TOP VIEW. Maxim Integrated Products 1

Size: px
Start display at page:

Download "TOP VIEW. Maxim Integrated Products 1"

Transcription

1 ; Rev 0; 10/02 EALUATION KIT AAILABLE 1:5 ifferential (L)PECL/(L)ECL/ General escription The is a low-skew, 1-to-5 differential driver designed for clock and data distribution. This device allows selection between two inputs: one differential and one single ended. The selected input is reproduced at five differential outputs. The differential input can be adapted to accept a single-ended input by connecting the on-chip BB supply to one input as a reference voltage. The features low output-to-output skew (20ps), making it ideal for clock and data distribution across a backplane or board. For interfacing to differential HSTL and (L)PECL signals, this device operates over a 3.0 to 5.5 supply range, allowing high-performance clock or data distribution in systems with a nominal 3.3 or 5.0 supply. For differential (L)ECL operation, this device operates with a -3.0 to -5.5 supply. The is offered in a 20-pin wide SO package. Applications Precision Clock istribution Low-Jitter ata Repeaters ata and Clock rivers and Buffers Central-Office Backplane Clock istribution SLAM Backplane Base Stations ATE Features Guaranteed 400m ifferential Output at 1.5GHz Selectable Single-Ended or ifferential Input 130ps (max) Part-to-Part Skew at +25 C 20ps Output-to-Output Skew 365ps Propagation elay Synchronous Output Enable/isable On-Chip Reference for Single-Ended Inputs Input Biased to Low when Open Pin Compatible with MC100EL14 Ordering Information PART TEMP RANGE PIN-PACKAGE EWP -40 C to +85 C 20 Wide SO Pin Configuration Typical Application Circuit TOP IEW QO 1 20 Q0 2 Q 19 EN Q Z O = 50Ω RECEIER Q1 Q2 Q N.C. S Z O = 50Ω Q3 Q BB Q SEL 50Ω 50Ω Q TT = 2.0 WIE SO Functional iagram appears at end of data sheet. Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/allas irect! at , or visit Maxim s website at

2 ABSOLUTE MAXIMUM RATINGS Single-Ended Inputs (S, SEL, EN,, ) For to For >... - to to...±3.0 Continuous Output Current...50mA Surge Output Current...100mA BB Sink/Source Current...±0.65mA Continuous Power issipation (T A = +70 C) Single-Layer PC Board 20-Pin Wide SO (derate 10mW/ C above +70 C)...800mW Junction-to-Ambient Thermal Resistance in Still Air Single-Layer PC Board 20-Pin Wide SO C/W Junction-to-Ambient Thermal Resistance with 500LFPM Airflow Single-Layer PC Board 20-Pin Wide SO C/W Junction-to-Case Thermal Resistance 20-Pin Wide SO C/W Operating Temperature Range C to +85 C Junction Temperature C Storage Temperature Range C to +150 C ES Protection Human Body Model (Inputs and Outputs)...2k Lead Temperature (soldering, 10s) C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. C ELECTRICAL CHARACTERISTICS ( = 3.0 to 5.5, outputs loaded with 50Ω ±1% to 2, SEL = high or low, EN = low, unless otherwise noted. Typical values are at = 5.0, IH = 1, IL = 1.5.) (Notes 1, 2, 3) PARAMETER SYMBOL CONITIONS SINGLE-ENE INPUTS (S, SEL, EN) Input High oltage IH Input Low oltage IL ( ) > ( ) -40 C +25 C +85 C MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS Input Current I IN IL(MIN), IH(MAX) µa IFFERENTIAL INPUTS (, ) Single-Ended Input High oltage Single-Ended Input Low oltage High oltage of ifferential Input Low oltage of ifferential Input IH IL connected to BB, Figure 1 connected to BB, Figure 1 ( ) connected to BB, Figure 1 ( ) > IH IL

3 C ELECTRICAL CHARACTERISTICS (continued) ( = 3.0 to 5.5, outputs loaded with 50Ω ±1% to 2, SEL = high or low, EN = low, unless otherwise noted. Typical values are at = 5.0, IH = 1, IL = 1.5.) (Notes 1, 2, 3) PARAMETER SYMBOL CONITIONS ifferential Input oltage -40 C +25 C +85 C MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS IH - IL Input Current I IN IH, IL, IH, IL µa OUTPUTS (, ) Single-Ended Output High oltage OH Figure Single-Ended Output Low oltage OL Figure ifferential Output oltage REFERENCE ( BB ) Reference oltage Output (Note 4) POWER SUPPLY Supply Current (Note 5) OH - OL Figure m BB I BB = ±0.5mA I EE ma 3

4 AC ELECTRICAL CHARACTERISTICS ( = 3.0 to 5.5, outputs are loaded with 50Ω ±1% to 2, input frequency 1.5GHz, input transition time = 125ps (20% to 80%), SEL = high or low, EN = low, IH = to, IL = to 0.15, IH - IL = 0.15 to 3, unless otherwise noted. Typical values are at = 5.0.) (Notes 1, 6) PARAMETER SYMBOL CONITIONS to elay (ifferential) S to elay -40 C +25 C +85 C MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS t PLH1, t PHL1 Figure ps t PLH3, t PHL3 IL = 1.55, IH = 1.09, Figure ps Output-to-Output Skew (Note 7) Part-to-Part Skew (Note 8) Added Random Jitter (Note 9) t SKOO ps t SKPP ps t RJ f IN = 1.5GHz clock p s ( RM S ) Added eterministic Jitter (Note 9) t J 1.5Gbps 2E 23-1 PRBS pattern Ps P-P Switching Frequency Output Rise/Fall Time (20% to 80%) ( OH - OL ) f MAX 400m, Figure GHz t R, t F Figure ps Note 1: Measurements are made with the device in thermal equilibrium. Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. Note 3: C parameters are production tested at T A = +25 C and guaranteed by design over the full operating temperature range. Note 4: Use BB only for inputs that are on the same device as the BB reference. Note 5: All pins are open except and. Note 6: Guaranteed by design and characterization. Limits are set at ±6 sigma. Note 7: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Note 8: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition. Note 9: evice jitter added to a jitter-free input signal. 4

5 Typical Operating Characteristics ( = 5.0, IH = 1, IL = 1.15, input transition time = 125ps (20% to 80%), f IN = 1.5GHz, outputs loaded with 50Ω to ( 2), T A = +25 C, unless otherwise noted.) SUPPLY CURRENT (ma) SUPPLY CURRENT vs.temperature ALL PINS ARE OPEN EXCEPT AN toc01 IFFERENTIAL OUTPUT OLTAGE (m) IFFERENTIAL OUTPUT OLTAGE ( OH - OL ) vs. FREQUENCY toc TEMPERATURE ( C) FREQUENCY (GHz) TRANSITION TIME (ps) TRANSITION TIME vs. TEMPERATURE t R t F toc03 PROPAGATION ELAY (ps) PROPAGATION ELAY vs. TEMPERATURE S MEASUREMENT AT IH = 2.12, = IFFERENTIAL toc TEMPERATURE ( C) TEMPERATURE ( C) 5

6 PIN NAME FUNCTION 1 Q0 Noninverting Q0 Output. Typically terminate with 50Ω resistor to ( 2). 2 Q0 Inverting Q0 Output. Typically terminate with 50Ω resistor to ( 2). 3 Q1 Noninverting Q1 Output. Typically terminate with 50Ω resistor to ( 2). 4 Q1 Inverting Q1 Output. Typically terminate with 50Ω resistor to ( 2). 5 Q2 Noninverting Q2 Output. Typically terminate with 50Ω resistor to ( 2). 6 Q2 Inverting Q2 Output. Typically terminate with 50Ω resistor to ( 2). 7 Q3 Noninverting Q3 Output. Typically terminate with 50Ω resistor to ( 2). 8 Q3 Inverting Q3 Output. Typically terminate with 50Ω resistor to ( 2). 9 Q4 Noninverting Q4 Output. Typically terminate with 50Ω resistor to ( 2). 10 Q4 Inverting Q4 Output. Typically terminate with 50Ω resistor to ( 2). 11 Negative Supply oltage etailed escription The is a low-skew, 1-to-5 differential driver designed for clock or data distribution. A 2-to-1 MUX selects one of the two clock inputs,, and S. The and inputs are differential while the S is single ended. The MUX is switched by the single-ended SEL input. A logic low selects the input and a logic high selects the S input. The SEL logic threshold is set by the internal voltage reference BB. SEL input can be driven by and or by a singleended (L)PECL/(L)ECL signal. The selected input is reproduced at five differential outputs, Q0 to Q4. Pin escription 12 SEL Clock Select Input (Single Ended). rive low to select the, input. rive high to select the S input. The SEL threshold is equal to BB. Internal pulldown to and pullup to. 13 BB reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to ; Reference Output oltage. Connect to the inverting or noninverting clock input to provide a otherwise, leave it unconnected. 14 Inverting ifferential Clock Input. Internal 45kΩ pullup to and 45kΩ pulldown to. 15 Noninverting ifferential Clock Input. Internal pulldown to and 45kΩ pullup to. 16 S Single-Ended Clock Input. Internal pulldown to and 45kΩ pullup to. 17 N.C. Not Internally Connected. Solder to PC board for package thermal dissipation. Positive Supply oltage. Bypass to with 0.1µF and 0.01µF ceramic capacitors. Place the 18, 20 capacitors as close to the device as possible with the smaller value capacitor closest to the device. Output Enable Input. Outputs are synchronously enabled on the falling edge of the clock input 19 EN when EN is low. Outputs are synchronously set to low on the falling edge of the clock input when EN is high. Internal pulldown to and pullup to. Synchronous Enable The is synchronously enabled and disabled with outputs in the low state to eliminate shortened clock pulses. EN is connected to the input of an edgetriggered flip-flop. After power-up, drive EN low and toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after EN goes low. The outputs are disabled to a low state on the falling edge of the selected clock input after EN goes high. The threshold for EN is equal to BB. Power Supply For interfacing to differential HSTL and (L)PECL signals, the range is from 3.0 to 5.5 (with 6

7 grounded), allowing high-performance clock or data distribution in systems with a nominal 5.0 supply. For interfacing to differential (L)ECL, the range is -3.0 to -5.5 (with grounded). Output levels are referenced to and are considered (L)PECL or (L)ECL, depending on the level of the supply. With connected to a positive supply and connected to ground, the outputs are (L)PECL. The outputs are (L)ECL when is connected to ground and is connected to a negative supply. Input Bias Resistors When the and inputs are open, the internal bias resistors set the inputs to differential low state. The inverting input () is biased with a 45kΩ pullup to and a 45kΩ pulldown to. The noninverting input () and S are biased with a 45kΩ pullup to and a pulldown to. The single-ended inputs (SEL, EN) are each biased with a pulldown to and a pullup to. ifferential Clock Input Limits The maximum magnitude of the differential signal applied to the differential clock input is 3.0. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input ( IH and IL ) and the differential input voltage ( IH - IL ) apply simultaneously. Single-Ended Clock Input and BB The differential clock input can be configured to accept a single-ended input. This is accomplished by connecting the on-chip reference voltage, BB, to the inverting or noninverting input of the differential input as a reference. For example, the differential, input is converted to a noninverting, single-ended input by connecting BB to and connecting the single-ended input signal to. Similarly, an inverting configuration is obtained by connecting BB to and connecting the single-ended input to. With a differential input configured as single ended (using BB ), the singleended input can be driven to and or with a single-ended (L)PECL/(L)ECL signal. Note that the single-ended input must be least BB ±95m or a differential input of at least 95m to switch the outputs to the OH and OL levels specified in the C Electrical Characteristics table. When using the BB reference output, bypass it with a 0.01µF ceramic capacitor to. If the BB reference is not used, leave it open. The BB reference can source or sink 0.5mA. Use BB only for an input that is on the same device as the BB reference. Applications Information Supply Bypassing Bypass to with high-frequency, surface-mount, ceramic, 0.1µF and 0.01µF capacitors in parallel as close to the device as possible, with the 0.01µF capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the BB reference output, bypass it with a 0.01µF ceramic capacitor to (if the BB reference is not used, it can be left open). Controlled-Impedance Traces Input and output trace characteristics affect the performance of the. Connect input and output signals with 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces. Output Termination Terminate outputs with 50Ω to 2 or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and Q0. TRANSISTOR COUNT: 616 PROCESS: Bipolar Chip Information 7

8 ( IS CONNECTE TO BB ) IH BB IL OH OH - OL OL Figure 1. Switching Characteristics with Single-Ended Input IH IH - IL IL t PLH1 tphl1 OH OH - OL OL 80% 80% 0 (IFFERENTIAL) 0 (IFFERENTIAL) - 20% 20% t R t F Figure 2. Timing iagram 8

9 S t PLH3 t PHL3 IH IL OH OH - OL OL 80% 0 (IFFERENTIAL) 80% 0 (IFFERENTIAL) - 20% 20% t R t F Figure 3. Timing iagram for S EN S OR t S t H t S OUTPUTS ARE LOW t PLH OUTPUTS STAY LOW Figure 4. EN Timing iagram 9

10 Functional iagram Q0 45kΩ 45kΩ Q0 Q1 45kΩ Q1 0 Q2 Q2 1 Q3 S 45kΩ Q3 Q4 Q4 SEL EN Q BB 10

11 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to N E H INCHES MILLIMETERS IM MIN MAX MIN MAX A A B C e E H L SOICW.EPS 1 TOP IEW ARIATIONS: IM INCHES MILLIMETERS MIN MAX MIN MAX N MS AA AB AC A AE A C e B A1 0-8 FRONT IEW L SIE IEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE,.300" SOIC APPROAL OCUMENT CONTROL NO. RE B 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel rive, Sunnyvale, CA Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

PART N.C. 1 8 V CC V BB 4. Maxim Integrated Products 1

PART N.C. 1 8 V CC V BB 4. Maxim Integrated Products 1 19-2152; Rev 2; 11/02 ifferential LPECL/LECL/HSTL Receiver/rivers General escription The are low-skew differential receiver/drivers designed for clock and data distribution. The differential input can

More information

ECL/PECL Dual Differential 2:1 Multiplexer

ECL/PECL Dual Differential 2:1 Multiplexer 19-2484; Rev 0; 7/02 ECL/PECL Dual Differential 2:1 Multiplexer General Description The fully differential dual 2:1 multiplexer (mux) features extremely low propagation delay (560ps max) and output-to-output

More information

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers 19-2079; Rev 2; 4/09 Dual 1:5 Differential LPECL/LECL/HSTL General Description The are low skew, dual 1-to-5 differential drivers designed for clock and data distribution. These devices accept two inputs.

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

Single LVDS/Anything-to-LVPECL Translator

Single LVDS/Anything-to-LVPECL Translator 9-2808; Rev 0; 4/03 Single LVDS/Anything-to-LVPECL Translator General Description The is a fully differential, high-speed, anything-to-lvpecl translator designed for signal rates up to 2GHz. The s extremely

More information

LVDS/Anything-to-LVPECL/LVDS Dual Translator

LVDS/Anything-to-LVPECL/LVDS Dual Translator 19-2809; Rev 1; 10/09 LVDS/Anything-to-LVPECL/LVDS Dual Translator General Description The is a fully differential, high-speed, LVDS/anything-to-LVPECL/LVDS dual translator designed for signal rates up

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-2213; Rev 0; 10/01 Low-Jitter, Low-Noise LVDS General Description The is a low-voltage differential signaling (LVDS) repeater, which accepts a single LVDS input and duplicates the signal at a single

More information

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver

LVDS or LVTTL/LVCMOS Input to 14 LVTTL/LVCMOS Output Clock Driver 19-2392; Rev ; 4/2 LVDS or LVTTL/LVCMOS Input to General Description The 125MHz, 14-port LVTTL/LVCMOS clock driver repeats the selected LVDS or LVTTL/LVCMOS input on two output banks. Each bank consists

More information

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1

140ms (min) WDO Pulse Period PART. Maxim Integrated Products 1 19-2804; Rev 2; 12/05 5-Pin Watchdog Timer Circuit General Description The is a low-power watchdog circuit in a tiny 5- pin SC70 package. This device improves system reliability by monitoring the system

More information

MAX9177EUB -40 C to +85 C 10 µmax IN0+ INO- GND. Maxim Integrated Products 1

MAX9177EUB -40 C to +85 C 10 µmax IN0+ INO- GND. Maxim Integrated Products 1 19-2757; Rev 0; 1/03 670MHz LVDS-to-LVDS and General Description The are 670MHz, low-jitter, lowskew 2:1 multiplexers ideal for protection switching, loopback, and clock distribution. The devices feature

More information

TOP VIEW MAX9111 MAX9111

TOP VIEW MAX9111 MAX9111 19-1815; Rev 1; 3/09 EVALUATION KIT AVAILABLE Low-Jitter, 10-Port LVDS Repeater General Description The low-jitter, 10-port, low-voltage differential signaling (LVDS) repeater is designed for applications

More information

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs 19-176; Rev ; 9/96 ±k ES-Protected, EMC-Compliant, 23kbps RS-232 Serial Port for Motherboards/esktop PCs General escription The is a complete TE RS-232 serial port designed to meet the stringent ES requirements

More information

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Modems

±15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Modems 19-177; Rev ; 9/96 ±15k ES-Protected, EMC-Compliant, 23kbps General escription The is a complete CE RS-232 serial port designed to meet the stringent ES requirements of the European community. All transmitter

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

MC10EL16, MC100EL V ECL Differential Receiver

MC10EL16, MC100EL V ECL Differential Receiver MC0EL6, MC00EL6 5.0 V ECL ifferential Receiver The MC0EL/00EL6 is a differential receiver. The device is functionally equivalent to the E6 device with higher performance capabilities. With output transition

More information

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/LVCMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1991; Rev ; 4/1 EVALUATION KIT AVAILABLE General Description The quad low-voltage differential signaling (LVDS) line driver is ideal for applications requiring high data rates, low power, and low noise.

More information

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch 19-2003; Rev 0; 4/01 General Description The 2 x 2 crosspoint switch is designed for applications requiring high speed, low power, and lownoise signal distribution. This device includes two LVDS/LVPECL

More information

Current-Limited Switch for Two USB Ports

Current-Limited Switch for Two USB Ports 9-2385; Rev 2; /2 Current-Limited Switch for Two USB Ports General escription The MAX93 current-limited 7mΩ switch with built-in fault blanking provides an accurate, preset.2a to 2.3A current limit, making

More information

Dual-Rate Fibre Channel Repeaters

Dual-Rate Fibre Channel Repeaters 9-292; Rev ; 7/04 Dual-Rate Fibre Channel Repeaters General Description The are dual-rate (.0625Gbps and 2.25Gbps) fibre channel repeaters. They are optimized for use in fibre channel arbitrated loop applications

More information

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23 19-1803; Rev 3; 3/09 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for highspeed applications requiring minimum

More information

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1

LVTTL/CMOS DATA INPUT 100Ω SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES. Maxim Integrated Products 1 19-1927; Rev ; 2/1 Quad LVDS Line Driver with General Description The quad low-voltage differential signaling (LVDS) differential line driver is ideal for applications requiring high data rates, low power,

More information

TOP VIEW TCNOM 1 PB1 PB2 PB3 VEEOUT. Maxim Integrated Products 1

TOP VIEW TCNOM 1 PB1 PB2 PB3 VEEOUT. Maxim Integrated Products 1 19-3252; Rev 0; 5/04 270Mbps SFP LED Driver General Description The is a programmable LED driver for fiber optic transmitters operating at data rates up to 270Mbps. The circuit contains a high-speed current

More information

Single/Dual LVDS Line Receivers with In-Path Fail-Safe

Single/Dual LVDS Line Receivers with In-Path Fail-Safe 9-2578; Rev 2; 6/07 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for high-speed applications requiring minimum

More information

PART TOP VIEW TXD V CC. Maxim Integrated Products 1

PART TOP VIEW TXD V CC. Maxim Integrated Products 1 9-2939; Rev ; 9/3 5V, Mbps, Low Supply Current General Description The interface between the controller area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. They are

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +128 C) 19-2241; Rev 1; 8/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The cold-junction-compensation thermocouple-to-digital converter performs cold-junction compensation and digitizes

More information

3.3V/5V PECL/ECL 3GHz DUAL DIFFERENTIAL 2:1 MULTIPLEXER

3.3V/5V PECL/ECL 3GHz DUAL DIFFERENTIAL 2:1 MULTIPLEXER 3.3V/5V PECL/ECL 3GHz DUAL DIFFERENTIAL 2:1 MULTIPLEXER FEATURES Dual, fully differential 2:1 PECL/ECL multiplexer Guaranteed AC parameters over temperature/ voltage: > 3GHz f MAX (toggle) < 100ps within

More information

8-Port, 5.5V Constant-Current LED Driver with LED Fault Detection

8-Port, 5.5V Constant-Current LED Driver with LED Fault Detection 19-3554; Rev 2; 7/5 8-Port, 5.5V Constant-Current LE river with General escription The serial-interfaced LE driver provides eight open-drain, constant-current sinking LE driver outputs rated at 5.5V. The

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

670MHz LVDS-to-LVDS and Anything-to-LVDS 1:2 Splitters

670MHz LVDS-to-LVDS and Anything-to-LVDS 1:2 Splitters 9-2827; Rev ; 4/04 670MHz LVDS-to-LVDS and Anything-to-LVDS General Description The are 670MHz, low-jitter, lowskew :2 splitters ideal for protection switching, loopback, and clock and signal distribution.

More information

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6

±15kV ESD-Protected, 1Mbps, 1µA RS-232 Transmitters in SOT23-6 19-164; Rev 1; 3/ ±15k ESD-Protected, bps, 1 General Description The / single RS-3 transmitters in a SOT3-6 package are for space- and cost-constrained applications requiring minimal RS-3 communications.

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

MAX2387/MAX2388/MAX2389

MAX2387/MAX2388/MAX2389 19-13; Rev 1; /1 EVALUATION KIT AVAILABLE W-CDMA LNA/Mixer ICs General Description The MAX37/MAX3/ low-noise amplifier (LNA), downconverter mixers designed for W-CDMA applications, are ideal for ARIB (Japan)

More information

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver

±15kV ESD-Protected, 3.0V to 5.5V, Low-Power, up to 250kbps, True RS-232 Transceiver 19-1949; Rev ; 1/1 ±15k ESD-Protected, 3. to 5.5, Low-Power, General Description The is a 3-powered EIA/TIA-232 and.28/.24 communications interface with low power requirements, high data-rate capabilities,

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

3.3V/5V 2.5GHz PECL/ECL 1:4 FANOUT BUFFER WITH 2:1 INPUT MUX

3.3V/5V 2.5GHz PECL/ECL 1:4 FANOUT BUFFER WITH 2:1 INPUT MUX 3.3V/5V 2.5GHz PECL/ECL 1:4 FANOUT BUFFER WITH 2:1 INPUT MUX FEATURES High-speed 1:4 PECL/ECL fanout buffer 2:1 multiplexer input Guaranteed AC parameters over temp/voltage: > 2.5GHz f MAX (toggle) < 225ps

More information

MAX3942 PWC+ PWC- MODSET. 2kΩ + V MODSET - L1 AND L2 ARE HIGH-FREQUENCY FERRITE BEADS REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE.

MAX3942 PWC+ PWC- MODSET. 2kΩ + V MODSET - L1 AND L2 ARE HIGH-FREQUENCY FERRITE BEADS REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE. 19-2934; Rev 1; 6/7 1Gbps Modulator Driver General Description The is designed to drive high-speed optical modulators at data rates up to 1.7Gbps. It functions as a modulation circuit, with an integrated

More information

IF Digitally Controlled Variable-Gain Amplifier

IF Digitally Controlled Variable-Gain Amplifier 19-2601; Rev 1; 2/04 IF Digitally Controlled Variable-Gain Amplifier General Description The high-performance, digitally controlled variable-gain amplifier is designed for use from 0MHz to 400MHz. The

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

Dual-Rate Fibre Channel Limiting Amplifier

Dual-Rate Fibre Channel Limiting Amplifier 19-375; Rev 1; 7/3 Dual-Rate Fibre Channel Limiting Amplifier General Description The dual-rate Fibre Channel limiting amplifier is optimized for use in dual-rate.15gbps/1.65gbps Fibre Channel optical

More information

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax

±15kV ESD-Protected, 460kbps, 1µA, RS-232-Compatible Transceivers in µmax 19-191; Rev ; 1/1 ±15kV ESD-Protected, 6kbps, 1µA, General Description The are low-power, 5V EIA/TIA- 3-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers

±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers 19-3; Rev 1; 3/11 ±1kV ESD-Protected Mbps, 3V to.v, SOT3 General Description The MAX38E/MAX381E/MAX383E/MAX384E are single receivers designed for RS-48 and RS-4 communication. These devices guarantee data

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver 19-2425; Rev 0; 4/02 General Description The interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial

More information

Features. Applications. Markets

Features. Applications. Markets Low oltage 1.2/1.8 CML 2:1 MUX 3.2Gbps, 2.5GHz General Description The is a fully differential, low voltage 1.2/1.8 CML 2:1 MUX. The can process clock signals as fast as 3.2GHz or data patterns up to 3.2Gbps.

More information

Dual ECL and Dual/Quad PECL, 500ps, Ultra-High-Speed Comparators

Dual ECL and Dual/Quad PECL, 500ps, Ultra-High-Speed Comparators 19-2409; Rev 1; 9/02 General Description The MAX9600/MAX9601/MAX9602 ultra-high-speed comparators feature extremely low propagation delay (ps). These dual and quad comparators minimize propagation delay

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs 19-4796; Rev 1; 6/00 EVALUATION KIT AVAILABLE 1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise General Description The is a transimpedance preamplifier for 1.25Gbps local area network (LAN) fiber optic receivers.

More information

PART. Maxim Integrated Products 1

PART. Maxim Integrated Products 1 19-1999; Rev 4; 7/04 3.2Gbps Adaptive Equalizer General Description The is a +3.3V adaptive cable equalizer designed for coaxial and twin-axial cable point-to-point communications applications. The equalizer

More information

3V 10-Tap Silicon Delay Line DS1110L

3V 10-Tap Silicon Delay Line DS1110L XX-XXXX; Rev 1; 11/3 3V 1-Tap Silicon Delay Line General Description The 1-tap delay line is a 3V version of the DS111. It has 1 equally spaced taps providing delays from 1ns to ns. The series delay lines

More information

DS4-XO Series Crystal Oscillators DS4125 DS4776

DS4-XO Series Crystal Oscillators DS4125 DS4776 Rev 2; 6/08 DS4-XO Series Crystal Oscillators General Description The DS4125, DS4150, DS4155, DS4156, DS4160, DS4250, DS4300, DS4311, DS4312, DS4622, and DS4776 ceramic surface-mount crystal oscillators

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1

PA RT MAX3408EUK 100Ω 120Ω. Maxim Integrated Products 1 19-2141; Rev ; 8/1 75Ω/Ω/Ω Switchable Termination General Description The MAX346/MAX347/MAX348 are general-purpose line-terminating networks designed to change the termination value of a line, depending

More information

NOT RECOMMENDED FOR NEW DESIGNS. 3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER

NOT RECOMMENDED FOR NEW DESIGNS. 3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER NOT RECOMMENDED FOR NEW DESIGNS Micrel, Inc. 3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER FEATURES 2:1 PECL/ECL multiplexer Guaranteed AC-performance over temperature/ voltage >3GHz f MAX (toggle)

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 9-987; Rev ; 9/3 5MHz, Triple, -Channel Video General Description The is a triple, wideband, -channel, noninverting gain-of-two video amplifier with input multiplexing, capable of driving up to two back-terminated

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

W-CDMA Upconverter and PA Driver with Power Control

W-CDMA Upconverter and PA Driver with Power Control 19-2108; Rev 1; 8/03 EVALUATION KIT AVAILABLE W-CDMA Upconverter and PA Driver General Description The upconverter and PA driver IC is designed for emerging ARIB (Japan) and ETSI-UMTS (Europe) W-CDMA applications.

More information

Current-Limited Switch for Single USB Port

Current-Limited Switch for Single USB Port 9-57; Rev ; / Current-Limited Switch for Single USB Port General Description The is a current-limited, 6mΩ switch with built-in fault blanking. Its accurate preset current limit of.6a to.6a makes it ideally

More information

Positive High-Voltage, Hot-Swap Controller

Positive High-Voltage, Hot-Swap Controller 9-36; Rev 0; /0 EVALUATION KIT AVAILABLE Positive High-Voltage, Hot-Swap Controller General Description The is a fully integrated hot-swap controller for +9V to +80V positive supply rails. The allows for

More information

3.3V Dual-Output LVPECL Clock Oscillator

3.3V Dual-Output LVPECL Clock Oscillator 19-4558; Rev 1; 3/10 3.3V Dual-Output LVPECL Clock Oscillator General Description The is a dual-output, low-jitter clock oscillator capable of producing frequency output pair combinations ranging from

More information

3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER

3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER 3.3V/5V 3GHz PECL/ECL 2:1 MULTIPLEXER FEATURES 2:1 PECL/ECL multiplexer Guaranteed AC performance over temperature/voltage >3GHz f MAX (toggle)

More information

DS1083L PLL WITH CENTER- SPREAD DITHERING CLOCK RATE DETECT CONFIGURATION DECODE AND CONTROL

DS1083L PLL WITH CENTER- SPREAD DITHERING CLOCK RATE DETECT CONFIGURATION DECODE AND CONTROL Rev ; 5/7 1MHz to 13MHz Spread-Spectrum General Description The is a spread-spectrum clock modulator IC that reduces EMI in high-clock, frequency-based, digital electronic equipment. Using an integrated

More information

Features. Applications. Markets

Features. Applications. Markets 3.2Gbps Precision, LVDS 2:1 MUX with Internal Termination and Fail Safe Input General Description The is a 2.5V, high-speed, fully differential LVDS 2:1 MUX capable of processing clocks up to 2.5GHz and

More information

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI

PART MAX3183. MAX3181EUK-T -40 C to +85 C 5 SOT23-5 ADKG MAX3182EUK-T -40 C to +85 C 5 SOT23-5 ADKH MAX3183EUK-T -40 C to +85 C 5 SOT23-5 ADKI 19-1444; Rev 1; 7/99 +3 to +5.5, 1.5Mbps General Description The MAX318MAX3183 are single RS-232 receivers in a SOT23-5 package for space- and cost-cotrained applicatio requiring minimal RS-232 communicatio.

More information

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters 9-39; Rev ; /3 General escription The charge-pump voltage converters invert input voltages ranging from +.5V to +5.5V, or double input voltages ranging from +.5V to +5.5V. Because of their high switching

More information

Four-Channel Thermistor Temperature-to-Pulse- Width Converter

Four-Channel Thermistor Temperature-to-Pulse- Width Converter 9-234; Rev ; 2/7 Four-Channel Thermistor Temperature-to-Pulse- General Description The four-channel thermistor temperature-topulse-width converter measures the temperatures of up to four thermistors and

More information

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN

Low-Voltage, High-Accuracy, Quad Window Voltage Detectors in Thin QFN 19-3869; Rev 1; 1/11 Low-oltage, High-Accuracy, Quad Window General Description The are adjustable quad window voltage detectors in a small thin QFN package. These devices are designed to provide a higher

More information

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset

Microprocessor Supervisory Reset Circuits with Edge-Triggered, One-Shot Manual Reset 9-2523; Rev ; /5 Microprocessor Supervisory Reset Circuits General Description The microprocessor (µp) supervisory circuits monitor single power-supply voltages from +.8 to +5. and assert a reset if the

More information

20MHz to 134MHz Spread-Spectrum Clock Modulator for LCD Panels DS1181L

20MHz to 134MHz Spread-Spectrum Clock Modulator for LCD Panels DS1181L Rev 1; /0 0MHz to 13MHz Spread-Spectrum General Description The is a spread-spectrum clock modulator IC that reduces EMI in high clock-frequency-based, digital electronic equipment. Using an integrated

More information

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962 19-119; Rev 0; 9/96 High-Speed, 3/, Rail-to-Rail, General Description The are high-speed, single/dual comparators with internal hysteresis. These devices are optimized for single +3 or + operation. The

More information

Features. Applications. Markets

Features. Applications. Markets 1.5GHz Precision, LVPECL 1:5 Fanout with 2:1 MUX and Fail Safe Input with Internal Termination Precision Edge General Description The is a 2.5/3.3V, 1:5 LVPECL fanout buffer with a 2:1 differential input

More information

EVALUATION KIT AVAILABLE +3.3V, Low-Jitter Crystal to LVPECL Clock Generator QA_C. 125MHz QA QA. 125MHz MAX3679A QB0 QB MHz QB1 QB

EVALUATION KIT AVAILABLE +3.3V, Low-Jitter Crystal to LVPECL Clock Generator QA_C. 125MHz QA QA. 125MHz MAX3679A QB0 QB MHz QB1 QB 19-4858; Rev 0; 8/09 EVALUATION KIT AVAILABLE +3.3V, Low-Jitter Crystal to LVPECL General Description The is a low-jitter precision clock generator with the integration of three LVPECL and one LVCMOS outputs

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information

Features. Applications. Markets

Features. Applications. Markets 2GHz, Low-Power, 1:6 LVPECL Fanout Buffer with 2:1 Input MUX and Internal Termination General Description The is a 2.5V/3.3V precision, high-speed, 1:6 fanout capable of handling clocks up to 2.0GHz. A

More information

LNAs with Step Attenuator and VGA

LNAs with Step Attenuator and VGA 19-231; Rev 1; 1/6 EVALUATION KIT AVAILABLE LNAs with Step Attenuator and VGA General Description The wideband low-noise amplifier (LNA) ICs are designed for direct conversion receiver (DCR) or very low

More information

150mA, Low-Dropout Linear Regulator with Power-OK Output

150mA, Low-Dropout Linear Regulator with Power-OK Output 9-576; Rev ; /99 5mA, Low-Dropout Linear Regulator General Description The low-dropout (LDO) linear regulator operates from a +2.5V to +6.5V input voltage range and delivers up to 5mA. It uses a P-channel

More information

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors

Ultra-Low-Voltage µp Reset Circuits and Voltage Detectors 19-2625; Rev 2; 12/05 Ultra-Low-oltage µp Reset Circuits and General Description The microprocessor (µp) supervisory circuits monitor ultra-low-voltage power supplies in µp and digital systems. They provide

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0525; Rev 3; 1/07 EVALUATION KIT AVAILABLE Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package.

More information

Quad LVDS Line Receiver with Flow-Through Pinout and In-Path Fail-Safe

Quad LVDS Line Receiver with Flow-Through Pinout and In-Path Fail-Safe 19-2595; Rev 0; 10/02 Quad LVDS Line Receiver with Flow-Through General Description The quad low-voltage differential signaling (LVDS) line receiver is ideal for applications requiring high data rates,

More information

Features. Truth Table (1)

Features. Truth Table (1) 3.3V/5V, 4GHz PECL/ECL 2 Clock Generator Precision Edge General Description The is an integrated 2 divider with differential clock inputs. It is functionally equivalent to the SY100EP32V but in an ultra-small

More information

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable 99 Rev ; /99 EVALUATION KIT AVAILABLE 65V/µs, Wideband, High-Output-Current, Single- General Description The // single-ended-todifferential line drivers are designed for high-speed communications. Using

More information

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps 9-; Rev ; /8 Single-Supply, 5MHz, 6-Bit Accurate, General Description The MAX4434/MAX4435 single and MAX4436/MAX4437 dual operational amplifiers feature wide bandwidth, 6- bit settling time in 3ns, and

More information

Parasitically Powered Digital Input

Parasitically Powered Digital Input EVALUATION KIT AVAILABLE Click here for production status of specific part numbers. General Description The is an IEC 61131-2 compliant, industrial digital input (DI) device that translates a 24V digital

More information

825MHz to 915MHz, SiGe High-Linearity Active Mixer

825MHz to 915MHz, SiGe High-Linearity Active Mixer 19-2489; Rev 1; 9/02 825MHz to 915MHz, SiGe High-Linearity General Description The fully integrated SiGe mixer is optimized to meet the demanding requirements of GSM850, GSM900, and CDMA850 base-station

More information

3.3V DIFFERENTIAL LVPECL/CML/LVDS-to-LVTTL TRANSLATOR

3.3V DIFFERENTIAL LVPECL/CML/LVDS-to-LVTTL TRANSLATOR 3.3V DIFFERENTIAL LVPECL/CML/LVDS-to-LVTTL TRANSLATOR FEATURES 3.3V power supply 1.9ns typical propagation delay 275MHz f MAX Differential LVPECL/CML/LVDS inputs 24mA LVTTL outputs Flow-through pinouts

More information

2.5/3.3V 1:22 HIGH-PERFORMANCE, LOW-VOLTAGE PECL BUS CLOCK DRIVER & TRANSLATOR w/ INTERNAL TERMINATION

2.5/3.3V 1:22 HIGH-PERFORMANCE, LOW-VOLTAGE PECL BUS CLOCK DRIVER & TRANSLATOR w/ INTERNAL TERMINATION 2.5/3.3V 1:22 HIGH-PERFORMANCE, LOW-VOLTAGE PECL BUS CLOCK DRIVER & TRANSLATOR w/ INTERNAL TERMINATION FEATURES LVPECL or LVDS input to 22 LVPECL outputs 100K ECL compatible outputs LVDS input includes

More information

Low-Jitter, Precision Clock Generator with Four Outputs

Low-Jitter, Precision Clock Generator with Four Outputs 19-5005; Rev 0; 10/09 EVALUATION KIT AVAILABLE General Description The is a low-jitter, precision clock generator optimized for networking applications. The device integrates a crystal oscillator and a

More information

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 )

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 ) 19-094; Rev 0; /97 -in-1 Silicon Delay Line General Description The contai three independent, monolithic, logic-buffered delay lines with delays ranging from 10 to 200. Nominal accuracy is ±2 for a 10

More information

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1 19-13; Rev 2; 9/ Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

Features. Applications. Markets

Features. Applications. Markets Low Voltage 1.2V/1.8V/2.5V CML 1:4 Fanout Buffer with /EN 3.2Gbps, 3.2GHz General Description The is a fully differential, low voltage 1.2V/1.8V/2.5V CML 1:4 Fanout Buffer with active-low Enable (/EN).

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-267; Rev ; 7/1 Low-Dropout, Constant-Current General Description The low-dropout bias supply for white LEDs is a high-performance alternative to the simple ballast resistors used in conventional white

More information

IEEE 802.3af PD Interface Controller For Power-Over-Ethernet

IEEE 802.3af PD Interface Controller For Power-Over-Ethernet 9-99; Rev ; /0 EVALUATION KIT AVAILABLE IEEE 0.af PD Interface Controller General Description The provide complete interface function for a powered device (PD) to comply with the IEEE 0.af standard in

More information

Automotive Temperature Range Spread-Spectrum EconOscillator

Automotive Temperature Range Spread-Spectrum EconOscillator General Description The MAX31091 is a low-cost clock generator that is factory trimmed to output frequencies from 200kHz to 66.6MHz with a nominal accuracy of ±0.25%. The device can also produce a center-spread-spectrum

More information

PRECISION 1:8 LVPECL FANOUT BUFFER WITH 2:1 RUNT PULSE ELIMINATOR INPUT MUX

PRECISION 1:8 LVPECL FANOUT BUFFER WITH 2:1 RUNT PULSE ELIMINATOR INPUT MUX PRECISION 1:8 LVPECL FANOUT BUFFER WITH 2:1 RUNT PULSE ELIMINATOR INPUT MUX FEATURES Selects between two clocks, and provides 8 precision, low skew LVPECL output copies Guaranteed AC performance over temperature

More information

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits

Dual-/Triple-/Quad-Voltage, Capacitor- Adjustable, Sequencing/Supervisory Circuits 19-0622; Rev 0; 8/06 Dual-/Triple-/Quad-Voltage, Capacitor- General Description The are dual-/triple-/ quad-voltage monitors and sequencers that are offered in a small thin QFN package. These devices offer

More information

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog

+5V, Low-Power µp Supervisory Circuits with Adjustable Reset/Watchdog 19-1078; Rev 4; 9/10 +5V, Low-Power µp Supervisory Circuits General Description The * low-power microprocessor (µp) supervisory circuits provide maximum adjustability for reset and watchdog functions.

More information

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1 19-13; Rev 3; 12/ Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

V CC 2.7V TO 5.5V. Maxim Integrated Products 1

V CC 2.7V TO 5.5V. Maxim Integrated Products 1 19-3491; Rev 1; 3/07 Silicon Oscillator with Reset Output General Description The silicon oscillator replaces ceramic resonators, crystals, and crystal-oscillator modules as the clock source for microcontrollers

More information

Features. Applications. Markets

Features. Applications. Markets Precision Low-Power Dual 2:1 LVPECL MUX with Internal Termination General Description The features two, low jitter 2:1 differential multiplexers with 100K LVPECL (800mV) compatible outputs, capable of

More information

MC100LVELT20 Product Preview 3.3VНLVTTL/LVCMOS to Differential LVPECL Translator Description The MC100LVELT20 is a 3.3 V TTL/CMOS to differential PECL

MC100LVELT20 Product Preview 3.3VНLVTTL/LVCMOS to Differential LVPECL Translator Description The MC100LVELT20 is a 3.3 V TTL/CMOS to differential PECL Product Preview 3.3VНLVTTL/LVCMOS to ifferential LVPECL Translator escription The is a 3.3 V TTL/CMOS to differential PECL translator. Because PECL (Positive ECL) levels are used, only + 3.3 V and ground

More information