Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators

Size: px
Start display at page:

Download "Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators"

Transcription

1 From the SelectedWorks of Chengjie Zuo October, 2010 Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators Matteo Rinaldi, University of Pennsylvania Chengjie Zuo, University of Pennsylvania Jan Van der Spiegel, University of Pennsylvania Gianluca Piazza, University of Pennsylvania Available at:

2 /ULTSYM Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators Matteo Rinaldi, Chengjie Zuo, Jan Van der Spiegel and Gianluca Piazza Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA, USA (rinaldim, czuo, jan, Abstract This paper reports on the first demonstration of a reconfigurable Complementary Metal Oxide Semiconductor (CMOS) oscillator based on MicroElectroMechanical System (MEMS) resonators operating at 4 different frequencies (268, 483, 690 and 785 MHz). A bank of multi-frequency switchable AlN Contour-Mode MEMS resonators (CMRs) were connected to a single CMOS oscillator circuit that can be configured to selectively operate in 4 different states with distinct oscillation frequencies. The phase noise (PN) of the reconfigurable oscillator was measured for each of the 4 different frequencies of operation showing values between -94 and -70 dbc/hz at 1 KHz offset and PN floor values as low as -165 dbc/hz at 1 MHz offset. Jitter values as low as 114 fs-rms (integrated 12 KHz - 20 MHz) and switching times as fast as 20 μs were measured. This first prototype represents a miniaturized solution (30X smaller) over commercially available Voltage Controlled SAW Oscillators (VCSOs) and potentially has the advantage of generating multiple stable frequencies without the need of cumbersome and power consuming phase locked loop (PLL) circuits. Keywords-Reconfigurable Oscillator; CMOS/MEMS Oscillator; MicroElectroMechanical Systems (MEMS); AlN Contour-Mode Resonator; Piezoelectric Resonator. hundreds of MHz for SAWs. When multiple and higher frequencies of operation are required, as in the case of oscillators for RF transceivers, phase locked loop (PLL) frequency synthesizers are typically employed [1]. PLL frequency synthesizers generate high frequency signals by multiplying the output frequency of a stable and accurate reference (implemented with a crystal or SAW oscillator) by a factor N. The introduction of a PLL significantly increases the chip area dedicated to the oscillator and the total power consumption of the system. Furthermore, the frequency multiplication used to achieve the required output frequency increases the phase noise of the output signal by 20 log (N) [1, 2]. In this perspective, the implementation of a reconfigurable oscillator that employs high Q mechanical elements at all the desired frequencies of operation without the need of a PLL is potentially extremely advantageous. Nevertheless, when a wide range of operating frequencies needs to be covered (large number of mechanical resonators is needed), quartz crystal and SAW resonators fail to represent a viable solution because of their limited maximum operating frequencies and large size. I. INTRODUCTION The demand of high-performance, single-chip, multi-band and reconfigurable radio frequency (RF) solutions for next generation wireless communication is steadily growing. A key element for the implementation of an RF transceiver is a stable frequency source, which acts as a reference signal enabling system synchronization and signal modulation. When a singlechip multi-band RF solution is pursued, a reconfigurable multifrequency source is highly desired. Single-frequency high-precision frequency sources are implemented by connecting a high quality factor (Q) mechanical resonator in the feedback network of a selfsustained oscillator circuit. The natural resonance frequency of the mechanical resonator determines the output frequency of the oscillator. Thanks to the very high Q, quartz crystal and surface acoustic wave (SAWs) resonators have been widely and successfully employed as frequency setting elements in high stability oscillator circuits. However, conventional quartz crystal and SAW oscillators can only provide a single output frequency (just a relatively small frequency tuning is possible), whose value is limited to tens of MHz for quartz crystals, and This work was supported by the National Consortium for MASINT Research (NCMR) and the National Science Foundation (NSF) Figure 1. Schematic view and micrograph of the reconfigurable CMOS oscillator prototype based on 4 (different frequency) AlN Conotur-Mode MEMS resonators. The insets show a schematic representation and an SEM picture of one of the CMRs. MicroElectroMechnical System (MEMS) resonators have emerged as promising alternative to bulky and unintegrable /10/$ IEEE IEEE International Ultrasonics Symposium Proceedings

3 quartz crystal and SAW resonators. Thanks to their small form factor, high frequency of operation and capability to be integrated with CMOS circuits, MEMS resonators represent the best candidate for the implementation of compact and multifrequency banks of high quality factor mechanical elements that can be used for the fabrication of next generation reconfigurable local oscillators (LOs) for RF transceivers. Different MEMS resonator technologies based on electrostatic [3, 4] or piezoelectric [5, 6] transduction have been investigated. Among these, the AlN contour-mode resonator (CMR) technology [5] has emerged as one of the most promising solutions in enabling the fabrication of multiple frequencies (100 MHz 10 GHz) and high performance resonators on the same silicon chip [7, 8, 9, 10, 11, 12, 13]. In this work a stepping stone towards the development of the next generation single-chip multi-band RF transceivers is set by demonstrating the first reconfigurable 4-frequency (268, 483, 690 and 785 MHz) CMOS oscillator based on MEMS resonators (Fig. 1). For the first time, a bank of multi-frequency switchable AlN CMRs were simultaneously connected to a single CMOS oscillator circuit that can be configured to selectively operate in 4 different states with distinct oscillation frequencies. Jitter values as low as 114 fs-rms (integrated 12 KHz - 20 MHz) and switching times as fast as 20 μs were measured. This first prototype is 30X smaller than dualfrequency commercially available Voltage Controlled SAW Oscillators (VCSOs) [14] and has the advantage of generating multiple stable frequencies by employing high quality factor mechanical elements at all the frequencies of operation without the need of a PLL. II. DESIGN A. Multi-frequency AlN Contour-Mode Resonator Bank The resonance frequencies of the 4 CMRs (Fig 1 - inset) of this work were properly designed to devise a reconfigurable oscillator covering a frequency spectrum from 250 to 800 MHz. To set the resonant frequency, the period [5], W, of the metal electrode patterned on the AlN plate was varied between 6 and 15 μm while the other geometrical dimensions, n, T and L (Fig. 1 - inset) were opportunely scaled [8] in order to maintain a low value of the device equivalent electrical impedance (Table 1). In addition, in order to maximize the transduction efficiency, thickness field excitation (TFE) [9] and lateral field excitation with floating bottom electrode (LFE-F) [11] were employed to excite a higher order contourextensional mode of vibration in the AlN structures. B. Multiplexed CMOS Oscillator The oscillator circuit topology used in this work is shown in Figure 2. The circuit consists of a Pierce oscillator implemented by means of a CMOS inverter biased in its active region. Transistors M1 and M2 form the CMOS inverting amplifier while transistor M3 acts as a large resistor to provide biasing of M1 and M2 in the active region. By employing this circuit topology the transconductance, g m, of the inverting amplifier is made proportional to the supply voltage V S1 [10], which allows optimizing the oscillator performance in terms of power consumption and phase noise depending upon the characteristics of the specific MEMS resonator connected in the feedback loop. By adjusting V S1 the AC gain of the inverting amplifier can be set to be equal or above the critical transconductance, g mc, needed for the oscillations to start. TABLE I. RESONATOR DESIGN PARAMETERS The four AlN CMRs are simultaneously connected to the Pierce-like oscillator circuit by means of an equivalent number of CMOS switches (Fig. 2) operating in a time multiplexed mode. Each switch is composed of a CMOS transmission gate whose dimensions are opportunely designed (by means of circuit simulations performed in Cadence) in order to minimize power loss and consequently maintain a low value of gain in the amplifier used to sustain the oscillation. In particular, by acting on the W/L ratio of the transmission gate transistor the values of on-resistance and the input/output capacitance of the switches can be opportunely set in order to minimize power dissipation. A large W/L ratio reduces the on-resistance of the switches (hence reduces power loss and eventually improves phase noise), but at the same time increases the values of their input/output capacitance, C p, which, as shown in Figure 3, needs instead to be kept smaller than the resonator geometrical capacitance, C 0, in order to limit excessive power dissipation. Figure 2. Micrograph and circuit schematic of the multiplexed CMOS oscillator chip (1.05 mm 2 ). The single CMOS Pierce-like oscillator circuit can be connected to up to 8 CMRs (4 in this work) by means of an equivalent number of CMOS switches operating in a time multiplexed mode and addressed by a 3 to 8 (2 to 4 in this work) digital decoder. Since multiple resonators with different values of geometrical capacitance, C 0, ( ff) are connected to the multiplexed oscillator, the value of C p needs to be designed to be smaller than the minimum possible values of C 0 (worst case scenario). On the other hand, the design of such small value of C P is associated with a high value of the switch on-resistance, R ON, which might negatively affect the performance of the oscillator. In fact, the insertion of the switch on-resistance, R ON, in the feedback loop of the circuit causes an increase in the IEEE International Ultrasonics Symposium Proceedings

4 required value of critical transconductance, g mc, necessary for the oscillations to start [9], hence an overall increase of the oscillator power consumption. A tradeoff between C P and R ON is therefore required. According to this consideration and given a minimum channel length, L, equal to 0.6 μm, set by the available CMOS technology, an optimum value for the width, W, of the transistors forming the switches was estimated to be approximately 18 μm by means of circuit simulations performed in Cadence. This design choice corresponds to values of C p of about 40 ff (smaller than the minimum C 0 value) and switch on-resistance, R ON, of about 210 Ω. As shown in figure 4, the designed value of R ON has a limited impact on the oscillator performance. In fact, an increase of the value of the amplifier critical transconductance by ~2.2X with respect to the case without switches is sufficient to compensate the additional loss introduced by the switches and sustain oscillations at all the operating frequencies. motional resistance, R m, of the resonator [9], whose value is inversely proportional to the device figure of merit, k t 2 Q [8]. Figure 4. Critical transconductance, g mc, normalized with respect to the case without switches as a function of the CMOS switch on-resistance, R ON (assuming C 1 =C 2 =500 ff). The designed value of R ON (~210 Ω) is compensated by an increase of the amplifier transconductance, g mc, by at most 2.2X. TABLE II. CMRS CHARACTERISTICS Figure 3. Schematic representation of two CMRs, Res1 and Res2, connected to the CMOS inverting amplifier, A, by means of two CMOS switches. In order to have V o V x (i.e. no power dissipation in the turned off resonator) the resonator geometrical capacitance, C 0, has to be larger than C p. Although just 2 resonators are shown in this schematic, 4 were effectively connected in the prototype presented in this paper. In order to reduce the number of pads necessary to control the sensor array, the CMOS switches are addressed through a 2 to 4 digital decoder integrated on-chip (Fig. 2). Each CMR is driven by the oscillator when the corresponding 2 bit address is presented to the decoder. III. EXPERIMENTAL RESULTS The four AlN CMRs were designed and fabricated on a single chip accordingly to what previously reported in [5, 8, 9, 11]. The electrical responses of the fabricated devices were characterized in an RF probe station and the admittance curves measured by an Agilent N5230A Network Analyzer after performing a short-open-load (SOL) calibration on a reference substrate. The measured electrical responses of the devices were fitted to the Modified Butterworth van Dyke (MBVD) equivalent electrical circuit [9] and showed high mechanical quality factor (reported value include losses due exclusively to the mechanical motional resistance), Q m, up to 3900 and electromechanical coupling, k t 2, up to 1.53% (Table 2). Such high values (> 20) of the device figure of merit, k t 2 Q, are of crucial importance for the direct connection of multiple CMRs to the low power multiplexed oscillator circuit. In fact, the primary power loss in such oscillator circuit is due to the The multiplexed CMOS oscillator chip was taped-out in the ON Semiconductor 0.5 μm CMOS process. Both the MEMS resonator die and the CMOS chip were attached to a custom designed PCB and all the electrical connections were made through wire-bonding (Fig. 1). The 4 combinations of the 2 bit address (corresponding to each of the CMRs in the bank) were cyclically provided to the decoder by a Data Acquisition (DAQ) system so as to sequentially turn on each resonator. Stable oscillation at all the 4 different frequencies of operation was achieved by applying supply voltages, V S1 and V S2 (buffer power supply) as low as 3.3 V and 3.0 V, respectively, which translate in a power consumption of 13 mw for the inverting amplifier and 22.5 mw for the buffer. By tuning the supply voltage, V S1, stable oscillation at the two lowest operating frequencies can be achieved with lower power consumption (398 μw at 268 MHz and 4 mw at 483 MHz). Despite the use of a 0.5 μm technology, the typical value of total power consumption (35.5 mw) for the reconfigurable oscillator of this work is ~6X smaller than the one achieved with commercially available VCSOs [14]. The switching time of the reconfigurable oscillator was measured by monitoring its transient response with an Agilent DSO80804A Oscilloscope. Switching times as fast as 20 μs were measured (Fig. 5) showing the capability to reconfigure the oscillator at rates in the MHz range. In order to characterize the noise performance of the reconfigurable oscillator prototype, the output of the oscillator IEEE International Ultrasonics Symposium Proceedings

5 was monitored via an Agilent E5052B Signal Source Analyzer. The phase noise of the reconfigurable oscillator was measured (Fig. 6) for each of the 4 different frequencies of operation showing values between -94 and -70 dbc/hz at 1 KHz offset and phase noise floor values as low as -165 dbc/hz at 1 MHz offset. These phase noise measurements translate in time domain jitter values as low as 114 fs-rms (integrated 12 KHz - 20 MHz) (Table 3). The figure of merit (FoM) [10] of this reconfigurable AlN CMR oscillator was also calculated for each of the 4 different frequencies of operation and the corresponding values are reported in Table III. These FoM are among the best ever reported for similar frequencies oscillators based on MEMS technologies [9, 10, 15]. transformational impact on the form factor (100 plus CMRs can fit in ~2 mm 2 ) and power consumption of next generation reconfigurable multi-frequency sources for RF transceivers. Figure 6. Measured phase noise for the 4-frequency reconfigurable AlN CMR oscillator. The supply voltage, V S1, was tuned for each of the 4 different operating frequencies in order to achieve optimum phase noise performances. TABLE III. OSCILLATOR PERFORMANCE AT THE 4 CMR FREQUENCIES Figure 5. Transient response of the reconficurable oscillator while swithcing from the 483 MHz to the 268 MHz output. The measured noise performances are comparable to those of commercially available Voltage Controlled SAW Oscillators (VCSOs) (based on two different SAW resonators) [14]. Therefore, this first prototype of reconfigurable CMR oscillator not only has the advantage of occupying only a fraction (30 X) of the area typically taken by VCSOs, but also meets the phase noise specifications for many different applications where VCSOs are typically used, such as SONET/SDH, Optical Transport Network, 10 Gigabit Ethernet and WiMax. IV. CONCLUSION In this work the first reconfigurable CMOS oscillator based on laterally vibrating MEMS resonators has been experimentally demonstrated. A bank of multi-frequency and switchable AlN Contour-Mode MEMS resonators (CMRs) were connected to a single oscillator circuit that can be configured to selectively operate in 4 different states with distinct oscillation frequencies (268, 483, 690 and 785 MHz). The phase noise of the reconfigurable oscillator was measured for each of the 4 different frequencies of operation showing values between -94 and -70 dbc/hz at 1 KHz offset and phase noise floor values as low as -165 dbc/hz at 1 MHz offset. The excellent results showcased by this demonstration hint that it is possible to envision new timing solutions in which large arrays (100 plus) of micromechanical resonators fully integrated with CMOS circuits could be used for frequency synthesis over a broad spectrum going from 10s MHz to few GHz. The use of large arrays of mechanical devices over cumbersome and inefficient circuit elements (such as PLLs) could have a ACKNOWLEDGMENT The authors thank Xiaotie Wu for helpful discussions on the multiplexed oscillator circuit design. We also thank the MOSIS Educational Program for the IC chip fabrication and the staff at the Wolf Nanofabrication Facility at Penn for their support in the MEMS fabrication. REFERENCES [1] B. Razavi, Monolithic phase-locked loops and clock recovery circuits: theory and design, Wiley-IEEE Press, [2] Vectron International, Phase Noise, Application Note, ( [3] C. T.-C. Nguyen, IEEE TUFFC, vol. 54, no. 2, pp , Feb [4] D. Weinstein et al., Proc. IEEE IEDM 2007 pp , [5] G. Piazza et al., J. MEMS vol. 15, no. 6, pp , Dec [6] R. Abdolvand et al., Proc. IEEE MEMS 2007, pp , [7] M. Rinaldi et al., Proc. IEEE MEMS 2009, pp , [8] M. Rinaldi et al., IEEE TUFFC, vol. 57, no. 1, pp , Jan [9] C. Zuo et al., J. MEMS, vol. 19, no. 3, pp , Jun [10] C. Zuo et al., IEEE TUFFC, vol. 57, no. 1, pp , Jan [11] M. Rinaldi et al., Proc. IEEE MEMS 2010, pp , Jan [12] M. Rinaldi et al., Proc. Hilton Head 2010, pp , Jun [13] C. Zuo et. al., Proc. IEEE CICC 2010, in press, Sep [14] Vectron International, Dual Frequency VCSO, VS-709, ( [15] H. M. Lavasani et al., Proc. IEEE MEMS 2008, pp , IEEE International Ultrasonics Symposium Proceedings

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes From the SelectedWorks of Chengjie Zuo January, 11 Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S and S1 Lamb-wave Modes

More information

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends From the SelectedWorks of Chengjie Zuo October 2011 Aluminum Nitride Reconfigurable RF-MEMS Front-Ends Augusto Tazzoli University of Pennsylvania Matteo Rinaldi University of Pennsylvania Chengjie Zuo

More information

Reconfigurable CMOS Oscillator Based on Multifrequency AlN Contour-Mode MEMS Resonators

Reconfigurable CMOS Oscillator Based on Multifrequency AlN Contour-Mode MEMS Resonators From the SelectedWorks of Chengjie Zuo May, 2011 Reconfigurable CMOS Oscillator Based on Multifrequency AlN Contour-Mode MEMS Resonators Matteo Rinaldi, University of Pennsylvania Chengjie Zuo, University

More information

AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz

AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz From the SelectedWorks of Chengjie Zuo April, 2009 AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz Matteo Rinaldi, University of Pennsylvania Chiara Zuniga, University of Pennsylvania Chengjie

More information

Multi-Frequency Pierce Oscillators Based On Piezoelectric AlN Contour-Mode MEMS Resonators

Multi-Frequency Pierce Oscillators Based On Piezoelectric AlN Contour-Mode MEMS Resonators From the SelectedWorks of Chengjie Zuo September, 008 Multi-Frequency Pierce Oscillators Based On Piezoelectric AlN Contour-Mode MEMS Resonators Chengjie Zuo, University of Pennsylvania Nipun Sinha, University

More information

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches Nipun Sinha, University

More information

Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric AlN Contour- Mode MEMS Resonators

Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric AlN Contour- Mode MEMS Resonators From the Selectedorks of Chengjie Zuo Summer June 1, 2008 Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric AlN Contour- Mode MEMS Resonators Chengjie Zuo, University of Pennsylvania

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

Index. bias current, 61, 145 critical, 61, 64, 108, 161 start-up, 109 bilinear function, 11, 43, 167

Index. bias current, 61, 145 critical, 61, 64, 108, 161 start-up, 109 bilinear function, 11, 43, 167 Bibliography 1. W. G. Cady. Method of Maintaining Electric Currents of Constant Frequency, US patent 1,472,583, filed May 28, 1921, issued Oct. 30, 1923. 2. G. W. Pierce, Piezoelectric Crystal Resonators

More information

Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method

Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method Journal of the Korean Physical Society, Vol. 37, No. 6, December 2000, pp. 822 827 Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method Minkyu Je, Kyungmi Lee, Joonho

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators

Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators Low-Power Ovenization of Fused Silica Resonators for Temperature-Stable Oscillators Zhengzheng Wu zzwu@umich.edu Adam Peczalski peczalsk@umich.edu Mina Rais-Zadeh minar@umich.edu Abstract In this paper,

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

GHz-band, high-accuracy SAW resonators and SAW oscillators

GHz-band, high-accuracy SAW resonators and SAW oscillators The evolution of wireless communications and semiconductor technologies is spurring the development and commercialization of a variety of applications that use gigahertz-range frequencies. These new applications

More information

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO 82 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 82-86 (213) DOI: 1.6119/JMST-11-123-1 A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz MOS VO Yao-hian Lin, Mei-Ling Yeh, and hung-heng hang

More information

Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers

Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers From the SelectedWorks of Chengjie Zuo June, 29 Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Transducers Nai-Kuei Kuo, University of Pennsylvania

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology Wireless Engineering and Technology, 2011, 2, 102106 doi:10.4236/wet.2011.22014 Published Online April 2011 (http://www.scirp.org/journal/wet) 99 Layout Design of LC VCO with Current Mirror Using 0.18

More information

A Fully Integrated CMOS Phase-Locked Loop With 30MHz to 2GHz Locking Range and ±35 ps Jitter

A Fully Integrated CMOS Phase-Locked Loop With 30MHz to 2GHz Locking Range and ±35 ps Jitter University of Pennsylvania ScholarlyCommons epartmental Papers (ESE) epartment of Electrical & Systems Engineering 7-1-2003 A Fully Integrated CMOS Phase-Locked Loop With 30MHz to 2GHz Locking Range and

More information

Low Power Communication Circuits for WSN

Low Power Communication Circuits for WSN Low Power Communication Circuits for WSN Nate Pletcher, Prof. Jan Rabaey, (B. Otis, Y.H. Chee, S. Gambini, D. Guermandi) Berkeley Wireless Research Center Towards A Micropower Integrated Node power management

More information

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR Yang-Shyung Shyu * and Jiin-Chuan Wu Dept. of Electronics Engineering, National Chiao-Tung University 1001 Ta-Hsueh Road, Hsin-Chu, 300, Taiwan * E-mail:

More information

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1 16.1 A 4.5mW Closed-Loop Σ Micro-Gravity CMOS-SOI Accelerometer Babak Vakili Amini, Reza Abdolvand, Farrokh Ayazi Georgia Institute of Technology, Atlanta, GA Recently, there has been an increasing demand

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

A Robust Oscillator for Embedded System without External Crystal

A Robust Oscillator for Embedded System without External Crystal Appl. Math. Inf. Sci. 9, No. 1L, 73-80 (2015) 73 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/091l09 A Robust Oscillator for Embedded System without

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Eugene Hwang, Tanay A. Gosavi, Sunil A. Bhave School of Electrical and Computer Engineering Cornell University

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL IN CMOS TECHNOLOGY L. Majer, M. Tomáška,V. Stopjaková, V. Nagy, and P. Malošek Department of Microelectronics, Slovak Technical University, Ilkovičova 3, Bratislava,

More information

4-Bit Ka Band SiGe BiCMOS Digital Step Attenuator

4-Bit Ka Band SiGe BiCMOS Digital Step Attenuator Progress In Electromagnetics Research C, Vol. 74, 31 40, 2017 4-Bit Ka Band SiGe BiCMOS Digital Step Attenuator Muhammad Masood Sarfraz 1, 2, Yu Liu 1, 2, *, Farman Ullah 1, 2, Minghua Wang 1, 2, Zhiqiang

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators for Mechanical Signal Processing

One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators for Mechanical Signal Processing University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering December 2007 One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators

More information

A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator

A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator Online Supplementary Information A Self-Sustaining Ultra High Frequency Nanoelectromechanical Oscillator X.L. Feng 1,2, C.J. White 2, A. Hajimiri 2, M.L. Roukes 1* 1 Kavli Nanoscience Institute, MC 114-36,

More information

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell Devi Singh Baghel 1, R.C. Gurjar 2 M.Tech Student, Department of Electronics and Instrumentation, Shri G.S. Institute of

More information

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad MEMS Reference Oscillators EECS 242B Fall 2014 Prof. Ali M. Niknejad Why replace XTAL Resonators? XTAL resonators have excellent performance in terms of quality factor (Q ~ 100,000), temperature stability

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application

Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application Prasanna P. Deshpande *, Pranali M. Talekar, Deepak G. Khushalani and Rajesh S. Pande Shri Ramdeobaba College

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY Byungki Kim, H. Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

More information

A GHz Quadrature ring oscillator for optical receivers van der Tang, J.D.; Kasperkovitz, D.; van Roermund, A.H.M.

A GHz Quadrature ring oscillator for optical receivers van der Tang, J.D.; Kasperkovitz, D.; van Roermund, A.H.M. A 9.8-11.5-GHz Quadrature ring oscillator for optical receivers van der Tang, J.D.; Kasperkovitz, D.; van Roermund, A.H.M. Published in: IEEE Journal of Solid-State Circuits DOI: 10.1109/4.987097 Published:

More information

AN INTEGRATED ULTRASOUND TRANSDUCER DRIVER FOR HIFU APPLICATIONS. Wai Wong, Carlos Christoffersen, Samuel Pichardo, Laura Curiel

AN INTEGRATED ULTRASOUND TRANSDUCER DRIVER FOR HIFU APPLICATIONS. Wai Wong, Carlos Christoffersen, Samuel Pichardo, Laura Curiel AN INTEGRATED ULTRASOUND TRANSDUCER DRIVER FOR HIFU APPLICATIONS Wai Wong, Carlos Christoffersen, Samuel Pichardo, Laura Curiel Lakehead University, Thunder Bay, ON, P7B 5E Department of Electrical and

More information

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI LETTER IEICE Electronics Express, Vol.1, No.15, 1 11 A fully synthesizable injection-locked PLL with feedback current output DAC in 8 nm FDSOI Dongsheng Yang a), Wei Deng, Aravind Tharayil Narayanan, Rui

More information

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM Progress In Electromagnetics Research C, Vol. 9, 25 34, 2009 DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM S.-K. Wong and F. Kung Faculty of Engineering Multimedia University

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

DESIGN OF HIGH FREQUENCY CMOS FRACTIONAL-N FREQUENCY DIVIDER

DESIGN OF HIGH FREQUENCY CMOS FRACTIONAL-N FREQUENCY DIVIDER 12 JAVA Journal of Electrical and Electronics Engineering, Vol. 1, No. 1, April 2003 DESIGN OF HIGH FREQUENCY CMOS FRACTIONAL-N FREQUENCY DIVIDER Totok Mujiono Dept. of Electrical Engineering, FTI ITS

More information

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation WA 17.6: A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation Gu-Yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos 1, Mark Horowitz 1 Computer Systems Laboratory, Stanford

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

Lab 4. Crystal Oscillator

Lab 4. Crystal Oscillator Lab 4. Crystal Oscillator Modeling the Piezo Electric Quartz Crystal Most oscillators employed for RF and microwave applications use a resonator to set the frequency of oscillation. It is desirable to

More information

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System Design of an Integrated OLED Driver for a Modular Large-Area Lighting System JAN DOUTRELOIGNE, ANN MONTÉ, JINDRICH WINDELS Center for Microsystems Technology (CMST) Ghent University IMEC Technologiepark

More information

DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS

DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 39, 73 80, 2013 DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS Hai-Jin Zhou * and Hua

More information

Welcome to the Epson SAW oscillator product training module. Epson has been providing their unique SAW oscillators that exhibit outstanding

Welcome to the Epson SAW oscillator product training module. Epson has been providing their unique SAW oscillators that exhibit outstanding Welcome to the Epson SAW oscillator product training module. Epson has been providing their unique SAW oscillators that exhibit outstanding stability, ultra low jitter and the ability to oscillate at a

More information

REDUCING power consumption and enhancing energy

REDUCING power consumption and enhancing energy 548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 63, NO. 6, JUNE 2016 A Low-Voltage PLL With a Supply-Noise Compensated Feedforward Ring VCO Sung-Geun Kim, Jinsoo Rhim, Student Member,

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Ultra-Low-Power Phase-Locked Loop Design

Ultra-Low-Power Phase-Locked Loop Design Design for MOSIS Educational Program (Research) Ultra-Low-Power Phase-Locked Loop Design Prepared by: M. Shahriar Jahan, Xiaojun Tu, Tan Yang, Junjie Lu, Ashraf Islam, Kai Zhu, Song Yuan, Chandradevi Ulaganathan,

More information

Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System

Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System RESEARCH ARTICLE OPEN ACCESS Design of Low Phase Noise and Wide Tuning Range Voltage Controlled Oscillator for Modern Communication System Rachita Singh*, Rajat Dixit** *(Department of Electronics and

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

TCMO : A VERSATILE MEMS OSCILLATOR TIMING PLATFORM

TCMO : A VERSATILE MEMS OSCILLATOR TIMING PLATFORM TCMO : A VERSATILE MEMS OSCILLATOR TIMING PLATFORM K. J. Schoepf Sand 9, Inc. One Kendall Square, Suite B2305 Cambridge, MA 02139 jschoepf@sand9.com R. Rebel, D. M. Chen, G. Zolfagharkhani, A. Gaidarzhy,

More information

Research on Self-biased PLL Technique for High Speed SERDES Chips

Research on Self-biased PLL Technique for High Speed SERDES Chips 3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015) Research on Self-biased PLL Technique for High Speed SERDES Chips Meidong Lin a, Zhiping Wen

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications

Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications Rekha 1, Rajesh Kumar 2, Dr. Raj Kumar 3 M.R.K.I.E.T., REWARI ABSTRACT This paper presents the simulation and

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR H. McPherson Presented at IEE Conference Radar 92, Brighton, Spectral Line Systems Ltd England, UK., October 1992. Pages

More information

RFIC DESIGN EXAMPLE: MIXER

RFIC DESIGN EXAMPLE: MIXER APPENDIX RFI DESIGN EXAMPLE: MIXER The design of radio frequency integrated circuits (RFIs) is relatively complicated, involving many steps as mentioned in hapter 15, from the design of constituent circuit

More information

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.2, APRIL, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.2.202 ISSN(Online) 2233-4866 High-Robust Relaxation Oscillator with

More information

DISTRIBUTED amplification is a popular technique for

DISTRIBUTED amplification is a popular technique for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 5, MAY 2011 259 Compact Transformer-Based Distributed Amplifier for UWB Systems Aliakbar Ghadiri, Student Member, IEEE, and Kambiz

More information

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal

Characteristics of Crystal. Piezoelectric effect of Quartz Crystal Characteristics of Crystal Piezoelectric effect of Quartz Crystal The quartz crystal has a character when the pressure is applied to the direction of the crystal axis, the electric change generates on

More information

WIDE tuning range is required in CMOS LC voltage-controlled

WIDE tuning range is required in CMOS LC voltage-controlled IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 5, MAY 2008 399 A Wide-Band CMOS LC VCO With Linearized Coarse Tuning Characteristics Jongsik Kim, Jaewook Shin, Seungsoo Kim,

More information

Voltage Controlled Quartz Crystal Oscillator (VCXO) ASIC

Voltage Controlled Quartz Crystal Oscillator (VCXO) ASIC General: Voltage Controlled Quartz Oscillator (VCXO) ASIC Paulo Moreira CERN, 21/02/2003 The VCXO ASIC is a test structure designed by the CERN microelectronics group in a commercial 0.25 µm CMOS technology

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET Proceedings of IMECE006 006 ASME International Mechanical Engineering Congress and Exposition November 5-10, 006, Chicago, Illinois, USA IMECE006-15176 IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR

More information

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.3, JUNE, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.3.287 ISSN(Online) 2233-4866 A 10-Gb/s Multiphase Clock and Data Recovery

More information

Enhancement of VCO linearity and phase noise by implementing frequency locked loop

Enhancement of VCO linearity and phase noise by implementing frequency locked loop Enhancement of VCO linearity and phase noise by implementing frequency locked loop Abstract This paper investigates the on-chip implementation of a frequency locked loop (FLL) over a VCO that decreases

More information

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology International Journal of Industrial Electronics and Control. ISSN 0974-2220 Volume 6, Number 1 (2014), pp. 1-5 International Research Publication House http://www.irphouse.com A New Approach for Op-amp

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners

Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners Downloaded from orbit.dtu.dk on: Jul 23, 2018 Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners Llimos Muntal, Pere; Diederichsen, Søren Elmin; Jørgensen, Ivan Harald

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage S.Thenappan 1, N.Porutchelvam 2 1,2 Department of ECE, Gnanamani College of Technology, India Abstract The paper presents

More information

A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Temperature Null Concept

A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Temperature Null Concept A Highly Stable CMOS Self-Compensated Oscillator (SCO) Based on an LC Tank Null Concept A. Ahmed, B. Hanafi, S. Hosny, N. Sinoussi, A. Hamed, M. Samir, M. Essam, A. El-Kholy, M. Weheiba, A. Helmy Timing

More information

A 25-GHz Differential LC-VCO in 90-nm CMOS

A 25-GHz Differential LC-VCO in 90-nm CMOS A 25-GHz Differential LC-VCO in 90-nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2008 IEEE Asia Pacific Conference on Circuits and Systems Published: 2008-01-01 Link to publication Citation

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

Vibrating RF MEMS for Low Power Wireless Communications

Vibrating RF MEMS for Low Power Wireless Communications Vibrating RF MEMS for Low Power Wireless Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor,

More information

Application Note. External Oscillator Solutions with GreenPAK AN-CM-233

Application Note. External Oscillator Solutions with GreenPAK AN-CM-233 Application Note External Oscillator Solutions with GreenPAK AN-CM-233 Abstract This application note discusses two oscillator circuits which use a GreenPAK chip with external components: a sub-ua 1 khz

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information