Dinnebier & Billinge, TA+PXRD course - Part 1, The Equipment

Size: px
Start display at page:

Download "Dinnebier & Billinge, TA+PXRD course - Part 1, The Equipment"

Transcription

1 Powder X-ray Diffraction (PXRD) in short MATR362 - Workshop on X-ray diffraction and thermoanalytical methods (5 cr) Prof. Markku Leskelä / Mikko Heikkilä Dinnebier & Billinge, 1 2 Aim of these lectures Aim of the course the aim of these lectures is to introduce you to The equipment (Part 1, Tuesday 7.11.) Powder diffractogram (Part 2, Tuesday 7.11.) How to perform measurements (Part 3, Wednesday 8.11.) How to interpret the results (Part 4, Wednesday 8.11.) High temperature XRD (and XRR) (Part 5, Tuesday ) Something more if there s time Laboratory exercises are done in pairs or small groups PANalytical X Pert Pro MPD will be used together with Anton-Paar HTK1200N high temperature oven What will be included: Introduction to the equipment Measurement and phase analysis of the test sample Determination of the suitable measurement parameters for HTXRD measurement Start the overnight measurement Analysis next morning or suitable date later 3 4

2 References Lecture material was made using the following sources: TA+PXRD course Pecharsky and Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2009, Springer Part 1, The equipment Dinnebier and Billinge (Ed.): Powder diffraction Theory and Practice, 2008, RSC Clearfield, Reibenspies and Bhuvanesh (Ed.), Principles and Applications of Powder Diffraction, 2008, Wiley Snyder and Jenkins, Introduction fo X-ray Powder Diffractometry, 1996, Wiley 5 6 X-ray sources Main components X-ray tubes (right) X-ray source synchrotron (e.g. ESRF, bottom left) goniometer pulsars (rotating neutron stars) Optical elements Crab nebula on bottom right, often used as calibration standard for xrays X-ray detector Main function is to measure the scattered intensity as a function of the scattering vector proportional to sin Since wavelength is constant, the angle is adjusted 7 8

3 goniometer (para)focusing Bragg-Brentano geometry is shown below The angle between the x-ray source and the sample is always equal to the angle between the sample and the detector X-ray source F and the detector D move along the goniometer circle F and D are constantly on the same focusing circle goniometer Either sample is stationary and both F and D rotate the same angle q, or the source is stationary while the sample rotates angle q and detector rotates 2q In capillary geometry the tube can remain stationary while only the detector moves 9 10 goniometer goniometer Horizontal (two leftmost) or vertical (two rightmost) arrangements Horizontal is more convenient with respect to the sample, but more demanding on balancing the motors (heavy counterweight needed) In transmission geometry the sample is either a thin film or a capillary Capillary is either filled with powder or the sample is sprinkled on the its surface 11 12

4 Optical elements are based on absorption slits, Soller-slits, collimators filters, attenuators/absorbers reflection mirrors Typical components of Bragg-Brentano diffractometer are shown below F focus of the source; SoS Soller slit; DS divergence slit; Fi beta filter; ScS (anti)scatter slit; RS receiving slit; M monochromator; D detector diffraction monochromators Divergence slits Size of the slit can be either constant Easiest way to collimate a beam is to place a slit between the source and the sample Sometimes a second divergence slit is added N.B. slit always means a loss in intensity Most often used sizes: ¼, ½, 1, 2 Smaller sizes used for special purposes With small samples to avoid beam overspill 1/16 or even 1/32 for X-ray reflectivity (although one should always use parallel beam instead) 15 16

5 or variable Automatic slits can be used to keep the irradiated length constant Divergence slits Divergence of the beam can be calculated as shown in the image Diffracted volume changes, except with thin layers fluorescence problems increase with the volume Intensities need to be corrected with software to fixed slit values Take-off angle Increases the signal/noise ratio at higher angles, but simultaneously makes resolution worse as RS size increases Beam overspill could be an issue with fixed slits as the beam might hit the sample holder at small angles Receiving slit Diffracted beam converges (self-focuses) at the receiving slit Placed at the same distance from the sample as the focal point of the source Largely affects the resolution of the experiment, but decreasing the size decreases Snyder & Jenkins the intensity as well 19 20

6 Antiscatter slit(s) decreases background by reducing unwanted scatter Receiving slits are not needed with 1D detectors Detector surface acts as one e.g. from air or sample holder if fixed receiving slit is used, antiscatter slit size should be as small as possible without decreasing the observed intensity Soller slits Soller slits angular divergence in the direction parallel to the goniometer axis (=axial divergence) is controlled by Soller slits set of parallel, equally spaced thin metal plates Slit sizes usually 2 5 ( rad) Very helpful in reducing the asymmetry of the small angle reflections Axial divergence can be defined as Snyder & Jenkins 23 Snyder & Jenkins 24

7 Parallel plate collimator Much longer plates and parallel to the divergence slit Used with point detectors to select a direction in parallel beam setups Sizes available to our PANalytical tool are 0.09, 0.18 and 0.27 Determine the instrumental resolution smaller size leads to smaller intensity, careful balancing Monochromatization of the incident beam More than one wavelength due to the characteristic radiation Unwanted wavelengths can be removed by filtering diffracting monochromators mirrors to some extent with detector settings especially with energy dispersive detectors filters filters K b -radiation can be removed by using a suitable filter material filter material is selected so that its K-absorption edge for x-rays is betveen K a and K b energies Most often used filters for different anode materials are tabulated below For a Cu tube a suitably thick Ni filter halves the K a radiation intensity while decreasing K b component to two percent Snyder & Jenkins 27 28

8 monochromators Called as primary for incident beam and/or secondary for diffracted beam monochromator Several different arrangements as shown on the right monochromators Primary monochromators single crystals either cut to certain direction or bent (Si, Ge, quartz), based on diffraction from the crystals Usually q-2q geometry, (tube side is stationary) Tube is usually far away from the sample as in the image monochromators monochromators Primary monochromators Secondary monochromators pro K a1 and K a2 can be separated Possible to work with 1D and 2D detectors con Serious drop of intensity Not helping with fluorescence Since monochromator is moving, the crystal is not stable enough to separate K a1 and K a2 smaller quality demands for the crystal Removes only K b radiation but also fluorescence Intensity drops much less than with primary monochromators To about one third, but on the other hand no need for intensity halving filters 31 32

9 monochromators Example measurement shown in the figure Primary monochromator measurement in the topmost diffractogram, secondary in the one below Higher background of the upper due to fluorescence X-ray mirrors (Göbel mirrors) Multilayer structures often W-B 4 C, W-Si, Ni-Si or a combination Surface shaped as parabola, focusing point at the radiation source Parallel radiation, high intensity removes K b radiation and bremsstrahlung secondary mirror removes also fluorescence difficult to align X-ray mirrors Capillary optics for point focus Analyzer crystal or slits define the resolution Often much worse than with (para)focusing slit geometry Due to parallel beam, sample height has no effect on peak position Suitable for measuring irregularly shaped objects No need for symmetric geometry grazing incidence XRD (GIXRD) Bilderback, X-ray Spectrom., 32 (2003) 195 Based on external total reflection of the x-rays Can be focused or parallel One or more reflections with monocapillaries 50 nm - 10 µm rays, capillary must be next to the sample More intensity with polycapillaries (on the right)

10 Detectors detectors films bottom left shows the areas covered by different detectors Full image with area detector, rectangle with line detector and point detectors points with point detector scintillator, proportional counter, semiconductor Rightmost image shows how point detector might give distorted line detectors intensities position sensitive detector (PSD), Real time multiple strip (RTMS) area detectors image plate (IP), two dimensional proportional counters (MWPC), CCD, CMOS Point detectors proportional counter Point detectors scintillation counter X-rays hit a scintillating substance (most often NaI:Tl) that Gas filled space with a metal wire anode in the middle produces visible light Xe or Ar, and small amount of quenching gas (e.g. CH4 or CO2) Photomultiplier enhances the signal X-rays coming through the window ionize the gas Good efficiency and linearity, but worse Formed electron travels towards the anode and ionizes some more gas on the way electrical current at the anode energy resolution than proportional counter Quite good resolution Kβ can t be separated It is possible to discriminate the Kβ-radiation by analyzing current pulse heights 39 Wikipedia 40

11 Point detectors semiconductors PIN-diode, intrinsic part is made by diffusing lithium to p-type silicon or germanium Si(Li) or Ge(Li), nowadays also pure Si or Ge A bit like ionization chamber, in this case electron hole pairs are formed that travel to the electrodes and generate the current Point detectors semiconductors e.g. Bruker Sol-X Excellent energy resolution, but usually requires cooling LN2 or Peltier Linearity is lost at relatively low intensities Summary of point detectors below Clearfield et al Line detectors position sensitive detector (PSD) Basic principle equal to proportional counter Either anode wire or knife (latter patented by INEL) Signal is measured from both ends of the wire and angular position is calculated from the time difference Line detectors position sensitive detector (PSD) Can be either straight (covers 5-10 angle) or bent (even 120 ) Resolution and linearity not that good (for big bent detectors FWHM and I max ~200kcps) but measuring speed and signal/noise ratio obviously very good Well suited for e.g. non-ambient measurements where fast measurements are required 43 44

12 Line detectors real time multiple strip (RTMS) Same principle as with semiconductor point detectors p-type strips made with photolithography to n-type Si, each strip works as a separate detector Since there is no cooling, background noise is much larger than with point detector Neverthless, faster measurement allows longer time/step improving the s/n Line detectors Bruker Mikrogap Miniaturized proportional counter Resistive anode allows longer drift time for ions Better resolution and linearity Våntec-1, e.g. PANalytic X Celerator, Bruker LynxEye Area detectors image plate (IP) Based on phosphors in the detector E.g. BaFBr:Eu 2+ X-ray photon Eu 2+ excites to Eu 3+ After the data has been collected, pixels are scanned with lasers and excited state is released as blue emission which is collected with photomultiplier Area detectors two dimensional proportional counters multi wire proportional counter (MWCP) Basic principle is a proportional counter Two wires perpendicular to each other and a third parallel to the first Afterwards the plate is reactivated with another laser Large area, good dynamic range and linearity, but slow readout time (10-30s)

13 Area detectors two dimensional proportional counters Mikrogap by Bruker is otherwise similar except that lowest row is straight on circuit board and resistive anode closer to that Resolution depends on wire distances that depends on electronics Limited dynamic range, Mikrogap a bit better Area detectors charged coupled cell (CCD) Also in CCD cells x-ray photons are converted to visible light using a phosphor (most commonly Gd 2 O 2 S:Tb) Often phosphor area is bigger than the actual cell, and light is led to the cell via fiber optic taper Resolution depends on the thickness of the phosphor thinner layer gives better resolution but also less emitted light Apex-II by Needs cooling due to large background noise Data readout takes seconds Våntec-2000, 2D Mikrogap by Area detectors CMOS Development of CCD cells is approaching its end, CMOS cells are developing faster and displacing CCD s sensor is directly on top of CMOS Sensitivity already on par with best CCDs Much smaller noise and higher dynamic range Some detector properties are compared in the table CMOS detectors are missing, though e.g. Bruker Photon 100, PANalytical PIXcel, Dectris Mythen and Pilatus Photon-100 by 51 Clearfield et al. 52

14 Sample holders Sample stages Spinners for powders, either in reflection or transmission mode Eulerian cradles for determining texture and macro stresses Improves particle statistics and decreases possible orientation effects 53 November 2017, Mikko Heikkilä PANalytical 54 PANalytical Sample stages Sample stages So called in-plane arm in Rigaku Smartlab 5-axis goniometer Ovens for measurements conducted in non ambient In plane diffraction, phi scans, pole figures, Temperatures from liquid helium up to 2000 C Variable atmospheres (inert, oxidizing, reducing), moisture adjustment Manufacturers e.g. Anton-Paar, MRI 55 56

15 Sample stages Sample stages ScatterX78 attachment to PANalytical s Empyrean allows small Diamond anvil cells (DAC) for measurements done in high pressure (example below) footprint SAXS/WAXS measurements in standard laboratory E.g. colloidal dispersions, polymers, protein solutions, surfactants, Sample is measured in transmission geometry straight through nanopowders and liquid crystals diamonds Sample stage is just in front of the mirror and enclosure is in vacuum to reduce air scattering Focusing geometry incident beam side Automatic sample changers X-RAY TUBE Goniometer center is often hollow and that space can be used ANTISCATTER SLIT (see the middle image) Bruker also sells a sample changer with six 15 sample cassettes MASK and sample changer robot Often combined with robotic XRF PDS can be used in fixed or automatic mode in automatic mode the irradiated length can be set to constant value 59 60

16 Parallel beam geometry incident beam side Focusing geometry diffracted beam side DIVERGENCE SLIT FILTER/ ATTENUATOR/ MASK Ni FILTER ANTISCATTER SLIT SOLLER SLIT PASS can also be used in fixed or automatic mode in automatic mode, the detector can be set to measure constant irradiated length BEAM KNIFE when measuring XRR, a beam knife has to be set above the sample Parallel beam geometry diffracted beam side End of part 1 Questions, anyone? SOLLER SLIT RECEIVING SLIT receiving slit should be used when measuring XRR diffracted Soller is not always necessary 63 64

Lesson 2 Diffractometers

Lesson 2 Diffractometers Lesson 2 Diffractometers Nicola Döbelin RMS Foundation, Bettlach, Switzerland January 14 16, 2015, Bern, Switzerland Repetition: Generation of X-rays / Diffraction SEM: BSE detector, BSED / SAED detector

More information

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 332 ABSTRACT X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Bob B. He and Uwe Preckwinkel Bruker

More information

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues Instructions XRD 28.10.2016, Sami Suihkonen General issues Be very gentle when closing the doors Always use Cu attenuator when count rate exceeds 500 000 c/s Do not over tighten optical modules or attach

More information

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD Energy < 380 ev Resolution High-Resolution Position Sensitive Detector with Superb Energy Resolution The is the next generation "Compound Silicon Strip" detector with superb energy resolution for ultrafast

More information

Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection)

Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection) Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection) For any questions regarding the X-ray facility, contact: Pascal Schouwink pascal.schouwink@epfl.ch

More information

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70%

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70% PARALLEL BEAM X-RAY OPTICS y Mirror length L Θ = f(x) b p/2 λ = 2d eff (x) sin Θ(x) eff x m Parallel beam width b=f(p,λ,l,,l,x m ) x Fabrication of high precision 6 mm parallel beam optics both on prefigured

More information

Basic P-XRD instructions for Operating the Instrument

Basic P-XRD instructions for Operating the Instrument Basic P-XRD instructions for Operating the Instrument Instrument Parts Incident Beam Optics (left arm) 1) X-ray source (Cu) i. Rest settings: 45 kv, 20mA ii. Run settings: 45 kv, 40mA 2) Monochromator

More information

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum

More information

Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector

Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector Abridged SOP for Manually Aligning a Sample and Collecting Data using XRD Commander Scott A Speakman, Ph.D. MIT Center for

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT DETECTOR INSIDE A VACUUM CHAMBER

MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT DETECTOR INSIDE A VACUUM CHAMBER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 229 MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT

More information

Using the Open Eularian Cradle (OEC)

Using the Open Eularian Cradle (OEC) Using the Open Eularian Cradle (OEC) with the High-Speed Bragg-Brentano Optics on the PANalytical X Pert Pro MPD Scott A Speakman, Ph.D Center for Materials Science and Engineering at MIT Speakman@mit.edu

More information

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: )

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: 2012.10.17) The following instructions

More information

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta 1 Introducing Rigaku Since its inception in Japan in 1951, Rigaku has been at the forefront of analytical and industrial instrumentation

More information

Data Collection with. VÅNTEC-2000 Detector

Data Collection with. VÅNTEC-2000 Detector Data Collection with IµS Source and VÅNTEC-2000 Detector D8 System Configuration for Reflection Microfocus Source IµS Optics with Housing 2D Detector (VÅNTEC-2000) DHS 900 Heating Stage Sample Stage Bruker

More information

PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: )

PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: 2012.10.17) The following

More information

Miniflex. Rigaku/ Miniflex X-ray Diffractometer System. Rigaku Corporation

Miniflex. Rigaku/ Miniflex X-ray Diffractometer System. Rigaku Corporation Miniflex Rigaku/ Miniflex X-ray Diffractometer System Rigaku Corporation Rigaku/ Miniflex X-ray Diffractometer System 1. Introduction Rigaku s general purpose X-ray diffractometer systems are broadly classified

More information

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER 29 MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER Jörg Wiesmann, 1 Jürgen Graf, 1 Christian Hoffmann, 1 Carsten Michaelsen, 1 Alexandra Oehr, 1 Uwe Preckwinkel, 2 Ning Yang, 2 Holger Cordes,

More information

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction The is the first energy dispersive 0D, 1D, and 2D detector operating at room temperature for ultra fast X-ray diffraction measurements.

More information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information The Rigaku Journal Vol. 15/ number 2/ 1998 Product Information X-ray Single Crystal Structure Analysis System R-AXIS RAPID 1. Introduction X-ray single crystal structure analysis is known as the easiest

More information

Who is GBC Scientific Equipment?

Who is GBC Scientific Equipment? Who is GBC Scientific Equipment? GBC Scientific Equipment Pty Ltd commenced operations in 1978. GBC designs, manufactures and markets a range of scientific instruments comprising Atomic Absorption spectrometers

More information

RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS

RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS S-94,316 PATENTS-US-A96698 BEAM POSITION MONITOR RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS CONTRACTUAL ORIGIN OF THE INVENTION The United States Government has rights in this invention pursuant

More information

This lecture contains four sections as reading information.

This lecture contains four sections as reading information. Sample Preparation: The Backloading Technique This lecture contains four sections as reading information. Basic XRD Course 1 Sample Preparation: The Backloading Technique Basic XRD Course 2 Sample Preparation:

More information

Technical Explanation for Displacement Sensors and Measurement Sensors

Technical Explanation for Displacement Sensors and Measurement Sensors Technical Explanation for Sensors and Measurement Sensors CSM_e_LineWidth_TG_E_2_1 Introduction What Is a Sensor? A Sensor is a device that measures the distance between the sensor and an object by detecting

More information

AutoMATE II. Micro-area X-ray stress measurement system. Highly accurate micro area residual stress

AutoMATE II. Micro-area X-ray stress measurement system. Highly accurate micro area residual stress AutoMATE II Micro-area X-ray stress measurement system Highly accurate micro area residual stress The accuracy of an R&D diffractom dedicated residua In the past, if you wanted to make highly accurate

More information

TOWARDS FAST RECIPROCAL SPACE MAPPING

TOWARDS FAST RECIPROCAL SPACE MAPPING Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 165 ABSTRACT TOWARDS FAST RECIPROCAL SPACE MAPPING J.F. Woitok and A. Kharchenko PANalytical B.V.,

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Introduction to X-ray Detectors for Synchrotron Radiation Applications

Introduction to X-ray Detectors for Synchrotron Radiation Applications Introduction to X-ray Detectors for Synchrotron Radiation Applications Pablo Fajardo Instrumentation Services and Development Division ESRF, Grenoble EIROforum School on Instrumentation (ESI 2011) Outline

More information

Chemistry Instrumental Analysis Lecture 7. Chem 4631

Chemistry Instrumental Analysis Lecture 7. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 7 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Solid-state physics. Bragg reflection: determining the lattice constants of monocrystals. LEYBOLD Physics Leaflets P

Solid-state physics. Bragg reflection: determining the lattice constants of monocrystals. LEYBOLD Physics Leaflets P Solid-state physics Properties of crystals X-ray structural analysis LEYBOLD Physics Leaflets Bragg reflection: determining the lattice constants of monocrystals P7.1.2.1 Objects of the experiment Investigating

More information

CHAPTER 7. Components of Optical Instruments

CHAPTER 7. Components of Optical Instruments CHAPTER 7 Components of Optical Instruments From: Principles of Instrumental Analysis, 6 th Edition, Holler, Skoog and Crouch. CMY 383 Dr Tim Laurens NB Optical in this case refers not only to the visible

More information

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer :

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer components Excitation sources Deuterium Lamp Tungsten

More information

LECTURE 10. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 10. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 10 Dr. Teresa D. Golden University of North Texas Department of Chemistry Components for the source include: -Line voltage supply -high-voltage generator -x-ray tube X-ray source requires -high

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE

DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE THE RIGAKU JOURNAL VOL. 7 / NO. 2 / 1990 Technical Note DIFFRACTION DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE ATSUSHI SHIBATA R&D Division, Rigaku Corporation 1. Introduction

More information

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Journal of Applied Crystallography ISSN 0021-8898 First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Received 7 September

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Diamond X-ray Rocking Curve and Topograph Measurements at CHESS

Diamond X-ray Rocking Curve and Topograph Measurements at CHESS Diamond X-ray Rocking Curve and Topograph Measurements at CHESS G. Yang 1, R.T. Jones 2, F. Klein 3 1 Department of Physics and Astronomy, University of Glasgow, Glasgow, UK G12 8QQ. 2 University of Connecticut

More information

Supplementary Figure S1. Schematic representation of different functionalities that could be

Supplementary Figure S1. Schematic representation of different functionalities that could be Supplementary Figure S1. Schematic representation of different functionalities that could be obtained using the fiber-bundle approach This schematic representation shows some example of the possible functions

More information

General Measurement (BB) Part

General Measurement (BB) Part General Measurement (BB) Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Setting measurement origin and oscillation/spin conditions... 7 General Measurement (BB)

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 2007.00030 12A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0003012 A1 Taguchi et al. (43) Pub. Date: Jan. 4, 2007 (54) X-RAY DIFFRACTION APPARATUS (75) Inventors:

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

Basic Components of Spectroscopic. Instrumentation

Basic Components of Spectroscopic. Instrumentation Basic Components of Spectroscopic Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia

More information

BL39XU Magnetic Materials

BL39XU Magnetic Materials BL39XU Magnetic Materials BL39XU is an undulator beamline that is dedicated to hard X-ray spectroscopy and diffractometry requiring control of the X-ray polarization state. The major applications of the

More information

Residual Stress Measurement Part

Residual Stress Measurement Part Residual Stress Measurement Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 8 2. Measurement sequence...19 Residual

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

PSPC/MDG 2000 X-RAY MICRODIFFRACTOMETER. Product Information

PSPC/MDG 2000 X-RAY MICRODIFFRACTOMETER. Product Information THE RIGAKU JOURNAL VOL. 11 I NO.2 I 1994 Product Information X-RAY MICRODIFFRACTOMETER PSPC/MDG 2000 1. Introduction The analysis of X-ray diffraction patterns is well known as an effective means of obtaining

More information

MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER

MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER THE RIGAKU JOURNAL VOL. 20 / NO. 2 / 2003 MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER CHRISTINA STRELI a), NATALIA MAROSI, PETER WOBRAUSCHEK AND BARBARA FRANK Atominstitut der Österreichischen

More information

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 11 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Zaidi Embong and Husin Wagiran Physics Department, University Of Technology Malaysia, P.O Box 791, 80990, Johor Baharu

Zaidi Embong and Husin Wagiran Physics Department, University Of Technology Malaysia, P.O Box 791, 80990, Johor Baharu MY9800971 Optimization of a Spectrometry for Energy -Dispersive X-ray Fluorescence Analysis by X-ray Tube in Combination with Secondary Target for Multielements Determination of Sediment Samples. Zaidi

More information

Optical behavior. Reading assignment. Topic 10

Optical behavior. Reading assignment. Topic 10 Reading assignment Optical behavior Topic 10 Askeland and Phule, The Science and Engineering of Materials, 4 th Ed.,Ch. 0. Shackelford, Materials Science for Engineers, 6 th Ed., Ch. 16. Chung, Composite

More information

Bruker D8 HRXRD. Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector

Bruker D8 HRXRD. Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector Bruker D8 HRXRD Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector Scott A Speakman, Ph.D. MIT Center for Materials Science and Engineering For help in the X-ray Lab, contact

More information

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 346 DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY

More information

Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4

Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4 Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4 S.V. Roth, R. Döhrmann, M. Dommach, I. Kröger, T. Schubert, R. Gehrke Definition of the upgrade The wiggler beamline BW4 is dedicated to

More information

ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER

ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 325 ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER ABSTRACT William Chang, Jonathan Kerner, and Edward

More information

X-Ray Spectroscopy with a CCD Detector. Application Note

X-Ray Spectroscopy with a CCD Detector. Application Note X-Ray Spectroscopy with a CCD Detector In addition to providing X-ray imaging solutions, including CCD-based cameras that image X-rays using either direct detection (0.5-20 kev) or indirectly using a scintillation

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Jeffrey L. Guttman, John M. Fleischer, and Allen M. Cary Photon, Inc. 6860 Santa Teresa Blvd., San Jose,

More information

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays.

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays. XRD X-Ray Diffractometer Innovative, Integrated, Multifunctional By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of

More information

-_.-~ Sample. HIGH SENSITIVITY TYPE TOTAL REFLECTION X-RAY SPECTROMETER SYSTEM Wafer Surface Analysis System --

-_.-~ Sample. HIGH SENSITIVITY TYPE TOTAL REFLECTION X-RAY SPECTROMETER SYSTEM Wafer Surface Analysis System -- THE RIGAKU JOURNAL VOl. 8 / NO. 1 / 1991 HIGH SENSITIVITY TYPE TOTAL REFLECTION X-RAY SPECTROMETER SYSTEM 3726 --Wafer Surface Analysis System -- 1. Introduction System 3726 utilizes the total reflection

More information

Development of X-ray Tool For Critical- Dimension Metrology

Development of X-ray Tool For Critical- Dimension Metrology Development of X-ray Tool For Critical- Dimension Metrology Boris Yokhin, Alexander Krokhmal, Alexander Dikopoltsev, David Berman, Isaac Mazor Jordan Valley Semiconductors Ltd., Ramat Gabriel Ind. Zone,

More information

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL FERMILAB-CONF-16-641-AD-E ACCEPTED FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL A.H. Lumpkin 1 and A.T. Macrander 2 1 Fermi National Accelerator Laboratory, Batavia, IL 60510

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

BIFOCAL MINIATURE TOROIDAL SHAPED X-RAY MIRRORS

BIFOCAL MINIATURE TOROIDAL SHAPED X-RAY MIRRORS 1 BIFOCAL MINIATURE TOROIDAL SHAPED X-RAY MIRRORS Sterling Cornaby 1,2, Detlef-M. Smilgies 2, and Donald H. Bilderback 1,2 1 Cornell High Energy Synchrotron Source (CHESS) 2 School of Applied and Engineering

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Physics of the atomic shell LEYBOLD Physics Leaflets Investigating the energy spectrum of an x-ray tube as a function of the high voltage and the emission current

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Surface-Guided CsPbBr 3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response Eitan Oksenberg, Ella Sanders, Ronit

More information

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF M4 TORNADO PLUS Super Light Element Micro-XRF Spectrometer Innovation with Integrity Micro-XRF M4 TORNADO PLUS - A New Era in Micro-XRF M4 TORNADO PLUS is the world's first Micro-XRF spectrometer that

More information

Components of Optical Instruments 1

Components of Optical Instruments 1 Components of Optical Instruments 1 Optical phenomena used for spectroscopic methods: (1) absorption (2) fluorescence (3) phosphorescence (4) scattering (5) emission (6) chemiluminescence Spectroscopic

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Pixel Array Detectors: Counting and Integrating

Pixel Array Detectors: Counting and Integrating Pixel Array Detectors: Counting and Integrating Roger Durst, Bruker AXS October 13, 2016 1 The quest for a perfect detector There is, of course, no perfect detector All available detector technologies

More information

Pseudo-3D pixel detectors for powder diffraction Martijn Fransen

Pseudo-3D pixel detectors for powder diffraction Martijn Fransen Pseudo-3D pixel detectors for powder diffraction Martijn Fransen PANalytical 11 oktober 2016 1 Agenda Solid state position-sensitive detectors @PANalytical Dealing with polychromatic radiation Spatial

More information

DUANE-HUNT RELATION AND DETERMINATION OF PLANCK S CONSTANT

DUANE-HUNT RELATION AND DETERMINATION OF PLANCK S CONSTANT DUANE-HUNT RELATION AND DETERMINATION OF PLANCK S CONSTANT OBJECTIVES To determine the limit wavelength min of the bremsstrahlung continuum as a function of the high voltage U of the x-ray tube. To confirm

More information

NIST EUVL Metrology Programs

NIST EUVL Metrology Programs NIST EUVL Metrology Programs S.Grantham, C. Tarrio, R.E. Vest, Y. Barad, S. Kulin, K. Liu and T.B. Lucatorto National Institute of Standards and Technology (NIST) Gaithersburg, MD USA L. Klebanoff and

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

Ground-based optical auroral measurements

Ground-based optical auroral measurements Ground-based optical auroral measurements FYS 3610 Background Ground-based optical measurements provides a unique way to monitor spatial and temporal variation of auroral activity at high resolution up

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Experiment #12 X-Ray Diffraction Laboratory

Experiment #12 X-Ray Diffraction Laboratory Physics 360/460 Experiment #12 X-Ray Diffraction Laboratory Introduction: To determine crystal lattice spacings, as well as identify unknown substances, a x-ray diffractometer is used to replace the traditional

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay. The X-line of ThomX.

Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay. The X-line of ThomX. Workshop IGLEX Andromède & ThomX 23 June 2016, LAL Orsay The X-line of ThomX jerome.lacipiere@neel.cnrs.fr mjacquet@lal.in2p3.fr Brightness panorama of X-ray (10-100 kev) sources Synchrotron : not very

More information

Advances in X-Ray Scintillator Technology Roger D. Durst Bruker AXS Inc.

Advances in X-Ray Scintillator Technology Roger D. Durst Bruker AXS Inc. Advances in X-Ray Scintillator Technology Roger D. Durst Inc. Acknowledgements T. Thorson, Y. Diawara, E. Westbrook, MBC J. Morse, ESRF C. Summers, Georgia Tech/PTCE B. Wagner, Georgia Tech/PTCE V. Valdna,

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Page 1. Ground-based optical auroral measurements. Background. CCD All-sky Camera with filterwheel. Image intensifier

Page 1. Ground-based optical auroral measurements. Background. CCD All-sky Camera with filterwheel. Image intensifier Ground-based optical auroral measurements FYS 3610 Background Ground-based optical measurements provides a unique way to monitor spatial and temporal variation of auroral activity at high resolution up

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits...

Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits... Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits... 10 Non-magnetic Options for Slits... 12 Slits with Passive

More information

Small Angle Scattering Platform for Structural Biology

Small Angle Scattering Platform for Structural Biology Small Angle Scattering Platform for Structural Biology Petra Pernot, ESRF OUTLINE: SAXS/SANS in Grenoble: new SAS platform of CISB Conversion of ID14-EH3 from MX to bio-saxs MAXINF2 Integration Workshop

More information

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves PHYS2090 OPTICAL PHYSICS Laboratory Microwaves Reference Hecht, Optics, (Addison-Wesley) 1. Introduction Interference and diffraction are commonly observed in the optical regime. As wave-particle duality

More information

Fluorescence X-ray Spectrometer System ZSX Series

Fluorescence X-ray Spectrometer System ZSX Series The Rigaku Journal Vol. 16/ number 2/ 1999 Product Information Fluorescence X-ray Spectrometer System ZSX Series The ZSX: Innovative XRF Technology-Accelerated. 1 Introduction The ZSX is a revolutionary

More information

Coherent Laser Measurement and Control Beam Diagnostics

Coherent Laser Measurement and Control Beam Diagnostics Coherent Laser Measurement and Control M 2 Propagation Analyzer Measurement and display of CW laser divergence, M 2 (or k) and astigmatism sizes 0.2 mm to 25 mm Wavelengths from 220 nm to 15 µm Determination

More information

SCINTILLATING FIBER DOSIMETER ARRAY

SCINTILLATING FIBER DOSIMETER ARRAY SCINTILLATING FIBER DOSIMETER ARRAY FIELD OF THE INVENTION [0001] This invention relates generally to the field of dosimetry and, more particularly, to rapid, high-resolution dosimeters for advanced treatment

More information

Unit thickness. Unit area. σ = NΔX = ΔI / I 0

Unit thickness. Unit area. σ = NΔX = ΔI / I 0 Unit thickness I 0 ΔI I σ = ΔI I 0 NΔX = ΔI / I 0 NΔX Unit area Δx Average probability of reaction with atom for the incident photons at unit area with the thickness of Delta-X Atom number at unit area

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Fast high-resolution characterization of powders using an imaging plate Guinier camera

Fast high-resolution characterization of powders using an imaging plate Guinier camera Nuclear Instruments and Methods in Physics Research A 551 (2005) 145 151 www.elsevier.com/locate/nima Fast high-resolution characterization of powders using an imaging plate Guinier camera Joseph Gal a,

More information

Photolithography II ( Part 2 )

Photolithography II ( Part 2 ) 1 Photolithography II ( Part 2 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information