) = N 1 1 * N = 3 for b k, ms N 1 j b k, j x k [n] Coarse: R k N = 1 3 for x k [n] ms x H k [n] N 16 Fine Fine: N = 4,75 n=for 5 ms Channels, Coarse: N = 3 for ms 1.51 MHz total samp/s 16 Fine Fine: N = 4,75 for 5 ms Channels, 1.51 MHz total samp/s n=1 Correlator / Integrator N 1 n=1 N = 3 for ms R k Channel SelecGon (k =... ) Coarse: 5 of 5 coarse channels Fine: Channel All 16 fine channels SelecGon (k =... ) RPost- k Coarse: CorrelaGon 5 to 25 coarse Beamformer channels f S k,( Fine: j, j ) = All 16 fine w H k, channels j R k w k, j c S k,( j, j ) R k Nvidia GTX79 Ti GPU, 1 of 2 per HPC 1 2 FITS Formaler Lustre Disk Array Storage To 4 other HPCs Nvidia GTX79 Ti GPU, 2 of 2 per HPC

10 First- of- its- kind Architecture PCB is the primary mode for all observagons: Array covariance, R k, is the output data product Correlator STI dump rates: T STI 1 ms: store R k for all channels T STI < 1 ms: store R k for fewer selected channels PCB permits: f S k,( j, j ) = w H k, j R k w k, j RevisiGng observagons with different beampalerns Recovery from bad calibragon, poor beams Arbitrarily dense beam spacing for radio camera AdapGve beamforming RFI miggagon ajer the fact!

11 First- of- its- kind Architecture PCB beamforming on coarse or fine channels Coarse channel correlator for beamformer weight calibragon, one weight vector w k per channel, k. Fine channel PCB for HI observagon Real- Gme beamforming spectrometer Runs always: commensal operagon with PCB Ultra fast dump Gmes for transient detecgon Coarse channels only, full 15 MHz BW. Can couple with correlator for rapid w k updates, real- Gme adapgve moving RFI cancelagon!

12 BYU s FLAG Array Element Design

13 Antenna Design Process Design Object FuncGon (field of view, bandwidth and sensigvity) Beamforming Algorithm OpGmizaGon (Several months computer Gme) 19- element array geometrical parameters Network Model ElectromagneGc Model (Finite Element Method) Reflector Model (Physical OpGcs Method)

14 19 Element S Parameter Test -5 Test HFSS -15 S11 (db) Test Picture Frequency (GHz) -5 Test HFSS S22 (db) -15 Manufacture Errors Frequency (GHz)

15 Numerical Results with Noise Model 19 element array feed on GBT reflector antenna (modeled performance): System noise temperature Inverse sensigvity

16 Commissioning Challenges Some dead elements, primarily due to problems with the DDL digital opgcal downlink OverheaGng, nighyme operagon only Limited observing Gme, just a few data sets Not able yet to nail down true T sys and sensigvity Verified operagon for most system components and got some early data Not bad for a first integragon experiment

17 Commissioning Challenges Some dead elements, primarily due to problems with the DDL digital opgcal downlink OverheaGng, nighyme operagon only Limited observing Gme, just a few data sets Not able yet to nail down true T sys and sensigvity Verified operagon for most system components and got some early data Not bad for a first integragon experiment

18 Results: CalibraGon Grid Grid centered on 3C295: ,465 Mhz Slow serpengne offset trajectory gives a fine grid of calibragon points Covariance matrix for each 5s STI R θ Used to calculate steering vectors, beamformer weights, and beampalerns Elevation Offset (degrees) R θ Scan Trajectory Azimuth Offset (degrees) R θ U = UΛ, U = [u 1,!, u M ] R off CalibraGon Steering vector a θ = u 1

19 Results: On- sky palerns per element 1Y 2Y 3Y 4Y 5Y Y 7Y 8Y 9Y 1Y Y 12Y 1 13Y 14Y 1 15Y Y 17Y 18Y 19Y MHz

20 Results: Beam Palerns Beam 1 Beam Elevation Offset (degrees) Elevation Offset (degrees) Max SNR beamformer 1391 MHz Beam Azimuth Offset (degrees) Beam Azimuth Offset (degrees) Beam Elevation Offset (degrees) Azimuth Offset (degrees) -4-5 Elevation Offset (degrees) Beam Azimuth Offset (degrees) Elevation Offset (degrees) Beam Azimuth Offset (degrees) Elevation Offset (degrees) Elevation Offset (degrees) w θ = R 1 off a θ b θ (φ) 2 = w θ H R φ w θ Azimuth Offset (degrees) Azimuth Offset (degrees)

21 Results: SensiGvity over FOV Formed Beam Sensitivity Map 9 Elevation Offset (degrees) S(θ) = 2k b 1 26 F s SNR(θ) SNR(θ) = w H θ R θ w θ w H θ R off w θ w H θ R off w θ m 2 / K Azimuth Offset (degrees)

22 Results: T sys vs Frequency, preliminary data Tsys (K) Minimum Tsys in FoV Assumes η a =.65 May be corrupted by sources in the only off- poingng available Higher due to fixable DDL bit errors and missing elements These hardware failures cause poor Frequency (MHz) illuminagon palern

23 Conclusions An encouraging first light and first look with FLAG SoluGon to DDL bit errors and longer observing windows needed for next commissioning session Data rate for PCB covariance matrix output to Lustre file store is easily sustainable PCB works! We are excited for its future promise.

Beamformer and Calibration Performance for the Focal-plane L-band Array feed for the Green Bank Telescope (FLAG)

Beamformer and Calibration Performance for the Focal-plane L-band Array feed for the Green Bank Telescope (FLAG) Beamformer and Calibration Performance for the Focal-plane L-band Array feed for the Green Bank Telescope (FLAG) B. D. Jeffs 1, K. F. Warnick 1, R. A. Black 1, M. Ruzindanna 1, M. Burnett 1 1 Brigham Young

More information

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT

Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Active Impedance Matched Dual-Polarization Phased Array Feed for the GBT Karl F. Warnick, David Carter, Taylor Webb, Brian D. Jeffs Department of Electrical and Computer Engineering Brigham Young University,

More information

Ultra-high Efficiency Phased Arrays for Astronomy and Satellite Communications

Ultra-high Efficiency Phased Arrays for Astronomy and Satellite Communications Ultra-high Efficiency Phased Arrays for Astronomy and Satellite Communications Karl F. Warnick Department of Electrical and Computer Engineering Brigham Young University, Provo, UT, USA Collaborators:

More information

Casper Instrumentation at Green Bank

Casper Instrumentation at Green Bank Casper Instrumentation at Green Bank John Ford September 28, 2009 The NRAO is operated for the National Science Foundation (NSF) by Associated Universities, Inc. (AUI), under a cooperative agreement. GBT

More information

Green Bank Instrumentation circa 2030

Green Bank Instrumentation circa 2030 Green Bank Instrumentation circa 2030 Dan Werthimer and 800 CASPER Collaborators http://casper.berkeley.edu Upcoming Nobel Prizes with Radio Instrumentation Gravitational Wave Detection (pulsar timing)

More information

An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range

An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range An FPGA-Based Back End for Real Time, Multi-Beam Transient Searches Over a Wide Dispersion Measure Range Larry D'Addario 1, Nathan Clarke 2, Robert Navarro 1, and Joseph Trinh 1 1 Jet Propulsion Laboratory,

More information

Specifications for the GBT spectrometer

Specifications for the GBT spectrometer GBT memo No. 292 Specifications for the GBT spectrometer Authors: D. Anish Roshi 1, Green Bank Scientific Staff, J. Richard Fisher 2, John Ford 1 Affiliation: 1 NRAO, Green Bank, WV 24944. 2 NRAO, Charlottesville,

More information

November SKA Low Frequency Aperture Array. Andrew Faulkner

November SKA Low Frequency Aperture Array. Andrew Faulkner SKA Phase 1 Implementation Southern Africa Australia SKA 1 -mid 250 15m dia. Dishes 0.4-3GHz SKA 1 -low 256,000 antennas Aperture Array Stations 50 350/650MHz SKA 1 -survey 90 15m dia. Dishes 0.7-1.7GHz

More information

Smart Antennas in Radio Astronomy

Smart Antennas in Radio Astronomy Smart Antennas in Radio Astronomy Wim van Cappellen cappellen@astron.nl Netherlands Institute for Radio Astronomy Our mission is to make radio-astronomical discoveries happen ASTRON is an institute for

More information

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg

Correlator Development at Haystack. Roger Cappallo Haystack-NRAO Technical Mtg Correlator Development at Haystack Roger Cappallo Haystack-NRAO Technical Mtg. 2006.10.26 History of Correlator Development at Haystack ~1973 Mk I 360 Kb/s x 2 stns. 1981 Mk III 112 Mb/s x 4 stns. 1986

More information

The VLA Low-band Ionospheric and Transient Experiment (VLITE)

The VLA Low-band Ionospheric and Transient Experiment (VLITE) The VLA Low-band Ionospheric and Transient Experiment (VLITE) Walter Brisken (NRAO/UMN) Tracy Clarke (NRL) DiFX Workshop November 2014 Bologna, Italy National Radio Astronomy Observatory s Very Large Array

More information

MWA Antenna Description as Supplied by Reeve

MWA Antenna Description as Supplied by Reeve MWA Antenna Description as Supplied by Reeve Basic characteristics: Antennas are shipped broken down and require a few minutes to assemble in the field Each antenna is a dual assembly shaped like a bat

More information

SKA technology: RF systems & signal processing. Mike Jones University of Oxford

SKA technology: RF systems & signal processing. Mike Jones University of Oxford SKA technology: RF systems & signal processing Mike Jones University of Oxford SKA RF processing Dish receivers Cryogenics RF electronics Fast sampling Antenna processing AA receivers RF gain chain Sampling/antenna

More information

Phased Array Feed Design. Stuart Hay 23 October 2009

Phased Array Feed Design. Stuart Hay 23 October 2009 Phased Array Feed Design Stuart Hay 23 October 29 Outline Why phased array feeds (PAFs) for radioastronomy? General features and issues of PAF approach Connected-array PAF approach in ASKAP Why PAFs? High

More information

Phased Array Feeds for Parkes. Robert Braun Science with 50 Years Young

Phased Array Feeds for Parkes. Robert Braun Science with 50 Years Young Phased Array Feeds for Parkes Robert Braun Science with Parkes @ 50 Years Young Outline PAFs in the SKA context PAFSKA activities Apertif, BYU, NRAO, NAIC, DRAO, ASKAP ASKAP PAF MkI ASKAP PAF MkII Parkes:

More information

NRC Herzberg Astronomy & Astrophysics

NRC Herzberg Astronomy & Astrophysics NRC Herzberg Astronomy & Astrophysics SKA Pre-Construction Update Séverin Gaudet, Canadian Astronomy Data Centre David Loop, Director Astronomy Technology June 2016 update SKA Pre-Construction NRC Involvement

More information

Interference Mitigation Using a Multiple Feed Array for Radio Astronomy

Interference Mitigation Using a Multiple Feed Array for Radio Astronomy Interference Mitigation Using a Multiple Feed Array for Radio Astronomy Chad Hansen, Karl F Warnick, and Brian D Jeffs Department of Electrical and Computer Engineering Brigham Young University Provo,

More information

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009

Receivers for. FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 Receivers for VLBI2010 FFRF Tutorial by Tom Clark, NASA/GSFC & NVI Wettzell, March 19, 2009 There is no fundamental difference between the receivers for PRIME FOCUS & CASSEGRAIN Except for: the beamwidth

More information

Towards SKA Multi-beam concepts and technology

Towards SKA Multi-beam concepts and technology Towards SKA Multi-beam concepts and technology SKA meeting Meudon Observatory, 16 June 2009 Philippe Picard Station de Radioastronomie de Nançay philippe.picard@obs-nancay.fr 1 Square Kilometre Array:

More information

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Phased Array Feeds for the SKA WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester Dish Array Hierarchy Dish Array L5 Elements PAF Dish Single Pixel Feeds L4 Sub systems

More information

EMBRACE DS5 presentation

EMBRACE DS5 presentation EMBRACE presentation Paris 4 th September 2006 ASTRON, The Netherlands Acknowledgement The authors wish to acknowledge the enormous contribution of the whole EMBRACE team presently located at: ASTRON,

More information

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems Professor Tony Brown School of Electrical and Electronic Engineering University of Manchester

More information

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing

Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing 2016 Multi-Antenna Transceiver Systems Tunable Wideband & Ultra-Wideband Multi- Antenna Transceivers with Integrated Recording, Playback & Processing --- For ES, DF, COMS & EA 1 Multi-Antenna Systems D-TA

More information

ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics

ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics ASKAP Phased Array Feed Digital Beamformer Design Overview and Performance Characteristics John Tuthill, Tim Bateman, Grant Hampson, John Bunton, Andrew Brown, Daniel George, Mia Baquiran August 2016 CASS

More information

Ku-Band Receiver System for SHAO

Ku-Band Receiver System for SHAO Ku-Band Receiver System for SHAO Overview Brent Willoughby July 2014 Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

March Phased Array Technology. Andrew Faulkner

March Phased Array Technology. Andrew Faulkner Aperture Arrays Michael Kramer Sparse Type of AA selection 1000 Sparse AA-low Sky Brightness Temperature (K) 100 10 T sky A eff Fully sampled AA-mid Becoming sparse Aeff / T sys (m 2 / K) Dense A eff /T

More information

2-PAD: An Introduction. The 2-PAD Team

2-PAD: An Introduction. The 2-PAD Team 2-PAD: An Introduction The 2-PAD Team Workshop, Jodrell Bank, 10 Presented th November 2009 by 2-PAD: Dr An Georgina Introduction Harris Georgina Harris for the 2-PAD Team 1 2-PAD Objectives Demonstrate

More information

Phased Array Feeds A new technology for multi-beam radio astronomy

Phased Array Feeds A new technology for multi-beam radio astronomy Phased Array Feeds A new technology for multi-beam radio astronomy Aidan Hotan ASKAP Deputy Project Scientist 2 nd October 2015 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of radio astronomy concepts.

More information

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities The Australian SKA Pathfinder Project ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities This paper describes the delivery of the digital signal processing

More information

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley Allen Telescope Array & Radio Frequency Interference Geoffrey C. Bower UC Berkeley Allen Telescope Array Large N design 350 x 6.1m antennas Sensitivity of the VLA Unprecedented imaging capabilities Continuous

More information

Multi-Mode Antennas for Hemispherical Field-of-View Coverage

Multi-Mode Antennas for Hemispherical Field-of-View Coverage Multi-Mode Antennas for Hemispherical Field-of-View Coverage D.S. Prinsloo P. Meyer R. Maaskant M.V. Ivashina Dept. of Electrical and Electronic Engineering Dept. of Signals and Systems Stellenbosch, South

More information

Technology Drivers, SKA Pathfinders P. Dewdney

Technology Drivers, SKA Pathfinders P. Dewdney Technology Drivers, SKA Pathfinders P. Dewdney Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council Canada National Research Council Canada Conseil national

More information

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA

THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA THE KAROO ARRAY TELESCOPE (KAT) & FPA EFFORT IN SOUTH AFRICA Dr. Dirk Baker (KAT FPA Sub-system Manager) Prof. Justin Jonas (SKA SA Project Scientist) Ms. Anita Loots (KAT Project Manager) Mr. David de

More information

Development of L-Band Down Converter Boards and Real-Time Digital Backend for Phased Array Feeds

Development of L-Band Down Converter Boards and Real-Time Digital Backend for Phased Array Feeds Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2012-04-10 Development of L-Band Down Converter Boards and Real-Time Digital Backend for Phased Array Feeds Vikas Asthana Brigham

More information

Practical Aspects of Focal Plane Array Testing

Practical Aspects of Focal Plane Array Testing Practical Aspects of Focal Plane Array Testing Lessons from an FPA Test-bed at CSIRO, Marsfield Douglas B. Hayman1-3, Trevor S. Bird2,3, Karu P. Esselle3 and Peter J. Hall4 1 2 3 CSIRO Astronomy and Space

More information

The Future: Ultra Wide Band Feeds and Focal Plane Arrays

The Future: Ultra Wide Band Feeds and Focal Plane Arrays The Future: Ultra Wide Band Feeds and Focal Plane Arrays Germán Cortés-Medellín NAIC Cornell University 1-1 Overview Chalmers Feed Characterization of Chalmers Feed at Arecibo Focal Plane Arrays for Arecibo

More information

Valon Synthesizer RFI Test Report

Valon Synthesizer RFI Test Report Page: Page 1 of 10 VEGAS-003-A-REP Version: A Prepared By: Name(s) and Signature(s) Organization Date C.Beaudet NRAO-GB 2011-11-29 J.Ray NRAO-GB 2013-03-18 Page: Page 2 of 10 Change Record Version Date

More information

Processing Real-Time LOFAR Telescope Data on a Blue Gene/P

Processing Real-Time LOFAR Telescope Data on a Blue Gene/P Processing Real-Time LOFAR Telescope Data on a Blue Gene/P John W. Romein Stichting ASTRON (Netherlands Institute for Radio Astronomy) Dwingeloo, the Netherlands 1 LOw Frequency ARray radio telescope 10

More information

Real-time Pulsar Timing signal processing on GPUs

Real-time Pulsar Timing signal processing on GPUs Real-Time Pulsar Timing Signal Processing on GPUs Plan : Pulsar Timing Instrumentations LPC2E, CNRS Orléans - FRANCE Ismaël Cognard, Gilles Theureau, Grégory Desvignes, Cédric Viou, Dalal Ait-Allal Pulsars

More information

Design and Test of FPGA-based Direction-of-Arrival Algorithms for Adaptive Array Antennas

Design and Test of FPGA-based Direction-of-Arrival Algorithms for Adaptive Array Antennas 2011 IEEE Aerospace Conference Big Sky, MT, March 7, 2011 Session# 3.01 Phased Array Antennas Systems and Beam Forming Technologies Pres #: 3.0102, Paper ID: 1198 Rm: Elbow 3, Time: 8:55am Design and Test

More information

Real-Time RFI Mitigation for Single-Dish Radio Telescopes. Richard Prestage, GBO

Real-Time RFI Mitigation for Single-Dish Radio Telescopes. Richard Prestage, GBO Real-Time RFI Mitigation for Single-Dish Radio Telescopes Richard Prestage, GBO Collaborators Cedric Viou, Jessica Masson Station de radioastronomie de Nançay Observatoire de Paris, PSL Research University,

More information

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt

Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Giant Metrewave Radio Telescope (GMRT) - Introduction, Current System & ugmrt Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope kdbuch@gmrt.ncra.tifr.res.in Low frequency dipole array

More information

EISCAT_3D: Preparation for Production EISCAT3D_PfP

EISCAT_3D: Preparation for Production EISCAT3D_PfP EISCAT_3D: Preparation for Production EISCAT3D_PfP Deliverable D2.2 Test plan for the Test Sub-array Work Package 2 Coordination and Outreach Leading Beneficiary: EISCAT Scientific Association Authors

More information

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system

An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system An Accurate phase calibration Technique for digital beamforming in the multi-transceiver TIGER-3 HF radar system H. Nguyen, J. Whittington, J. C Devlin, V. Vu and, E. Custovic. Department of Electronic

More information

Phased Array Feeds & Primary Beams

Phased Array Feeds & Primary Beams Phased Array Feeds & Primary Beams Aidan Hotan ASKAP Deputy Project Scientist 3 rd October 2014 CSIRO ASTRONOMY AND SPACE SCIENCE Outline Review of parabolic (dish) antennas. Focal plane response to a

More information

Real-Time Software Receiver Using Massively Parallel

Real-Time Software Receiver Using Massively Parallel Real-Time Software Receiver Using Massively Parallel Processors for GPS Adaptive Antenna Array Processing Jiwon Seo, David De Lorenzo, Sherman Lo, Per Enge, Stanford University Yu-Hsuan Chen, National

More information

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes)

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes) Points to Note: Wider bandwidths than were used on 140 Foot Cleaner antenna so other effects show up Larger

More information

Focal Plane Array Beamformer for the Expanded GMRT: Initial

Focal Plane Array Beamformer for the Expanded GMRT: Initial Focal Plane Array Beamformer for the Expanded GMRT: Initial Implementation on ROACH Kaushal D. Buch Digital Backend Group, Giant Metrewave Radio Telescope, NCRA-TIFR, Pune, India kdbuch@gmrt.ncra.tifr.res.in

More information

Antenna Engineering Lecture 3: Basic Antenna Parameters

Antenna Engineering Lecture 3: Basic Antenna Parameters Antenna Engineering Lecture 3: Basic Antenna Parameters ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Radiation Pattern

More information

May AA Communications. Portugal

May AA Communications. Portugal SKA Top-level description A large radio telescope for transformational science Up to 1 million m 2 collecting area Operating from 70 MHz to 10 GHz (4m-3cm) Two or more detector technologies Connected to

More information

Some Spectral Measurements at C and Ku Bands

Some Spectral Measurements at C and Ku Bands Some Spectral Measurements at C and Ku Bands R. D. Norrod, R. J. Simon, W. A. Sizemore October 5, 2005 Introduction A GBT spectral line observer reported difficulty observing in the frequency range 3.9-4.2

More information

Software Spectrometer for an ASTE Multi-beam Receiver. Jongsoo Kim Korea Astronomy and Space Science Institute

Software Spectrometer for an ASTE Multi-beam Receiver. Jongsoo Kim Korea Astronomy and Space Science Institute Software Spectrometer for an ASTE Multi-beam Receiver Jongsoo Kim Korea Astronomy and Space Science Institute Design Consideration software spectrometer for a near future ASTE multi-beam receiver spectrometer

More information

Data Digitization & Transmission Session Moderator: Chris Langley

Data Digitization & Transmission Session Moderator: Chris Langley Data Digitization & Transmission Session Moderator: Chris Langley Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems

Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems The Netherlands Institute for Radio Astronomy (ASTRON) Supported by part: - The Netherlands Organization for Scientific

More information

RFI Mitigation Project at Italian Radio Telescopes

RFI Mitigation Project at Italian Radio Telescopes Workshop Detection and measurement of RFI in radio astronomy Yebes Observatory (IGN, Spain), June 8-9, 2017 RFI Mitigation Project at Italian Radio Telescopes G. Serra and many other people from Italian

More information

Memo 65 SKA Signal processing costs

Memo 65 SKA Signal processing costs Memo 65 SKA Signal processing costs John Bunton, CSIRO ICT Centre 12/08/05 www.skatelescope.org/pages/page_memos.htm Introduction The delay in the building of the SKA has a significant impact on the signal

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2011 Astronomy 423 at UNM Radio Astronomy Radio Window 2 spans a wide range of λ and ν from λ ~ 0.33 mm to ~ 20 m! (ν = 1300 GHz to 15 MHz ) Outline

More information

VIIP: a PCI programmable board.

VIIP: a PCI programmable board. VIIP: a PCI programmable board. G. Bianchi (1), L. Zoni (1), S. Montebugnoli (1) (1) Institute of Radio Astronomy, National Institute for Astrophysics Via Fiorentina 3508/B, 40060 Medicina (BO), Italy.

More information

4.4. Experimental Results and Analysis

4.4. Experimental Results and Analysis 4.4. Experimental Results and Analysis 4.4.1 Measurement of the IFA Against a Large Ground Plane The Inverted-F Antenna (IFA) discussed in Section 4.3.1 was modeled over an infinite ground plane using

More information

Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array

Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array M. Yang, D. Zhang, L. Danoon and A. K. Brown, School of Electrical and Electronic Engineering The University

More information

Antennas & Receivers in Radio Astronomy

Antennas & Receivers in Radio Astronomy Antennas & Receivers in Radio Astronomy Mark McKinnon Fifteenth Synthesis Imaging Workshop 1-8 June 2016 Purpose & Outline Purpose: describe how antenna elements can affect the quality of images produced

More information

The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection

The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection The Phased Array Feed Receiver System : Linearity, Cross coupling and Image Rejection D. Anish Roshi 1,2, Robert Simon 1, Steve White 1, William Shillue 2, Richard J. Fisher 2 1 National Radio Astronomy

More information

Antennas and Receivers in Radio Astronomy

Antennas and Receivers in Radio Astronomy Antennas and Receivers in Radio Astronomy Mark McKinnon Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 Outline 2 Context Types of antennas Antenna fundamentals Reflector antennas Mounts

More information

Technologies for Radio Astronomy

Technologies for Radio Astronomy Technologies for Radio Astronomy CSIRO Astronomy and Space Science Alex Dunning in lieu of Tasso Tzioumis Facilities Program Director Technologies June 2017 Directions for ATNF Engineering (Update since

More information

Effelsberg Status. James M Anderson On behalf of MPIfR and the LOFAR collaboration

Effelsberg Status. James M Anderson On behalf of MPIfR and the LOFAR collaboration Effelsberg Status anderson@mpifr-bonn.mpg.de On behalf of MPIfR and the LOFAR collaboration 1/16 Overview of EF Anderson/MPIfR 2/16 Recent/Current Issues 3/16 HBA Field Repair 2012 Apr 03 A Horneffer 3

More information

Photonic Integrated Beamformer for Broadband Radio Astronomy

Photonic Integrated Beamformer for Broadband Radio Astronomy M. Burla, D. A. I. Marpaung, M. R. H. Khan, C. G. H. Roeloffzen Telecommunication Engineering group University of Twente, Enschede, The Netherlands P. Maat, K. Dijkstra ASTRON, Dwingeloo, The Netherlands

More information

Some Notes on Beamforming.

Some Notes on Beamforming. The Medicina IRA-SKA Engineering Group Some Notes on Beamforming. S. Montebugnoli, G. Bianchi, A. Cattani, F. Ghelfi, A. Maccaferri, F. Perini. IRA N. 353/04 1) Introduction: consideration on beamforming

More information

Array noise temperature measurements at the Parkes PAF Test-bed Facility

Array noise temperature measurements at the Parkes PAF Test-bed Facility Array noise temperature measurements at the Parkes PAF Test-bed Facility Douglas B. Hayman, Aaron P. Chippendale, Robert D. Shaw and Stuart G. Hay MIDPREP 1 April 2014 COMPUTATIONAL INFORMATICS ASTRONOMY

More information

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line DEUTERIUM ARRAY MEMO #068 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 August 2, 2007 Telephone: 978-692-4764 Fax: 781-981-0590 To: Deuterium Array Group From:

More information

ITS Sensor Transfer Spec

ITS Sensor Transfer Spec ITS Sensor Transfer Spec Michael Co3on Kenneth Baker July 2016 www.its.bldrdoc.gov 1 Transfer Spec Mandate There is a broad set of missions for sensing networks There is a broad set of requirements for

More information

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications FTF-AUT-F0086 Patrick Morgan Director, Safety Systems Business Unit Ralf Reuter Manager, Radar Applications and Systems

More information

Fundamentals of the GBT and Single-Dish Radio Telescopes Dr. Ron Maddalena

Fundamentals of the GBT and Single-Dish Radio Telescopes Dr. Ron Maddalena Fundamentals of the GB and Single-Dish Radio elescopes Dr. Ron Maddalena March 2016 Associated Universities, Inc., 2016 National Radio Astronomy Observatory Green Bank, WV National Radio Astronomy Observatory

More information

Longer baselines and how it impacts the ALMA Central LO

Longer baselines and how it impacts the ALMA Central LO Longer baselines and how it impacts the ALMA Central LO 1 C. Jacques - NRAO October 3-4-5 2017 ALMA LBW Quick overview of current system Getting the data back is not the problem (digital transmission),

More information

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture Konrad Gajewski 10 September 2013, Uppsala Why FREIA? Several circumstances test stand for

More information

Beamforming for IPS and Pulsar Observations

Beamforming for IPS and Pulsar Observations Beamforming for IPS and Pulsar Observations Divya Oberoi MIT Haystack Observatory Sunrise at Mileura P. Walsh Function, Inputs and Outputs Function - combine the voltage signal from each of the 512 tiles

More information

LWA1 Technical and Observational Information

LWA1 Technical and Observational Information LWA1 Technical and Observational Information Contents April 10, 2012 Edited by Y. Pihlström, UNM 1 Overview 2 1.1 Summary of Specifications.................................... 2 2 Signal Path 3 2.1 Station

More information

PoS(11th EVN Symposium)113

PoS(11th EVN Symposium)113 High-order sampling technique for geodetic VLBI and the future National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501, Japan E-mail: takefuji@nict.go.jp

More information

Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop

Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop Presented by James Aguirre University of Pennsylvania 26 March 2013 SKA1 Low Workshop UVa / NRAO Bradley Carilli Klima Gugliucci Parashare The PAPER Team UC Berkeley Parsons Pober Ali De Boer MacMahon

More information

A Low Frequency Array Designed to Search for the 327 MHz line of Deuterium

A Low Frequency Array Designed to Search for the 327 MHz line of Deuterium A Low Frequency Array Designed to Search for the 327 MHz line of Deuterium Alan E. E. Rogers Kevin A. Dudevoir Joe C. C. Carter Brian J. Fanous Eric Kratzenberg MIT Haystack Observatory Westford, MA 01886

More information

The 4mm (68-92 GHz) Receiver

The 4mm (68-92 GHz) Receiver Chapter 18 The 4mm (68-92 GHz) Receiver 18.1 Overview The 4 mm receiver ( W-band ) is a dual-beam, dual-polarization receiver which covers the frequency range of approximately 67-93 GHz. The performance

More information

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy Antennas Greg Taylor University of New Mexico Spring 2017 Astronomy 423 at UNM Radio Astronomy Outline 2 Fourier Transforms Interferometer block diagram Antenna fundamentals Types of antennas Antenna performance

More information

Pulsars with the GBT: Scott Ransom, NRAO

Pulsars with the GBT: Scott Ransom, NRAO Pulsars with the GBT: 2007+ Scott Ransom, NRAO Basic Properties Current instruments Track Repairs Drift scan Large Projects Timing New instrumentation Backend Receivers GBT Capabilities 100-m unblocked

More information

High Gain Advanced GPS Receiver

High Gain Advanced GPS Receiver High Gain Advanced GPS Receiver NAVSYS Corporation 14960 Woodcarver Road, Colorado Springs, CO 80921 Introduction The NAVSYS High Gain Advanced GPS Receiver (HAGR) is a digital beam steering receiver designed

More information

GAJET, a DRDC Evaluation Testbed for Navigation Electronic Warfare. Michel Clénet

GAJET, a DRDC Evaluation Testbed for Navigation Electronic Warfare. Michel Clénet GAJET, a DRDC Evaluation Testbed for Navigation Electronic Warfare Michel Clénet Outline Introduction CRPA project at DRDC Ottawa GAJET: An Evaluation Test bed for GPS Anti-Jam System An AJ simulation

More information

Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds

Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2014-08-20 Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds Richard

More information

RPG XFFTS. extended bandwidth Fast Fourier Transform Spectrometer. Technical Specification

RPG XFFTS. extended bandwidth Fast Fourier Transform Spectrometer. Technical Specification RPG XFFTS extended bandwidth Fast Fourier Transform Spectrometer Technical Specification 19 XFFTS crate equiped with eight XFFTS boards and one XFFTS controller Fast Fourier Transform Spectrometer The

More information

How different FPGA firmware options enable digitizer platforms to address and facilitate multiple applications

How different FPGA firmware options enable digitizer platforms to address and facilitate multiple applications How different FPGA firmware options enable digitizer platforms to address and facilitate multiple applications 1 st of April 2019 Marc.Stackler@Teledyne.com March 19 1 Digitizer definition and application

More information

The WVR at Effelsberg. Thomas Krichbaum

The WVR at Effelsberg. Thomas Krichbaum The WVR at Effelsberg Alan Roy Ute Teuber Helge Rottmann Thomas Krichbaum Reinhard Keller Dave Graham Walter Alef The Scanning 18-26 GHz WVR for Effelsberg ν = 18.5 GHz to 26.0 GHz Δν = 900 MHz Channels

More information

SKA Correlator Input Data Rate

SKA Correlator Input Data Rate SKA Correlator Input Data Rate John D. Bunton, CSIRO ICT Centre 14 November 003 Introduction One of the major costs in the SKA is data transport from the antenna to the central beamformer or correlator.

More information

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing Terahertz Wave Spectroscopy and Analysis Platform Full Coverage of Applications From R&D to Industrial Testing Terahertz Wave Spectroscopy and Analysis Platform Optimal for a wide range of terahertz research

More information

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration

Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Results from LWA1 Commissioning: Sensitivity, Beam Characteristics, & Calibration Steve Ellingson (Virginia Tech) LWA1 Radio Observatory URSI NRSM Jan 4, 2012 LWA1 Title 10-88 MHz usable, Galactic noise-dominated

More information

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines Progress In Electromagnetics Research M, Vol. 66, 193 202, 2018 Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines Fei Xue 1, *, Hongjian

More information

Final Feed Selection Study For the Multi Beam Array System

Final Feed Selection Study For the Multi Beam Array System National Astronomy and Ionosphere Center Arecibo Observatory Focal Array Memo Series Final Feed Selection Study For the Multi Beam Array System By: Germán Cortés-Medellín CORNELL July/19/2002 U n i v e

More information

Antenna Design and Site Planning Considerations for MIMO

Antenna Design and Site Planning Considerations for MIMO Antenna Design and Site Planning Considerations for MIMO Steve Ellingson Mobile & Portable Radio Research Group (MPRG) Dept. of Electrical & Computer Engineering Virginia Polytechnic Institute & State

More information

Fast Fourier Transform Spectrometer (FFTS) Past, Present and Future

Fast Fourier Transform Spectrometer (FFTS) Past, Present and Future Fast Fourier Transform Spectrometer (FFTS) Past, Present and Future Bernd Klein Max-Planck-Institut für Radioastronomie, Bonn - Germany - instantaneous bandwidth [GHz] FFTS :: A short history 2.5 GHz 32k

More information

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners

BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners BRAND EVN (BRoad-bAND EVN) Joint Research Activity in RadioNet4 Gino Tuccari & Walter Alef plus partners digital VLBI-receiver: ~1.5-15.5 GHz for the EVN and other telescopes Prototype for prime focus

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009

Overview of the SKA. P. Dewdney International SKA Project Engineer Nov 9, 2009 Overview of the SKA P. Dewdney International SKA Project Engineer Nov 9, 2009 Outline* 1. SKA Science Drivers. 2. The SKA System. 3. SKA technologies. 4. Trade-off space. 5. Scaling. 6. Data Rates & Data

More information

G. Serra.

G. Serra. G. Serra gserra@oa-cagliari.inaf.it on behalf of Metrology team* *T. Pisanu, S. Poppi, F.Buffa, P. Marongiu, R. Concu, G. Vargiu, P. Bolli, A. Saba, M.Pili, E.Urru Astronomical Observatory of Cagliari

More information