DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION

Size: px
Start display at page:

Download "DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION"

Transcription

1 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION Yuji Horino, Yoshiaki Mokuno, Tadashi Narusawa 1, Shoji Kuwabara 2, Sumio Shibata 3 and Hiroyoshi Soejima 3 Laboratory of Purified Materials, National Institute of Advanced Industrial Science and Technology (AIST), , Ikeda, Osaka Japan 1 Department of Electronics and Photonics System Engineering, Kochi University of Technology, Tosa-Yamada, Kochi , Japan 2 Shimadzu Corporation, Horiyamashita, Hadano, Kanagawa , Japan 3 Shimadzu Scientific Research, 1 Nishinokyo-Kuwabaracho, Kyoto , Japan ABSTRACT We developed a new type of wavelength dispersive X-ray spectrometer with a multi-capillary X-ray lens (MCX). We installed a MCX into the X-ray detection side (ie. the crystal spectrometer side) of a conventional WD-XRF machine (Shimadzu XRF-1800). The MCX collects fluorescent X-rays from a selected sample area of diameter 0.1 mm or less and collimates them into a nearly parallel beam form. This spectrometer is able to perform not only conventional macro-analysis but also microanalysis. It is easy to show the characteristic feature of the MCX by comparing the results obtained with those from a conventional aperture. The spatial resolution of analyzing the area was about 60 µm for FeKα. The FWHM of the FeKα line was Å. The energy separation of the MCX for the wavelength region of CrKβ and MnKα lines was better than that of the conventional aperture (3 mmφ). The FeKα intensity from a 60 µm area was about 200 times higher than the conventional aperture. Some mapping images were successfully obtained by using the conventional analyzing position control mechanism. INTRODUCTION A multi-capillary X-ray lens (MCX) is an attractive device because of the ability to focus or collimate a wide energy range of X-rays [1, 2]. Table 1 shows recent utilization of capillaries for X-ray fluorescence (XRF) spectroscopy. A single capillary or multi-capillary lens is used at the X-ray source side or the X-ray detection side. Many efforts have been made to use these types of X-ray lens for focusing the primary X-rays [3] and some energy dispersive spectrometers (ED-XRF) are commercially available already. X-ray spot sizes of less than 10 µm have been achieved. In a previous study, Soejima and Narusawa proposed a new type of X-ray fluorescence wavelength dispersive spectrometer in which a MCX was set at the X-ray detection side for fluorescent X-ray detection [4]. The spectrometer consisted of a MCX and a flat crystal, and had a simple and compact construction with wavelength and spatial resolution good enough for small area analyses. They showed that this type of spectrometer was suitable for X-ray fluorescent analysis of small areas with flat crystal spectrometers due to the large collecting angle

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume Table 1 X-Ray Capillary Utilization in XRF Lens position and the relatively low divergence. In this study, we have installed a MCX into a commercially available WD-X-ray fluorescent spectrometer (Shimadzu XRF-1800). Since the MCX can be removed easily from the X-ray optical path, the effect of using MCX can be measured with high accuracy. Using the spectrometer, the spatial resolution, the wavelength resolution and the overall detection efficiency for the analysis of small area (less than 100 µmφ) are investigated. EXPERIMENTAL Type Spatial Resolution Comment Status Single Capillary <10 µm low power commercially available Source Multi Capillary <30 µm high power in development laboratory <100 µm high power commercially available Single Capillary - useless - Detection Multi Capillary <30 µm high efficiency in development laboratory <60 µm high efficiency under commercial development The MCX (XOS Inc.) is specially designed to fit the XRF-1800, and is 23 mm in length and 9 mm in diameter. The focal distance is 9 mm, and its focal point size was designed to be ~60 µm for FeKα line. Figure 1 illustrates the arrangement of the XRF-1800 in which the MCX was installed at the X-ray detection side. The original spectrometer has an aperture assembly of 5 X-ray tube (4kW thin window) Analyzing Crystal Vacuum Slit 1 Slit 2 Detector Multi-Capillary X-ray Lens (MCX) & Aperture (3, 10, 20, 30 mmφ) Base machine = Shimadzu XRF-1800 Figure 1 Schematic diagram of the newly developed spectrometer

4 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume diameters (0.5, 3, 10, 20, 30 mmφ). It is able to analyze samples and obtain mapping images with a spatial resolution of 0.5 mm because the aperture restricts the analyzing area. Furthermore, the sample-positioning mechanism of the XRF-1800 enables us to obtain elemental mapping images with a spatial resolution of 0.5 mm [5]. In this work, we have installed the MCX instead of the 0.5 mmφ aperture in the assembly. We have not modified anything else, including the sample-positioning mechanism. Thus, this spectrometer became able to perform not only conventional macro-analysis, but also microanalysis with spatial resolution of about 60 µm, by selecting the MCX or one of the apertures. Results of measurements from the use of the MCX or a conventional aperture were easily compared. The primary X-rays from Rh-target X-ray tube (40 kv, 95 ma) hits the surface of samples with the incident angle of 25 degree to the sample normal. The fluorescent X-rays are collected by the MCX or collimated by an aperture with the detection angle of 55 degree to the sample normal. Then the fluorescent X-rays are collimated by the slit 1 (Soller slit), analyzed by a flat crystal, and collimated again by the slit 2 (Soller slit) before being counted by an X-ray detector such as a scintillation counter. For slit 1, three choices of slit spacing are available (750, 450, 150 µm). The slit 1 with a spacing of 750 µm was used in combination with the MCX. RESULTS AND DISCUSSION A typical spectrum of a stainless steel sample using the MCX is shown in figure 2, where the detector count rates (kcps) are plotted against the detector angle (2θ). As is shown, peaks over a wide wavelength range are detected by the MCX. The prominent peak at ~57.5 corresponds to the FeKα line. Some lower intensity peaks, such as CoKα, CuKα lines, are also clearly observed. We have confirmed that the MCX is effective for the full range (uranium to carbon) of the spectrometer. However, some properties, such as spatial resolution of the lens, depend on the wavelength. Therefore, the following experiments focus on the X-ray wavelength of around X-RAY INTENSITY (kcps) Ni-Kβ Cu-Kα Ni-Kα Fe-Kβ Co-Kα Fe-Kα Cr-Kβ Mn-Kα Cr-Kα V-Kα θ (deg) Figure 2. Typical spectrum from a stainless steel sample

5 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume Å (FeKα ~ MnKα). The spatial resolution of the analyzing area was measured by the knife-edge method. The MCX position was scanned across an edge of stainless steel foil in 3 µm steps while the FeKα intensity was monitored. Figure 3 shows the FeKα intensity profile and its derivative, which was smoothed and then fitted with a Gaussian curve. The spatial resolution was evaluated to be 57 µm from the FWHM of the curve, which is close to design specification. The results suggest that the spectrometer is promising for the XRF of small areas. 5 FeKα Intensity Derivative X-RAY INTENSITY (kcps) POSITION (µm) Figure 3. FeKα intensity profile (dot) and its derivative (solid line) obtained by scanning the MCX across the edge of a stainless steel foil. The derivative was smoothed and fitted to a Gaussian curve. 35 FeKα NORMARIZED INTENSITY mm aperture MCX Figure 4. Spectra of the FeKα line obtained by using the MCX and a conventional 3 mmφ aperture. The spacings of the slit 1 were 750 µm for the MCX and 450 µm for the aperture, respectively. 2θ

6 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume In figure 4, the FeKα line spectra obtained using the MCX and the 3 mmφ aperture are shown. The wavelength resolution of the MCX was better than that of the aperture in which the spacing of the slit 1 was 450 µm. The reason for this result is that the MCX functions as a good collimator [6]. This suggests that the divergence of the X-ray from the MCX is less than that of the 450µm Soller slit. The line width (FWHM ) is Å at Å, or energy-wise 40 ev at 6.4 kev. In fact, the separation of CrKβ and MnKα lines, which is sometimes referred to as the wavelength resolution check, is better for the MCX as shown in figure 5. In Table 2, the wavelength resolution and sensitivity ratio data are summarized. The FeKα intensity from a 60 µm area was about 200 times higher than the estimated intensity for conventional apertures. NORMARIZED INTENSITY CrKβ MnKα 3mm aperture MCX θ Figure 5. Spectra in wavelength region of CrKβ and MnKα obtained by using the MCX and a conventional 3 mmφ aperture. The spacings of the slit 1 were 750 µm for the MCX and 450 µm for the aperture, respectively. Table 2. Summary of the wavelength resolution and sensitivity Aperture(3 mmφ) MCX(60 µmφ) Slit µm 750 µm Wavelength resolution (FWHM λ) Å Å Peak intensity (kcps) Sensitivity ratio (a.u. / 60 µmφ) Figure 6 shows an elemental mapping of a Ni mesh obtained using the mapping function of XRF-1800 with the MCX. The pixel size is 100 µm 100 µm and image size is 2 mm 2 mm. This is believed to be the first map produced using MCX-WD-XRF. We envisage new

7 Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume application fields for this type of spectrometer because of its good spatial resolution, good wavelength resolution and good sensitivity. 1.0 Y direction (mm) X-ray intensity (kcps) X direction (mm) Figure 6. Mapping image of NiKα line from a nickel mesh. CONCLUSION A multi-capillary X-ray lens (MCX) was installed into a conventional WD-XRF machine (Shimadzu XRF-1800). It enabled both macro and micro analysis with the same spectrometer. We have shown that the MCX is effective for X-ray detection for wide range wavelength. It has a spatial resolution of 57 µm, and good wavelength resolution of Å for FeKα line. The intensity of the analyzed FeKα line per unit area for the MCX was about 200 times higher than that of the conventional aperture. As the results displayed good spatial and wavelength resolution and high efficiency, some elemental maps with a 100 µm step were successfully obtained. This XRF system shows great merit for small area XRF analyses, and its sensitivity for small area analysis will make it possible to analyze very subtle region of solids such as, for instance, semiconductor-metal interfaces. REFERENCES [1] H.Soejima; Japan Patent (1986). [2] H.Soejima; Japan Patent (1988). [3] N.Gao,I.Y.Ponomarev Q.F.Xiao,W.M.Gibson and D.A.Carpenter : Appl. Phys. Lett. 71(23) [4] H. Soejima and T.Narusawa, Advance in X-ray Analysis 44 (2002) 320. [5] S.Kuwabara, E.Terasita, 44th Denver Conference, P1-28, (1995). [6] K.M.Matney,M.Wormington,D.K.Bowen and Q.F.Xiao : Denber X-ray Conference 1997.

MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT DETECTOR INSIDE A VACUUM CHAMBER

MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT DETECTOR INSIDE A VACUUM CHAMBER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 229 MICRO XRF OF LIGHT ELEMENTS USING A POLYCAPILLARY LENS AND AN ULTRA THIN WINDOW SILICON DRIFT

More information

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 332 ABSTRACT X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Bob B. He and Uwe Preckwinkel Bruker

More information

ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER

ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 325 ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER ABSTRACT William Chang, Jonathan Kerner, and Edward

More information

Spectral distribution from end window X-ray tubes

Spectral distribution from end window X-ray tubes Copyright ISSN (C) 1097-0002, JCPDS-International Advances in X-ray Centre Analysis, for Volume Diffraction 41 Data 1999 393 Spectral distribution from end window X-ray tubes N. Broll 1, P. de Chateaubourg

More information

MOXTEK S NEW ULTRA-LITE X-RAY SOURCES: PERFORMACE CHARACTERIZATIONS

MOXTEK S NEW ULTRA-LITE X-RAY SOURCES: PERFORMACE CHARACTERIZATIONS Copyright JCPDS-International Centre for Diffraction Data 2013 ISSN 1097-0002 202 MOXTEK S NEW ULTRA-LITE X-RAY SOURCES: PERFORMACE CHARACTERIZATIONS S. Cornaby, S. Morris, J. Smith, D. Reynolds, K. Kozaczek

More information

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum

More information

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 11 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Lesson 2 Diffractometers

Lesson 2 Diffractometers Lesson 2 Diffractometers Nicola Döbelin RMS Foundation, Bettlach, Switzerland January 14 16, 2015, Bern, Switzerland Repetition: Generation of X-rays / Diffraction SEM: BSE detector, BSED / SAED detector

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

USING A CHARGE-COUPLED DEVICE (CCD) TO GATHER X-RAY FLUORESCENCE (XRF)AND X-RAY DIFFRACTION (XRD) INFORMATION SIMULTANEOUSLY

USING A CHARGE-COUPLED DEVICE (CCD) TO GATHER X-RAY FLUORESCENCE (XRF)AND X-RAY DIFFRACTION (XRD) INFORMATION SIMULTANEOUSLY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 343 USING A CHARGE-COUPLED DEVICE (CCD) TO GATHER X-RAY FLUORESCENCE (XRF)AND X-RAY DIFFRACTION (XRD)

More information

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 34 SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES S. Cornaby 1, A. Reyes-Mena 1, P. W. Moody 1,

More information

Residual Stress Measurement Part

Residual Stress Measurement Part Residual Stress Measurement Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 8 2. Measurement sequence...19 Residual

More information

DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY. H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli

DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY. H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli Copyright (C) JCPDS International Centre for Diffraction Data 1999 379 DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli Atominsitut der

More information

AutoMATE II. Micro-area X-ray stress measurement system. Highly accurate micro area residual stress

AutoMATE II. Micro-area X-ray stress measurement system. Highly accurate micro area residual stress AutoMATE II Micro-area X-ray stress measurement system Highly accurate micro area residual stress The accuracy of an R&D diffractom dedicated residua In the past, if you wanted to make highly accurate

More information

X-Ray Spectroscopy with a CCD Detector. Application Note

X-Ray Spectroscopy with a CCD Detector. Application Note X-Ray Spectroscopy with a CCD Detector In addition to providing X-ray imaging solutions, including CCD-based cameras that image X-rays using either direct detection (0.5-20 kev) or indirectly using a scintillation

More information

DESIGN AND MEASUREMENT WITH A NEW PORTABLE X-RAY CAMERA FOR FULL-FIELD FLUORESCENCE IMAGING

DESIGN AND MEASUREMENT WITH A NEW PORTABLE X-RAY CAMERA FOR FULL-FIELD FLUORESCENCE IMAGING 14 DESIGN AND MEASUREMENT WITH A NEW PORTABLE X-RAY CAMERA FOR FULL-FIELD FLUORESCENCE IMAGING I. Ordavo 1,2, A. Bjeoumikhov 3, S. Bjeoumikhova 3, G. Buzanich 4, R. Gubzhokov 4, R. Hartmann 1, S. Ihle

More information

General Measurement (BB) Part

General Measurement (BB) Part General Measurement (BB) Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Setting measurement origin and oscillation/spin conditions... 7 General Measurement (BB)

More information

MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE

MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE 228 MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE D. CARUSO, M. DINSMORE TWX LLC, CONCORD, MA 01742 S. CORNABY MOXTEK, OREM, UT 84057 ABSTRACT Miniature x-ray sources present

More information

LONG TERM STATISTICS OF X-RAY SPECTROMETERS

LONG TERM STATISTICS OF X-RAY SPECTROMETERS 403 LONG TERM STATISTICS OF X-RAY SPECTROMETERS J. F. Dlouhy*, D. Mathieu Department of the Environment, Environmental Technology Center, River Road, Ottawa, Ontario, Canada Kl A OH3 K. N. Stoev Bulgarian

More information

TOWARDS FAST RECIPROCAL SPACE MAPPING

TOWARDS FAST RECIPROCAL SPACE MAPPING Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 165 ABSTRACT TOWARDS FAST RECIPROCAL SPACE MAPPING J.F. Woitok and A. Kharchenko PANalytical B.V.,

More information

Basic P-XRD instructions for Operating the Instrument

Basic P-XRD instructions for Operating the Instrument Basic P-XRD instructions for Operating the Instrument Instrument Parts Incident Beam Optics (left arm) 1) X-ray source (Cu) i. Rest settings: 45 kv, 20mA ii. Run settings: 45 kv, 40mA 2) Monochromator

More information

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER 29 MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER Jörg Wiesmann, 1 Jürgen Graf, 1 Christian Hoffmann, 1 Carsten Michaelsen, 1 Alexandra Oehr, 1 Uwe Preckwinkel, 2 Ning Yang, 2 Holger Cordes,

More information

FAST ELEMENTAL MAPPING WITH MICRO-XRF

FAST ELEMENTAL MAPPING WITH MICRO-XRF 286 FAST ELEMENTAL MAPPING WITH MICRO-XRF Haschke, M.; Rossek, U.; Tagle, R.; Waldschläger, U. Bruker Nano GmbH, 12489 Berlin, Schwarzschildstr.12 ABSTRACT X-Ray optics are now in common use for concentrating

More information

TOWARDS SUB-100 NM X-RAY MICROSCOPY FOR TOMOGRAPHIC APPLICATIONS

TOWARDS SUB-100 NM X-RAY MICROSCOPY FOR TOMOGRAPHIC APPLICATIONS Copyright -International Centre for Diffraction Data 2010 ISSN 1097-0002 89 TOWARDS SUB-100 NM X-RAY MICROSCOPY FOR TOMOGRAPHIC APPLICATIONS P. Bruyndonckx, A. Sasov, B. Pauwels Skyscan, Kartuizersweg

More information

Precise Theta/2-Theta Measurement (PB/PSA) Part

Precise Theta/2-Theta Measurement (PB/PSA) Part Precise Theta/2-Theta Measurement (PB/PSA) Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 6 2. Measurement

More information

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF M4 TORNADO PLUS Super Light Element Micro-XRF Spectrometer Innovation with Integrity Micro-XRF M4 TORNADO PLUS - A New Era in Micro-XRF M4 TORNADO PLUS is the world's first Micro-XRF spectrometer that

More information

A MONTE CARLO CODE FOR SIMULATION OF PULSE PILE-UP SPECTRAL DISTORTION IN PULSE-HEIGHT MEASUREMENT

A MONTE CARLO CODE FOR SIMULATION OF PULSE PILE-UP SPECTRAL DISTORTION IN PULSE-HEIGHT MEASUREMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 246 A MONTE CARLO CODE FOR SIMULATION OF PULSE PILE-UP SPECTRAL DISTORTION IN PULSE-HEIGHT MEASUREMENT

More information

GUNSHOT RESIDUE INVESTIGATIONS USING TXRF

GUNSHOT RESIDUE INVESTIGATIONS USING TXRF 299 GUNSHOT RESIDUE INVESTIGATIONS USING TXRF Alexander Wastl 1, Bettina Bogner 2, Peter Kregsamer 1, Peter Wobrauschek 1, Christina Streli 1 1 Atominstitut, Vienna University of Technology, Vienna, Austria

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER

MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER THE RIGAKU JOURNAL VOL. 20 / NO. 2 / 2003 MICROANALYSIS WITH A POLYCAPILLARY IN A VACUUM CHAMBER CHRISTINA STRELI a), NATALIA MAROSI, PETER WOBRAUSCHEK AND BARBARA FRANK Atominstitut der Österreichischen

More information

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70%

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70% PARALLEL BEAM X-RAY OPTICS y Mirror length L Θ = f(x) b p/2 λ = 2d eff (x) sin Θ(x) eff x m Parallel beam width b=f(p,λ,l,,l,x m ) x Fabrication of high precision 6 mm parallel beam optics both on prefigured

More information

Copyright -International Centre for Diffraction Data 2010 ISSN

Copyright -International Centre for Diffraction Data 2010 ISSN 234 BRIDGING THE PRICE/PERFORMANCE GAP BETWEEN SILICON DRIFT AND SILICON PIN DIODE DETECTORS Derek Hullinger, Keith Decker, Jerry Smith, Chris Carter Moxtek, Inc. ABSTRACT Use of silicon drift detectors

More information

ARTAX. Innovation with Integrity. Portable Micro-XRF Spectrometer. Micro-XRF

ARTAX. Innovation with Integrity. Portable Micro-XRF Spectrometer. Micro-XRF ARTAX Portable Micro-XRF Spectrometer Innovation with Integrity Micro-XRF ARTAX Elemental Analysis for the Art Community and More The ARTAX is the first portable X ray fluorescence (XRF) spectrometer designed

More information

BRUKER ADVANCED X-RAY SOLUTIONS. SPECTROMETRY SOLUTIONS ARTAX mxrf SPECTROMETER

BRUKER ADVANCED X-RAY SOLUTIONS. SPECTROMETRY SOLUTIONS ARTAX mxrf SPECTROMETER BRUKER ADVANCED X-RAY SOLUTIONS SPECTROMETRY SOLUTIONS ARTAX mxrf SPECTROMETER Microanalysis ARTAX Elemental Analysis for the Art Community and More Non-destructive elemental analysis is strictly required

More information

X-RAY BACKSCATTER IMAGING: PHOTOGRAPHY THROUGH BARRIERS

X-RAY BACKSCATTER IMAGING: PHOTOGRAPHY THROUGH BARRIERS Copyright JCPDS-International Centre for Diffraction Data 2006 ISSN 1097-0002 X-RAY BACKSCATTER IMAGING: PHOTOGRAPHY THROUGH BARRIERS 13 Joseph Callerame American Science & Engineering, Inc. 829 Middlesex

More information

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 17 Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments H. Vogt a, A. Last a, J.

More information

Fiber Optic Communications

Fiber Optic Communications Fiber Optic Communications ( Chapter 2: Optics Review ) presented by Prof. Kwang-Chun Ho 1 Section 2.4: Numerical Aperture Consider an optical receiver: where the diameter of photodetector surface area

More information

CONFOCAL GRADED d-spacing MULTILAYER BEAM CONDITIONING OPTICS

CONFOCAL GRADED d-spacing MULTILAYER BEAM CONDITIONING OPTICS Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 321 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta 1 Introducing Rigaku Since its inception in Japan in 1951, Rigaku has been at the forefront of analytical and industrial instrumentation

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida TEM Techniques Summary The TEM is an analytical instrument in which a thin membrane (typically < 100nm) is placed in the path of an energetic and highly coherent beam of electrons. Typical operating voltages

More information

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD Energy < 380 ev Resolution High-Resolution Position Sensitive Detector with Superb Energy Resolution The is the next generation "Compound Silicon Strip" detector with superb energy resolution for ultrafast

More information

RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS

RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 166 RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS ABSTRACT Scott T. Misture NYS College

More information

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL

FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL FERMILAB-CONF-16-641-AD-E ACCEPTED FIRST INDIRECT X-RAY IMAGING TESTS WITH AN 88-mm DIAMETER SINGLE CRYSTAL A.H. Lumpkin 1 and A.T. Macrander 2 1 Fermi National Accelerator Laboratory, Batavia, IL 60510

More information

OPTIMIZING THE ELEMENTAL SENSITIVITY AND FOCAL SPOT SIZE OF A MONOLITHIC POLYCAPILLARY OPTIC USING MICRO-X-RAY FLUORESCENCE

OPTIMIZING THE ELEMENTAL SENSITIVITY AND FOCAL SPOT SIZE OF A MONOLITHIC POLYCAPILLARY OPTIC USING MICRO-X-RAY FLUORESCENCE , Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 26 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

PHYS General Physics II Lab Diffraction Grating

PHYS General Physics II Lab Diffraction Grating 1 PHYS 1040 - General Physics II Lab Diffraction Grating In this lab you will perform an experiment to understand the interference of light waves when they pass through a diffraction grating and to determine

More information

Applications of Micro XRF for the Analysis of Traditional Japanese "Ainu" Glass Beads and other Artifacts

Applications of Micro XRF for the Analysis of Traditional Japanese Ainu Glass Beads and other Artifacts 161 161 Applications of Micro XRF for the Analysis of Traditional Japanese "Ainu" Glass Beads and other Artifacts K.Sugihara 1, M.Satoh 1, Y.Hayakawa 2, A.Saito 3 and T.Sasaki 4 1 Seiko Instruments Inc.,

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

Performance of chip-size wavelength detectors

Performance of chip-size wavelength detectors Performance of chip-size wavelength detectors Oliver Schmidt, Peter Kiesel *, Michael Bassler Palo Alto Research Center Incorporated, 3333 Coyote Hill Rd., Palo Alto, CA 94304 * Corresponding author: peter.kiesel@parc.com

More information

A Framed Monochromatic X-Ray Microscope for ICF

A Framed Monochromatic X-Ray Microscope for ICF A Framed Monochromatic X-Ray Microscope for ICF The Laser Fusion Experiments Groups from the Laboratory for Laser Energetics (LLE) and the Los Alamos National Laboratory (LANL) have jointly developed an

More information

Spatial resolution. Spatial resolution

Spatial resolution. Spatial resolution 11/05/00 Refraction Compound refractive lenses (concave) Snigirev et al, NATURE 199 patents: Tomie 1995 x-rays: n = 1 - δ - i β < 1 www.accel.de Chromatic lenses Prod.: Lengeler @RWTH Aachen, D need of

More information

Focusing X-ray beams below 50 nm using bent multilayers. O. Hignette Optics group. European Synchrotron Radiation Facility (FRANCE) Outline

Focusing X-ray beams below 50 nm using bent multilayers. O. Hignette Optics group. European Synchrotron Radiation Facility (FRANCE) Outline Focusing X-ray beams below 50 nm using bent multilayers O. Hignette Optics group European Synchrotron Radiation Facility (FRANCE) Outline Graded multilayers resolution limits 40 nanometers focusing Fabrication

More information

POLYCAPILLARY OPTICS AND X-RAY ANALYTICAL TECHNIQUES

POLYCAPILLARY OPTICS AND X-RAY ANALYTICAL TECHNIQUES Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 298 POLYCAPILLARY OPTICS AND X-RAY ANALYTICAL TECHNIQUES Yiming Yan a,b and Walter M. Gibson a,c

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues Instructions XRD 28.10.2016, Sami Suihkonen General issues Be very gentle when closing the doors Always use Cu attenuator when count rate exceeds 500 000 c/s Do not over tighten optical modules or attach

More information

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc.

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc. Beam Profiling by Michael Scaggs Haas Laser Technologies, Inc. Introduction Lasers are ubiquitous in industry today. Carbon Dioxide, Nd:YAG, Excimer and Fiber lasers are used in many industries and a myriad

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information The Rigaku Journal Vol. 15/ number 2/ 1998 Product Information X-ray Single Crystal Structure Analysis System R-AXIS RAPID 1. Introduction X-ray single crystal structure analysis is known as the easiest

More information

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source 2015 International Workshop on EUV and Soft X-Ray Sources Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source T. Parkman 1, M. F. Nawaz 2, M. Nevrkla 2, M. Vrbova 1, A. Jancarek

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Laser Focus Spot Size Control Interaction of a laser beam with any material is a function of energy density,

More information

Guide to SPEX Optical Spectrometer

Guide to SPEX Optical Spectrometer Guide to SPEX Optical Spectrometer GENERAL DESCRIPTION A spectrometer is a device for analyzing an input light beam into its constituent wavelengths. The SPEX model 1704 spectrometer covers a range from

More information

Fluorescence X-ray Spectrometer System ZSX Series

Fluorescence X-ray Spectrometer System ZSX Series The Rigaku Journal Vol. 16/ number 2/ 1999 Product Information Fluorescence X-ray Spectrometer System ZSX Series The ZSX: Innovative XRF Technology-Accelerated. 1 Introduction The ZSX is a revolutionary

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE

DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE THE RIGAKU JOURNAL VOL. 7 / NO. 2 / 1990 Technical Note DIFFRACTION DATA COLLECTION WITH R-AXIS II, AN X-RAY DETECTING SYSTEM USING IMAGING PLATE ATSUSHI SHIBATA R&D Division, Rigaku Corporation 1. Introduction

More information

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction The is the first energy dispersive 0D, 1D, and 2D detector operating at room temperature for ultra fast X-ray diffraction measurements.

More information

ON THE DETECTION LIMIT OF TEY (TOTAL ELECTRON YIELD) Maria F. Ebel, Horst Ebel and Robert Svagera

ON THE DETECTION LIMIT OF TEY (TOTAL ELECTRON YIELD) Maria F. Ebel, Horst Ebel and Robert Svagera Copyright(C)JCPDS-International Centre for Diffraction Data 2, Advances in X-ray Analysis, Vol.42 91 Copyright(C)JCPDS-International Centre for Diffraction Data 2, Advances in X-ray Analysis, Vol.42 91

More information

BL39XU Magnetic Materials

BL39XU Magnetic Materials BL39XU Magnetic Materials BL39XU is an undulator beamline that is dedicated to hard X-ray spectroscopy and diffractometry requiring control of the X-ray polarization state. The major applications of the

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Supporting Information

Supporting Information Supporting Information Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties Chang Wang 1, Dong Fang 1,*, Hong en Wang 2, Yunhe Cao

More information

Low Contrast Dielectric Metasurface Optics. Arka Majumdar 1,2,+ 8 pages, 4 figures S1-S4

Low Contrast Dielectric Metasurface Optics. Arka Majumdar 1,2,+ 8 pages, 4 figures S1-S4 Low Contrast Dielectric Metasurface Optics Alan Zhan 1, Shane Colburn 2, Rahul Trivedi 3, Taylor K. Fryett 2, Christopher M. Dodson 2, and Arka Majumdar 1,2,+ 1 Department of Physics, University of Washington,

More information

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN Fastest high definition Raman imaging Fastest Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Observation A New Generation in Raman Observation RAMAN-11 developed by Nanophoton was newly created by

More information

Diffractive Axicon application note

Diffractive Axicon application note Diffractive Axicon application note. Introduction 2. General definition 3. General specifications of Diffractive Axicons 4. Typical applications 5. Advantages of the Diffractive Axicon 6. Principle of

More information

Design Description Document

Design Description Document UNIVERSITY OF ROCHESTER Design Description Document Flat Output Backlit Strobe Dare Bodington, Changchen Chen, Nick Cirucci Customer: Engineers: Advisor committee: Sydor Instruments Dare Bodington, Changchen

More information

(1) Research Institute for Scientific Measurements, Tohoku University, Katahira 2-1-1, Aoba-ku,

(1) Research Institute for Scientific Measurements, Tohoku University, Katahira 2-1-1, Aoba-ku, 351 Classification Physics Abstracts 07.80 Performance of a new high-resolution electron energy-loss spectroscopy microscope Masami Thrauchi(1), Ryuichi Kuzuo(1), Futami Satoh(1), Michiyoshi Thnaka(1),

More information

Various beams for RBS at IFIN-HH

Various beams for RBS at IFIN-HH OVERWIEW RBS E sc : function of K and de/dx (mass and depth of target nucleus); Measured spectrum is the sum for all contribution of constitutive elements; Specific Analysis Performed COMPOSITION ANALYSIS:

More information

Variable microinspection system. system125

Variable microinspection system. system125 Variable microinspection system system125 Variable micro-inspection system Characteristics Large fields, high NA The variable microinspection system mag.x system125 stands out from conventional LD inspection

More information

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Finite-difference time-domain calculations of the optical transmittance through

More information

RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS

RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS S-94,316 PATENTS-US-A96698 BEAM POSITION MONITOR RANDY W. ALKIRE, GEROLD ROSENBAUM AND GWYNDAF EVANS CONTRACTUAL ORIGIN OF THE INVENTION The United States Government has rights in this invention pursuant

More information

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI)

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Liang-Chia Chen 1#, Chao-Nan Chen 1 and Yi-Wei Chang 1 1. Institute of Automation Technology,

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

Filter & Spectrometer Electron Optics

Filter & Spectrometer Electron Optics Filter & Spectrometer Electron Optics Parameters Affecting Practical Performance Daniel Moonen & Harold A. Brink Did Something Go Wrong? 30 20 10 0 500 600 700 800 900 1000 1100 ev 1 Content The Prism

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Infrared Single Shot Diagnostics for the Longitudinal. Profile of the Electron Bunches at FLASH. Disputation

Infrared Single Shot Diagnostics for the Longitudinal. Profile of the Electron Bunches at FLASH. Disputation Infrared Single Shot Diagnostics for the Longitudinal Profile of the Electron Bunches at FLASH Disputation Hossein Delsim-Hashemi Tuesday 22 July 2008 7/23/2008 2/ 35 Introduction m eb c 2 3 2 γ ω = +

More information

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Journal of Applied Crystallography ISSN 0021-8898 First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Received 7 September

More information

Experience of synchrotron sources and optics modelling at Diamond Light Source

Experience of synchrotron sources and optics modelling at Diamond Light Source Experience of synchrotron sources and optics modelling at Diamond Light Source Lucia Alianelli Outline Microfocus MX beamline optics design (Principal Beamline Scientist G. Evans) Surface and interface

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Modal simulation and frequency response of a high- frequency (75- khz) MEMS. a, Modal frequency of the device was simulated using Coventorware and shows

More information

Microspot x-ray focusing using a short focal-length compound refractive lenses

Microspot x-ray focusing using a short focal-length compound refractive lenses REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 11 NOVEMBER 2004 Microspot x-ray focusing using a short focal-length compound refractive lenses Y. I. Dudchik, a) N. N. Kolchevsky, and F. F. Komarov

More information

DESIGN OF EDXRF EQUIPMENT FOR THE NONDESTRUCTIVE STUDY OF PRINTS

DESIGN OF EDXRF EQUIPMENT FOR THE NONDESTRUCTIVE STUDY OF PRINTS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 70 DESIGN OF EDXRF EQUIPMENT FOR THE NONDESTRUCTIVE STUDY OF PRINTS 1,3 M. Ardid, 1 J.L. Ferrero,

More information

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by X - R A Y M I C R O S C O P Y A N D M I C R O R A D I O G R A P H Y PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, 1956 Edited by V. E. COSSLETT Cavendish Laboratory, University

More information

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: )

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: 2012.10.17) The following instructions

More information

XRF Instrumentation. Introduction to spectrometer

XRF Instrumentation. Introduction to spectrometer XRF Instrumentation Introduction to spectrometer AMPTEK, INC., Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com 1 Instrument Excitation source Sample X-ray tube or radioisotope

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment D.J. Schlossberg, R.J. Fonck, L.M. Peguero, G.R. Winz University of Wisconsin-Madison 55 th Annual Meeting of the APS Division of

More information

ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 539 ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4 Shirley J. Wasson

More information