SIMULATION OF : H.O.M DAMPED CAVITIES

Size: px
Start display at page:

Download "SIMULATION OF : H.O.M DAMPED CAVITIES"

Transcription

1 E.S.L.S Radio Frequency Meeting Aarhus, DENMARK Sept 2005 SIMULATION OF : H.O.M DAMPED CAVITIES Grenoble - FRANCE

2 TARGET OF SIMULATIONS AT E.S.R.F DEVELOPPING A PROTOTYPE OF NORMAL CONDUCTING CAVITY (at MHz) TO ATTENUATE HIGHER ORDER MODES WITH RIDGE WAVEGUIDE DAMPERS INCLUDING FERRITE BASED ON R&D OF EU PROJECT (NTHU)

3 SUMMARY 1- OPTIMISATION OF THE BODY (Naked Cavity) 2- OPTIMISATION OF THE FERRITE LOADED RIDGE WAVEGUIDE 3- SIMULATION OF THE GLOBAL CAVITY : BODY + 3 DAMPERS 4- COMPARISON : MAFIA / GDFIDL FOR SIMULATION OF THE BESSY II CAVITY (a design which doesn t t use Ferrite)

4 1 - FIRST STEP : OPTIMIZATION OF THE BODY* - Superfish (2D) calculates Eigenvalues and main parameters of RF symmetrical cavities - GDFIDL (3D) is used as Eigenvalue or Time domain solver for arbitrary RF structures TYPE OF CAVITY SIMULATION TOOLS f RF (MHz) Q R/Q (Ohms) R (k Ohms) Scaled BESSY II Cavity Optimised SUPERFISH GDFIDL Scaled BESSY II Cavity Not Optimised SUPERFISH LEP Model Cavity / ESRF URMEL [Dr H.Henke / Dr T.Weiland ] SUPERFISH BESSY II MAFIA [Dr F.Marhauser / Bessy ] SUPERFISH GDFIDL (* PERFECT BODY WITHOUT HOLE)

5 A- GDFIFL AS EIGENVALUE SOLVER FOR H.O.M STUDY OF THE BODY GDFIDL is a Finite Difference solver for the Maxwell and Helmholz equations. Can be used as Eigenvalues or Time domain solver for arbitraries rf structures. LIST OF THE MOST INFLUENTIALS LONGITUDINAL MODES TILL 1.3 GHz MODE TYPE FREQUENCY (MHz) Q R (kω) R/Q (Ω) 0-E M M E E M Conditions : simulation of half cavity with electric or magnetic boundary for a meshing of 2 mm. Notations : m-e-n or m-h-n, m for azimuthal dependency, n as sequential index.

6 B- GDFIDL AS FINITE DIFFERENCES IN TIME DOMAIN SOLVER (FDTD) FOR THE T BODY 40x10 3 Impedance (Ohms) MHz Remark : For modes which should have an high Q value, the calculated impedance isn t accurate It d require a longer wake length MHz x10 9 Frequency (Hz) Conditions : Simulation on only 200 meters of half the cavity with magnetic boundary for a meshing of 2 mm. (No offset on transverse plane)

7 2 - SECOND STEP : OPTIMIZATION OF FERRITE LOADED RIDGE WAVEGUIDE WITH 3D SIMULATION SOFT : High Frequency Structure Simulator (HFSS ) HFSS is based on a Finite Element Method with adaptive mesh refinement. Eigenmodes of arbitrary RF strucutres are solved, including materials losses. BASED ON DESIGN of N.T.H.U and BESSY [P.Z Rao / F.Marhauser / E.Weihreter 05/2004] FERRITE VACUUM BASIC MODEL (Longitudinal cut) Waveguide part long enough to attenuate the f RF mode P/P o = exp [ -(4.π.Z / λ).( 1-(λ c / λ) 2 ) 1/2 ] METALLIC RIDGE Here, for : z = 0.25 m P/P o 0.07 f c = 435 MHz

8 0.8 A- BASIC FERRITE MODEL Effect induced by variation of Ferrite thickness (e) S e = mm 0.2 e = mm 0.1 e = mm 0.0 fc RWG = 435 MHz 600 f RF < fc RWG < f 0M Frequency (MHz)

9 B- TAPERED FERRITE MODEL No Ferrite Step

10 0.8 Effect induced by variation of Ferrite thickness (e) for BASIC ASIC MODELODEL (BM)) and TAPERED FERRITE ERRITE MODELODEL (TFM) TFM - e = 12 mm TFM - e = 3 mm TFM - e = 6 mm S BM - e = mm 0.2 BM - e = mm TFM Frequency (MHz) 800 BM - e = mm

11 C- TILE FERRITE MODEL TILES WITH PROGRESSIVE THICKNESS NO STEP TO OBTAIN AN HOMOGENEOUS REPARTITION OF THE ABSORBED POWER

12 RESULTS OF SIMULATIONS TO COMPARE 3 TYPES OF FERRITE LOADED RIDGE WAVEGUIDE MODELS S TAPERED MODEL - e = 12 mm BASIC MODEL - e = mm TILE MODEL - e : 1 to 20 mm Frequency (MHz)

13 (FOR 1W INCIDENT) EVOLUTION OF DENSITY POWER ABSORBED BY FERRITE FOR 3 MODELS : BASIC, TAPERED, TILE 0.99 Absorbed Power (W) TILE MODEL (7 Tiles, e = 1/1.5/3/4/6/8/20) BASIC MODEL (e = mm) 0.96 TAPERED MODEL (e = 12mm) Frequency (MHz)

14 3 - THIRD STEP : THE GLOBAL CAVITY - Body + 3 Dampers - With GDFIDL only Including Ferrite VIEW OF THE WHOLE CAVITY

15 100x10 3 FDTD SIMULATION WITH GDFIDL FOR THE GLOBAL CAVITY WITH 3 DAMPERS 80 For material properties at 500 MHz IMPEDANCE (Ohms) BODY + 3 RIDGE WAVEGUIDES : WITHOUT FERRITE BODY + 3 DAMPERS : TILE MODEL BODY + 3 DAMPERS : BASIC MODEL The TILE MODEL is a better absorber than the BASIC one HOM max for 300 ma / 18 cavities (normalised) HOM max for 500 ma / 18 cavities (normalized) HOM max for 1A / 18 cavities (normalized) x10 9 FREQUENCY (Hz) Conditions : Simulation on 600 meters and 2 mm meshing. (No offset on transverse plane)

16 ZOOM ON BANDWITH : 0.9 to 2.2 GHz 25x10 3 BODY + 3 RIDGE WAVEGUIDES : WITHOUT FERRITE BODY + 3 DAMPERS : TILE MODEL BODY + 3 DAMPERS : BASIC MODEL 20 IMPEDANCE (Ohms) HOM max for 300 ma / 18 cavities HOM max for 500 ma / 18 cavities 5 HOM max for 1A / 18 cavities x10 9 FREQUENCY (Hz)

17 GDFIDL AS EIGENVALUE SOLVER FOR THE GLOBAL CAVITY Parameters f RF (MHz) Study of the fundamental mode only - 2 mm meshing BODY BODY + 3 WAVEGUIDES : WITHOUT FERRITE * BODY + 3 DAMPERS : BASIC FERRITE MODEL Q R/Q (Ω) R (k Ω) *Remark Remark : Insertion of Ridge Waveguides had induced a huge shift on the fundamental frequency

18 120x COMPARISON MAFIA / GDFIDL FOR SIMULATION OF BESSY II CAVITY (3 Circular Waveguides with Coaxial Transition DAMPERS) - STRUCTURE WITHOUT ABSORBING MATERIAL - 80 MAFIA / F.Marhauser (BESSY) GDFIDL / V.Serrière (E.S.R.F) 60 ReZ [ Ω] Wake on 400 meters and a 4 mm meshing x10 9 Frequency [Hz]

19 ZOOM ON BANDWITH : 0.6 to 1.2 GHz

20 ZOOM ON ON BANDWITH : 1.2 to 1.8 GHz

21 CONCLUSION ON SIMULATION TOOLS AND RESULTS 1) ASPECTS ALREADY DEALED WITH : SIMULATIONS WITH 3 RF SIMULATION SOFTS HAS BEEN DONE :. SUPERFISH : Perfect for optimisation of simple symmetrical Body. HFSS : Adapted for S parameters studies (even including absorbing materials). GDFIDL : Usefull for H.O.M studies of complex Cavities even including ferrite THE MAIN ELEMENTS OF THE CAVITY HAVE BEEN STUDIED GLOBALY : BODY, RIDGE, FERRITE STUDY OF TRANSVERSE H.O.M OPTIMISE THE TILE MODEL AGAIN TO ABSORB SUFFICIENTLY H.O.M WITHOUT THE FUNDAMENTAL ONE (by changing width and gap of the ridge and the length of the waveguide) OBTAIN A FUNDAMENTAL MODE WITH A FREQUENCY CLOSER TO MHz THERMAL STUDY OF THE CAVITY 2) POINTS TO DO :

Status of the HOM Damped Cavity Project

Status of the HOM Damped Cavity Project Status of the HOM Damped Cavity Project E. Weihreter / BESSY for the HOM Damped Cavity Collaboration BESSY, Daresbury Lab, DELTA, MaxLab, NTHU Project funded by the EC under contract HPRI-CT-1999-50011

More information

The BESSY Higher Order Mode Damped Cavity - Further Improvements -

The BESSY Higher Order Mode Damped Cavity - Further Improvements - The BESSY Higher Order Mode Damped Cavity - Further Improvements - Ernst Weihreter Reminder of Technical Problems Solutions Conclusions BESSY HOM Damped Cavity Project collaboration: (EC funded) - BESSY

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

Beam Instability Investigations at DELTA

Beam Instability Investigations at DELTA 10 th ESLS-RF Meeting, September 27-28, Dortmund Beam Instability Investigations at Thomas Weis for the group Dortmund University Synchrotron Radiation Center Content: Status of the Facility Instability

More information

INVESTIGATION OF THE LONGITUDINAL FIELD COMPONENT INSIDE THE GTEM 1750

INVESTIGATION OF THE LONGITUDINAL FIELD COMPONENT INSIDE THE GTEM 1750 INVESTIGATION OF THE LONGITUDINAL FIELD COMPONENT INSIDE THE GTEM 1750 H.M. LOOE, Y. HUANG B.G. LOADER, M.J. ALEXANDER, W. LIANG The University of Liverpool, UK Introduction GTEM (Gigahertz Traverse Electromagnetic)

More information

Status of the 1.5 GeV Synchrotron Light Source DELTA and Related Accelerator Physics Activities

Status of the 1.5 GeV Synchrotron Light Source DELTA and Related Accelerator Physics Activities Status of the 1.5 GeV Synchrotron Light Source and Related Accelerator Physics Activities 2006 RuPAC, September 10-14, Novosibirsk Thomas Weis for the machine and accelerator physics group Dortmund University

More information

Accelerating Cavities

Accelerating Cavities Accelerating Cavities for the Damping Ring (DR) Tetsuo ABE For KEKB RF/ARES Cavity Group (T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino) The 16 th KEKB Accelerator Review Meeting February

More information

CLIC Power Extraction and Transfer Structure. (2004)

CLIC Power Extraction and Transfer Structure. (2004) CLIC Power Extraction and Transfer Structure. (24) CLIC linac subunit layout: CLIC accelerating Structure (HDS) Main beam 3 GHz, 2 MW per structure Drive beam (64 A) CLIC Power Extraction and Transfer

More information

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA.

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. 1 1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. Beatriz Bravo Overview 2 1.Introduction 2.Active operation 3.Electromagnetic design 4.Mechanical design Introduction

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

The impedance budget of the CERN Proton Synchrotron (PS)

The impedance budget of the CERN Proton Synchrotron (PS) The impedance budget of the CERN Proton Synchrotron (PS) Serena Persichelli CERN Hadron Synchrotron Collective effects University of Rome La Sapienza serena.persichelli@cern.ch Why do we study the beam

More information

CST s commercial Beam-Physics Codes Ulrich Becker CST (Computer Simulation Technique)

CST s commercial Beam-Physics Codes Ulrich Becker CST (Computer Simulation Technique) CST s commercial Beam-Physics Codes Ulrich Becker CST (Computer Simulation Technique) 1 ICAP 2006 Chamonix-Mont Blanc Ulrich Becker www.cst.com Outline Overview CST STUDIO SUITE Accelerator related examples

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM)

Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM) Internal Report DESY M 1-2 May 21 Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM) A.K. Bandyopadhyay, A. Joestingmeier, A.S. Omar, R. Wanzenberg Deutsches

More information

The transition for the Elettra Input Power Coupler to the standard WR1800

The transition for the Elettra Input Power Coupler to the standard WR1800 The transition for the Elettra Input Power Coupler to the standard WR1800 Cristina Pasotti, Mauro Bocciai, Luca Bortolossi, Alessandro Fabris, Marco Ottobretti, Mauro Rinaldi Alessio Turchet Sincrotrone

More information

04th - 16th August, th International Nathiagali Summer College 1 CAVITY BASICS. C. Serpico

04th - 16th August, th International Nathiagali Summer College 1 CAVITY BASICS. C. Serpico 39th International Nathiagali Summer College 1 CAVITY BASICS C. Serpico 39th International Nathiagali Summer College 2 Outline Maxwell equations Guided propagation Rectangular waveguide Circular waveguide

More information

EC6503 Transmission Lines and WaveguidesV Semester Question Bank

EC6503 Transmission Lines and WaveguidesV Semester Question Bank UNIT I TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines General Solution, Physicasignificance of the equations 1. Derive the two useful forms of equations for voltage and current

More information

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY C. Beard 1), G. Burt 2), A. C. Dexter 2), P. Goudket 1), P. A. McIntosh 1), E. Wooldridge 1) 1) ASTeC, Daresbury laboratory, Warrington, Cheshire,

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6503 TRANSMISSION LINES AND WAVEGUIDES YEAR / SEMESTER: III / V ACADEMIC YEAR:

More information

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT STATUS OF THE ILC CRAB CAVITY DEVELOPMENT SLAC-PUB-4645 G. Burt, A. Dexter, Cockcroft Institute, Lancaster University, LA 4YR, UK C. Beard, P. Goudket, P. McIntosh, ASTeC, STFC, Daresbury laboratories,

More information

Monoconical RF Antenna

Monoconical RF Antenna Page 1 of 8 RF and Microwave Models : Monoconical RF Antenna Monoconical RF Antenna Introduction Conical antennas are useful for many applications due to their broadband characteristics and relative simplicity.

More information

Projects in microwave theory 2017

Projects in microwave theory 2017 Electrical and information technology Projects in microwave theory 2017 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL*

CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL* CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL* F. Marhauser # Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A. Abstract For the design of RF devices like accelerating

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995 A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM A.

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009 RF Cavity Design Erk Jensen CERN BE/RF CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 009 CAS Darmstadt '09 RF Cavity Design 1 Overview DC versus RF Basic equations: Lorentz

More information

Waveguides GATE Problems

Waveguides GATE Problems Waveguides GATE Problems One Mark Questions. The interior of a 20 20 cm cm rectangular waveguide is completely 3 4 filled with a dielectric of r 4. Waves of free space wave length shorter than..can be

More information

Design and Matching of a 60-GHz Printed Antenna

Design and Matching of a 60-GHz Printed Antenna Application Example Design and Matching of a 60-GHz Printed Antenna Using NI AWR Software and AWR Connected for Optenni Figure 1: Patch antenna performance. Impedance matching of high-frequency components

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology Johan Wernehag, EIT Lecture 4 RF Amplifier Design Johan Wernehag Electrical and Information Technology Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching Design

More information

Projects in microwave theory 2009

Projects in microwave theory 2009 Electrical and information technology Projects in microwave theory 2009 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

Evaluation of HOM Coupler Probe Heating by HFSS Simulation

Evaluation of HOM Coupler Probe Heating by HFSS Simulation G. Wu, H. Wang, R. A. Rimmer, C. E. Reece Abstract: Three different tip geometries in a HOM coupler on a CEBAF Upgrade Low Loss cavity have been evaluated by HFSS simulation to understand the tip surface

More information

Introduction to Synchrotron Radio Frequency System

Introduction to Synchrotron Radio Frequency System 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Introduction to Synchrotron Radio Frequency System Khorshid Sarhadi Head of ILSF RF Group 15 Sep. 2013 1 Outline

More information

ACE3P and Applications to HOM Power Calculation in Cornell ERL

ACE3P and Applications to HOM Power Calculation in Cornell ERL ACE3P and Applications to HOM Power Calculation in Cornell ERL Liling Xiao Advanced Computations Group SLAC National Accelerator Laboratory HOM10 Workshop, Cornell, October 11-13, 2010 Work supported by

More information

Single-turn and multi-turn coil domains in 3D COMSOL. All rights reserved.

Single-turn and multi-turn coil domains in 3D COMSOL. All rights reserved. Single-turn and multi-turn coil domains in 3D 2012 COMSOL. All rights reserved. Introduction This tutorial shows how to use the Single-Turn Coil Domain and Multi-Turn Coil Domain features in COMSOL s Magnetic

More information

Photograph of the rectangular waveguide components

Photograph of the rectangular waveguide components Waveguides Photograph of the rectangular waveguide components BACKGROUND A transmission line can be used to guide EM energy from one point (generator) to another (load). A transmission line can support

More information

Calibrating the Cavity Voltage. Presentation of an idea

Calibrating the Cavity Voltage. Presentation of an idea Calibrating the Cavity Voltage. Presentation of an idea Stefan Wilke, DESY MHF-e 21st ESLS rf meeting Kraków, 15th/16th nov 2017 Accelerators at DESY. linear and circular Page 2 Accelerators at DESY. linear

More information

SPS Enamelled flanges Simulations & Measurements. Fritz Caspers and Jose E. Varela

SPS Enamelled flanges Simulations & Measurements. Fritz Caspers and Jose E. Varela SPS Enamelled flanges Simulations & Measurements Fritz Caspers and Jose E. Varela Outline Introduction Simulations Measurements Conclusions Outline Introduction Simulations Measurements Conclusions Introduction

More information

Normal-Conducting Photoinjector for High Power CW FEL

Normal-Conducting Photoinjector for High Power CW FEL LA-UR-04-5617,-5808 www.arxiv.org: physics/0404109 Normal-Conducting Photoinjector for High Power CW FEL Sergey Kurennoy, LANL, Los Alamos, NM, USA An RF photoinjector capable of producing high continuous

More information

EMDS for ADS Momentum

EMDS for ADS Momentum EMDS for ADS Momentum ADS User Group Meeting 2009, Böblingen, Germany Prof. Dr.-Ing. Frank Gustrau Gustrau, Dortmund User Group Meeting 2009-1 Univ. of Applied Sciences and Arts (FH Dortmund) Presentation

More information

FEM simulations of nanocavities for plasmon lasers

FEM simulations of nanocavities for plasmon lasers FEM simulations of nanocavities for plasmon lasers S.Burger, L.Zschiedrich, J.Pomplun, F.Schmidt Zuse Institute Berlin JCMwave GmbH 6th Workshop on Numerical Methods for Optical Nano Structures ETH Zürich,

More information

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC RF Design Progress and Plans beam beam 10 December 2007 LARP Collimator Video Meeting Gene Anzalone, Eric Doyle, Lew Keller, Steve Lundgren,

More information

Advanced Meshing Techniques

Advanced Meshing Techniques Advanced Meshing Techniques Ansoft High Frequency Structure Simulator v10 Training Seminar P-1 Overview Initial Mesh True Surface Approximation Surface Approximation Operations Lambda Refinement Seeding

More information

SIGNAL ELECTRIC FIELD MAGNETIC FIELD # 1 (#2) #3 (# 4) WAVEGUIDE VACUUM CHAMBER BEAM PIPE VACUUM CHAMBER

SIGNAL ELECTRIC FIELD MAGNETIC FIELD # 1 (#2) #3 (# 4) WAVEGUIDE VACUUM CHAMBER BEAM PIPE VACUUM CHAMBER New Microwave Beam Position Monitors for the TESLA Test Facility FEL T. Kamps and R. Lorenz DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen Abstract. Beam-based alignment is essential for the operation

More information

Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method

Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method Analysis of Microstrip Circuits Using a Finite-Difference Time-Domain Method M.G. BANCIU and R. RAMER School of Electrical Engineering and Telecommunications University of New South Wales Sydney 5 NSW

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

A prototype S-band BPM system for the ILC energy spectrometer

A prototype S-band BPM system for the ILC energy spectrometer EUROTeV-Report-2008-072 A prototype S-band BPM system for the ILC energy spectrometer A. Lyapin, B. Maiheu, D. Attree, M. Wing, S. Boogert, G. Boorman, M. Slater, D. Ward January 12, 2009 Abstract This

More information

UNIT - V WAVEGUIDES. Part A (2 marks)

UNIT - V WAVEGUIDES. Part A (2 marks) Part A (2 marks) UNIT - V WAVEGUIDES 1. What is the need for guide termination? (Nov / Dec 2011) To avoid reflection loss. The termination should provide a wave impedance equal to that of the transmission

More information

Numerical analysis of a swift, high resolution wavelength monitor designed as a Generic Lightwave Integrated Chip (GLIC)

Numerical analysis of a swift, high resolution wavelength monitor designed as a Generic Lightwave Integrated Chip (GLIC) Numerical analysis of a swift, high resolution wavelength monitor designed as a Generic Lightwave Integrated Chip (GLIC) John Ging and Ronan O Dowd Optoelectronics Research Centre University College Dublin,

More information

HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY

HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY J. A. Mitchell 1, 2, G. Burt 2, N. Shipman 1, 2, Lancaster University, Lancaster, UK B. Xiao, S.Verdú-Andrés, Q. Wu, BNL, Upton, NY 11973, USA R. Calaga,

More information

Numerical Simulation of &hepep-i1 Beam Position Monitor*

Numerical Simulation of &hepep-i1 Beam Position Monitor* SLACPUB957006 September 1995 Numerical Simulation of &hepepi1 Beam Position Monitor* N. Kurita D. Martin C.K. Ng S. Smith Stanford Linear Accelerator Center Stanford University Stanford CA 94309USA and

More information

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source Institut SRF - Wissenschaft und Technologie (FG-ISRF) Adolfo Vélez et al. SRF17 Lanzhou, 17-21/7/2017

More information

HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc.

HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc. HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc. 2011 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Agenda FEM

More information

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis M. Dong* 1, M. Tomes 1, M. Eichenfield 2, M. Jarrahi 1, T. Carmon 1 1 University of Michigan, Ann Arbor, MI, USA

More information

Bunch-by-Bunch Broadband Feedback for the ESRF

Bunch-by-Bunch Broadband Feedback for the ESRF Bunch-by-Bunch Broadband Feedback for the ESRF ESLS RF meeting / Aarhus 21-09-2005 J. Jacob, E. Plouviez, J.-M. Koch, G. Naylor, V. Serrière Goal: Active damping of longitudinal and transverse multibunch

More information

RF Systems I. Erk Jensen, CERN BE-RF

RF Systems I. Erk Jensen, CERN BE-RF RF Systems I Erk Jensen, CERN BE-RF Introduction to Accelerator Physics, Prague, Czech Republic, 31 Aug 12 Sept 2014 Definitions & basic concepts db t-domain vs. ω-domain phasors 8th Sept, 2014 CAS Prague

More information

Q d d f - QdOTa3 6. Stanford Linear Acceleratori Center, Stanford University, Stanford, CA 94309

Q d d f - QdOTa3 6. Stanford Linear Acceleratori Center, Stanford University, Stanford, CA 94309 SLAC-PUB-7349 November 1996 Q d d f - QdOTa3 6 -- /oz- Numerical Modeling of Bearn-Environment nteractions in the PEP-1 B-Factory C-K Ng, K KO, Z Li and X E Lin Stanford Linear Acceleratori Center, Stanford

More information

DESIGN OF A COMPACT SUPERCONDUCTING CRAB-CAVITY FOR LHC USING Nb-ON-Cu-COATING TECHNIQUE

DESIGN OF A COMPACT SUPERCONDUCTING CRAB-CAVITY FOR LHC USING Nb-ON-Cu-COATING TECHNIQUE DESIGN OF A COMPACT SUPERCONDUCTING CRAB-CAVITY FOR LHC USING Nb-ON-Cu-COATING TECHNIQUE A. Grudiev 1, *, S. Atieh 1, R. Calaga 1, S. Calatroni 1, O. Capatina 1, F. Carra 1,2, G. Favre 1, L.M.A. Ferreira

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information

Examining The Concept Of Ground In Electromagnetic (EM) Simulation

Examining The Concept Of Ground In Electromagnetic (EM) Simulation Examining The Concept Of Ground In Electromagnetic (EM) Simulation While circuit simulators require a global ground, EM simulators don t concern themselves with ground at all. As a result, it is the designer

More information

3.9 GHz Deflecting Mode Cavity

3.9 GHz Deflecting Mode Cavity 3.9 GHz Deflecting Mode Cavity Timothy W. Koeth July 12, 2005 History of 3.9 GHz DMC Cavity Simulations The Other Modes concern and modeling R/Q Wake Field Simulations Design: OM couplers Testing: Vertical

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator Jacob Rodnizki SARAF Soreq NRC APril 19-21 th, 2010 Outline 1. SARAF accelerator 2. Presentation of the four rods RFQ 3.

More information

Design of S-band re-entrant cavity BPM

Design of S-band re-entrant cavity BPM Nuclear Science and Techniques 20 (2009) 133 139 Design of S-band re-entrant cavity BPM LUO Qing SUN Baogen * HE Duohui National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology,

More information

Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha

Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha Electromagnetic Wave Analysis of Waveguide and Shielded Microstripline 1 Srishti Singh 2 Anupma Marwaha M.Tech Research Scholar 1, Associate Professor 2 ECE Deptt. SLIET Longowal, Punjab-148106, India

More information

Coupler Electromagnetic Design

Coupler Electromagnetic Design Coupler Electromagnetic Design HPC Workshop, TJNAF October 30 November 1, 2002 Yoon Kang Spallation Neutron Source Oak Ridge National Laboratory Contents Fundamental Power Coupler Design Consideration

More information

Diagnostics I M. Minty DESY

Diagnostics I M. Minty DESY Diagnostics I M. Minty DESY Introduction Beam Charge / Intensity Beam Position Summary Introduction Transverse Beam Emittance Longitudinal Beam Emittance Summary Diagnostics I Diagnostics II Synchrotron

More information

RF Transport. Stefan Choroba, DESY, Hamburg, Germany

RF Transport. Stefan Choroba, DESY, Hamburg, Germany RF Transport Stefan Choroba, DESY, Hamburg, Germany Overview Introduction Electromagnetic Waves in Waveguides TE 10 -Mode Waveguide Elements Waveguide Distributions Limitations, Problems and Countermeasures

More information

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China Progress In Electromagnetics Research Letters, Vol. 37, 21 28, 2013 RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA Jianhua Liu 1, Yonggang Zhou 1, 2, *, and Jun Zhu 1 1 College of Electronic and

More information

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector TESLA-FEL 2002-05 A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector J. Sekutowicz, R. Wanzenberg DESY, Notkestr. 85, 22603 Hamburg, Germany W.F.O. Müller, T. Weiland TEMF, TU Darmstadt, Schloßgartenstr.

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

Loop and Slot Antennas

Loop and Slot Antennas Loop and Slot Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Loop Antenna Loop antennas can have circular, rectangular, triangular or any

More information

Fundamental mode rejection in SOLEIL dipole HOM couplers

Fundamental mode rejection in SOLEIL dipole HOM couplers Fundamental mode rejection in SOLEIL dipole HOM couplers G. Devanz, DSM/DAPNIA/SACM, CEA/Saclay, 91191 Gif-sur-Yvette 14th June 2004 1 Introduction The SOLEIL superconducting accelerating cavity is a heavily

More information

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the kicker The Specification of the Feedbackkicker technical

More information

Waves, Wavelength, Frequency and. Bands. Al Penney VO1NO

Waves, Wavelength, Frequency and. Bands. Al Penney VO1NO Waves, Wavelength, Frequency and Bands Objective On completion, you should be able to: Define Frequency, Wavelength, Band; Perform simple calculations involving frequency and wavelength; and Be familiar

More information

THIRD HARMONIC CAVITY MODAL ANALYSIS

THIRD HARMONIC CAVITY MODAL ANALYSIS THIRD HARMONIC CAVITY MODAL ANALYSIS B. Szczesny, I.R.R. Shinton, R.M. Jones, Cockcroft Institute of Accelerator Science and Technology, Daresbury, UK School of Physics and Astronomy, University of Manchester,

More information

Specification for Conducted Emission Test

Specification for Conducted Emission Test 1 of 10 1. EMI Receiver Frequency range 9kHz 7.0 GHz Measurement time per frequency 10 µs to 100 s time sweep, span = 0 Hz - 1 µs to 16000 s Sweep time in steps of 5 % frequency sweep, span 10 Hz - 2.5

More information

H. Arab 1, C. Akyel 2

H. Arab 1, C. Akyel 2 angle VIRTUAL TRANSMISSION LINE OF CONICAL TYPE COAXIALOPEN-ENDED PROBE FOR DIELECTRIC MEASUREMENT H. Arab 1, C. Akyel 2 ABSTRACT 1,2 Ecole Polytechnique of Montreal, Canada An improved virtually conical

More information

Lecture 4 RF Amplifier Design. Johan Wernehag, EIT. Johan Wernehag Electrical and Information Technology

Lecture 4 RF Amplifier Design. Johan Wernehag, EIT. Johan Wernehag Electrical and Information Technology Lecture 4 RF Amplifier Design Johan Wernehag, EIT Johan Wernehag Electrical and Information Technology Lecture 4 Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

Lecture 8: Introduction to Hybrid FEM IE

Lecture 8: Introduction to Hybrid FEM IE Lecture 8: Introduction to Hybrid FEM IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Hybrid FEM-IE Solution Using HFSS and HFSS-IE Advantages of Hybrid Solution Leverage the strength

More information

Effect of Various Slot Parameters in Single Layer Substrate Integrated Waveguide (SIW) Slot Array Antenna for Ku-Band Applications

Effect of Various Slot Parameters in Single Layer Substrate Integrated Waveguide (SIW) Slot Array Antenna for Ku-Band Applications ACES JOURNAL, Vol. 30, No. 8, August 2015 934 Effect of Various Slot Parameters in Single Layer Substrate Integrated Waveguide (SIW) Slot Array Antenna for Ku-Band Applications S. Moitra 1 and P. S. Bhowmik

More information

ESRF RF System Status Operation & Upgrade

ESRF RF System Status Operation & Upgrade 14 th ESLS RF Meeting 2010 ELETTRA, 29 th 30 th September ESRF RF System Status Operation & Upgrade Jörn Jacob, ESRF on behalf of the colleagues of the RF Group and many other ESRF Groups 14th ESLS RF,

More information

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2 BROOKHAVEN SCIENCE ASSOCIATES SRF R&D for erhic On behalf of team Brookhaven National Laboratory JLEIC Collaboration workshop 1 Outline I. Progress and R&D plan on SRF cavity II. HOM damping for low-risk

More information

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC

SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC SIMULATIONS OF TRANSVERSE HIGHER ORDER DEFLECTING MODES IN THE MAIN LINACS OF ILC C.J. Glasman, R.M. Jones, I. Shinton, G. Burt, The University of Manchester, Manchester M13 9PL, UK Cockcroft Institute

More information

Antenna Design: Simulation and Methods

Antenna Design: Simulation and Methods Antenna Design: Simulation and Methods Radiation Group Signals, Systems and Radiocommunications Department Universidad Politécnica de Madrid Álvaro Noval Sánchez de Toca e-mail: anoval@gr.ssr.upm.es Javier

More information

High-frequency transmission line transitions

High-frequency transmission line transitions High-frequency transmission line transitions Leonard T. Hall a,b,hedleyj.hansen a,b,c, and Derek Abbott a,b a Centre for Biomedical Engineering, The University of Adelaide, SA 55 Australia b Department

More information

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction Chapter 4 The RF systems and beam feedback 4.1 Introduction The injected beam will be captured, accelerated and stored using a 400 MHz superconducting cavity system, and the longitudinal injection errors

More information

DOUBLE-RIDGED ANTENNA FOR WIDEBAND APPLI- CATIONS. A. R. Mallahzadeh and A. Imani Electrical Engineering Department Shahed University Tehran, Iran

DOUBLE-RIDGED ANTENNA FOR WIDEBAND APPLI- CATIONS. A. R. Mallahzadeh and A. Imani Electrical Engineering Department Shahed University Tehran, Iran Progress In Electromagnetics Research, PIER 91, 273 285, 2009 DOUBLE-RIDGED ANTENNA FOR WIDEBAND APPLI- CATIONS A. R. Mallahzadeh and A. Imani Electrical Engineering Department Shahed University Tehran,

More information

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields E.O. Kamenetskii 1 *, A.K. Saha 2, and I. Awai 3 1 Department of Electrical and Computer Engineering, Ben Gurion University

More information

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define Characteristic Impedance [M/J 2006, N/D 2006] Characteristic impedance is defined as the impedance of a transmission line measured

More information

High Frequency Structure Simulator (HFSS) Tutorial

High Frequency Structure Simulator (HFSS) Tutorial High Frequency Structure Simulator (HFSS) Tutorial Prepared by Dr. Otman El Mrabet IETR, UMR CNRS 6164, INSA, 20 avenue Butte des Coësmes 35043 Rennes, FRANCE 2005-2006 TABLE OF CONTENTS INTRODUCTION...

More information

Inset Fed Microstrip Patch Antenna for X-Band Applications

Inset Fed Microstrip Patch Antenna for X-Band Applications Inset Fed Microstrip Patch Antenna for X-Band Applications Pradeep H S Dept.of ECE, Siddaganga Institute of Technology, Tumakuru, Karnataka. Abstract Microstrip antennas play an important role in RF Communication.

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

Higher order mode suppression in Triaxial cells. Overview. Higher order Mode Suppression in Triaxial Cells (Improvement of Triaxial Cell procedure)

Higher order mode suppression in Triaxial cells. Overview. Higher order Mode Suppression in Triaxial Cells (Improvement of Triaxial Cell procedure) Higher order mode suppression in Triaxial cells Cell 1000/150/ Cell 1000/300/300 Cell 140/140/100 Cell 75/50/50 Cell 80/140/100 clamp Test head Different designs of Triaxial Cells Bernhard Mund, Berkenhoff&Drebes

More information