Data Collection with. VÅNTEC-2000 Detector

Size: px
Start display at page:

Download "Data Collection with. VÅNTEC-2000 Detector"

Transcription

1 Data Collection with IµS Source and VÅNTEC-2000 Detector

2 D8 System Configuration for Reflection Microfocus Source IµS Optics with Housing 2D Detector (VÅNTEC-2000) DHS 900 Heating Stage Sample Stage Bruker D8 GADDS with IµS

3 Comparison: IµS & VÅNTEC-2000 vs. Classical Setup Sample: Corundum standard Detection time: 100s, detector to sample distance: 158 / 154 mm Sealed Tube System IµS XRD 2 hybrid Cu X-ray: 40kV, 40mA with 40mm Göbel mirror collimator: 0.3mm Cu X-ray: 45kV, 0.65mA, collimator: 0.3mm snout total counts: 1,235K total counts: 78K

4 Comparison of Intensities Optics Incoatec BAXS ST BAXS ST Collimator 0.3mm 0.8mm 0.3mm Frame Intensity (CPS) 12.3K 10.2K 0.78K Peak intensity (CPS) Corundum (104) FWHM

5 IµS & VÅNTEC-2000 symmetrical reflection 600 sec collection time sample to detector 15 cm The five fingers of quartz 300 Sample: quartz powder Lin (Counts)

6 Resolution on Lab6 Sample 60 seconds sample-detector distance 29.2 cm FW HM of LaB6 sample fitted with PV function 105, ,000 95,000 90,000 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5, ,

7 Citric Acid, Measured in Transmission with IµS and VÅNTEC IµS focused on the Vantec 2000 detector - 15 sec collection time

8 Citric Acid, Measured in Transmission with Sealed Tube and 0.3mm Collimator - Sample-detector distance 29 cm mm collimator - VÅNTEC-2000 detector sec collection time

9 Citric Acid, Measured in Transmission Lin (Counts) Sample-detector distance 29 cm mm collimator sec collection time Theta - Scale File: citric acid trans 300 col_00 [001].raw - Step: Step time: 120. s (*) - Citric acid - C6H8O7

10 Comparison IµS and Sealed Tube System: Citric Acid, Measured in Transmission Lin (Cps) Theta - Scale File: citric acid trans 300 col_00 [001].raw - Step: Step time: 120. s File: citric_acid3.raw - Step: Step time: 15. s (*) - Citric acid - C6H8O7 - Sample-detector distance 29 cm mm collimator - VÅNTEC-2000 detector - The scan was multiplied by a factor o 56 for comparison - IµS with focusing optics focused on detector. The intensity gain depends on the available sample amount and was at least 100 times higher for this example. - The lower signalbackground is caused by the improvised beam stop.

11 VANTEC-2000 Detector, Sealed Tube: Citric Acid, Measured in Transmission Comparison 0.3 mm and 0.1 mm Collimator Lin (Counts) Sample-detector distance 29 cm - VÅNTEC-2000 detector mm collimator mm collimator Step: Step time: 120. s Step: Step time: 600. s (*) - Citric acid - C6H8O7 2-Theta - Scale

12 VANTEC-2000 Detector: Citric Acid, Measured in Transmission Peak Fit with PVII Function - Sample-detector distance 29 cm - VÅNTEC-2000 detector mm collimator - The FWHM values (blue labels on the peaks) are slightly lower compared to LaB6 because of the transparency effect (the sample was not thin enough).

13 Comparison: Ibuprofen IµS & VÅNTEC-2000 vs. Classical Setup Sealed Tube 0.3 mm collimator Sample-detector distance 29 cm 120 sec collection time IµS XRD 2 focusing optic 2mm X 2mm on sample, and 200 um spot focused on detector Sample-detector distance 15 cm 15 sec collection time

14 Ibuprofen, measured in transmission Comparison IµS - Sealed tube Lin (Counts) Theta - Scale File: ibuprofen trans 300 col va_00 [001].raw - Step: Step time: 120. s File: ibuprofen_3.raw - Step: Step time: 15. s (*) - Ibuprofen - C13H18O2 - Sealed tube - Sample-Detector distance 29cm - 0.3mm collimator - Vantec 2000 detector - IµS with optic focused on detector. Resolution is comparable to a measurement with 300μm collimator at 30cm distance. - Better relative intensities because of improved crystallite statistics

15 Comparison: Gabapentin IµS & VÅNTEC-2000 vs. Classical set-up Sealed Tube Sample-Detector distance 29cm 0.3mm collimator VÅNTEC-2000 detector 120 sec collection time IµS XRD 2 focusing optic 2mmX2mm on sample, and 200um spot on detector 15 sec collection time

16 Gabapentin, Measured in Transmission Lin (Counts) Theta - Scale Step: Step time: 120. s - File: gabapentin 25 cm trans_00 [001].raw Step: Step time: 15. s - File: gabapentin_2.raw - Sample-detector distance 29 cm - 0.3mm collimator - VÅNTEC-2000 detector - IµS with optics focused on detector. Resolution is comparable to a measurement with 300 μm collimator at 30 cm distance.

17 Comparison for Screening Applications Sealed tube system with primary beam monochromator, collimator and VÅNTEC-2000 detector Resolution depends on collimator size and detector distance loss of intensity for good resolution, 2 frames may be necessary Poor crystallite statistics that gets worse for smaller collimators Better resolution possible with 0.1 collimator or below Microsource with optic focused on VÅNTEC-2000 detector Resolution depends on sampledetector distance, one frame has enough coverage for pharmaceutical applications, even if good resolution is required Larger sample area is irradiated Better crystallite statistics and intensities, if enough sample is present Resolution depends on focusing length of optic

18 Sample: Diclofenac Sodium Salt - Sample-detector distance 29 cm - Measurement time: 100 sec mm collimator - VÅNTEC-2000 detector

19 Sample: Diclofenac Sodium Salt 3000 Lin (Counts) Sample-detector distance 29 cm - Measurement time: 100 sec mm collimator - VÅNTEC-2000 detector Theta - Scale DSS [001] - File: DSS_01 [001].raw (Q) - Diclofenac sodium - C14H10Cl2NNaO2 - Y: % - d x by: 1. - WL:

20 Sample: Naproxen - Sample-detector distance 29 cm - Measurement time: 100 sec mm collimator - VÅNTEC-2000 detector

21 Sample: Naproxen Lin (Counts) Sample-detector distance 29 cm - Measurement time: 100 sec mm collimator - VÅNTEC-2000 detector naproxen [001] - File: naproxen_01 [001].raw (C) - Naproxen - C14H14O3 2-Theta - Scale

22 Sample: Ibuprofen Tablet in Transmission - Sample-detector distance 29 cm mm collimator sec measurement time

23 Comparison of Ibuprofen Brands Lin (Counts) Measurement of whole tablets in transmission Comparison of integrated data Promising configuration for QC applications of final products File: ibuprofen_tablet_01 [001].raw File: walgrenn_ibuprofen_tablet_01 [001].raw (*) - Ibuprofen - C13H18O (N) - beta-lactose - C12H22O11 2-Theta - Scale

24 Non-Ambient Scans of PbO Particles Temperature: 50ºC to 600ºC Ramp rate: 30ºC/min Temperature step: 50ºC/frame Data collection: 120 seconds/frame

25 PbO Sample Integrated Oatterns Lin (Counts) Theta - Scale 900 Lin (Counts) Theta - Scale PbO - File: PbO_ raw - Temp.: 50 C PbO - File: PbO_ raw - Temp.: 100 C PbO - File: PbO_ raw - Temp.: 150 C PbO - File: PbO_ raw - Temp.: 200 C PbO - File: PbO_ raw - Temp.: 250 C PbO - File: PbO_ raw - Temp.: 300 C

26 PbO Sample Integrated Pattern Lin (Counts) Lin (Counts) Theta - Scale Theta - Scale PbO - File: PbO_ raw - Temp.: 350 C PbO - File: PbO600_01.raw - Temp.: 600 C PbO - File: PbO_ raw - Temp.: 400 C PbO - File: PbO_ raw - Temp.: 450 C PbO - File: PbO_ raw - Temp.: 500 C PbO - File: PbO_ raw - Temp.: 550 C

27 IμS for SAXS Experiments with D8 System

28 Experimental setup VÅNTEC-2000 detector was positioned such that the source to detector distance equals the focal distance of the optics. E31 focusing optics was used. A 2 mm wide stripe of lead tape was mounted directly at the detector face as a beam stop. The sample was positioned right after the optics exit. The beam size at the optics exit is supposed to be around 1 mm (because 1mm slits were used to eliminate single reflected beam and the white beam) The beam size at the focal position is supposed to be around 0.15mm Samples measured: AgBh (also used for calibration) Glassy Carbon Duck tendon

29 Silver Behenate Sample Measured intensity I(q) 1e+6 1e+5 1e+4 1e+3 1e+2 Raw data Strong reflections are visible from the Silver Behanate The experimental beamstop in the center is clearly visible. An intermediate radius (between min and max) was used for the calibration of the sample to detector distance. Sample to detector distance was cm Measurement time: 30 s 1e q [Å -1 ]

30 Glassy Carbon Intensity [a.u.] GC The 2D scattering image of glassy carbon The graph shows the background corrected profile after integration in a chi direction of 120 deg. The background was measured under the same conditions. Measurement time: 10 sec The profile of GC looks as expected. Benefits: linear intensity range 2 theta range The minimum q value corresponds to a real space dimension of about 230 Å q [Å -1 ]

31 Duck Tendon 2e+5 Raw data 2D Scattering pattern of duck tendon The integration was performed in a narrow section (30 deg in chi) Peaks of the collagen fibers are visible but the air scattering background dominates. Measured intensity I(q) 2e+5 1e+5 5e q [Å -1 ]

32 Summary - IµS is the ideal X-ray source for many spot-focus applications - Parallel or focusing optics for reflection or transmission geometry are available - For measurements, the X-ray flux density is about 5 to 1000 times higher than conventional seal tube with Single Göbel mirror optics depending on the configuration and sample properties - IµS and VÅNTEC-2000 is an ideal configuration for combinatorial screening applications in transmission (more sample volume irradiated, better 2 theta coverage, intensity and resolution) - IµS is also a very promising source for small angle scattering applications.

33 Incoatec GmbH: INnovative COAting TEChnologies Spin-off of the GKSS Research Center Geesthacht, near Hamburg Founded as joint venture with Bruker AXS in 2002 > 12 years of experience in X-ray optics and > 18 years of experience in thin film technology 1/13

34 Products & Services Multilayer mirrors (WDXRF, TXRF, Goebel, Montel) Customized coatings for synchrotron mirrors < 150 cm Incoatec s Microfocus Source IµS TM Upgrades of existing equipment 2/13

35 Incoatec Microfocus Source IµS TM The source Point focus source Spot size < 50 µm High brilliance Low power: 30 W Air-cooled No maintenance Easy tube change 3-year warranty Bright sealed tube for ultimate convenience 3/13

36 Incoatec Microfocus Source IµS TM The optics Latest generation of 2D beam shaping Montel Optics: The Quazar TM Optics 2D focusing or collimating or hybrid Patented easy-to-align housing with optional motors Very stable Optimized optics in Incoatec s new very stable and easy-to-align housing 4/13

37 How to improve the power density of a source? Reduce the focal spot - Increase the ratio of circumference to area of focal spot (1 / r) - Improve sideways heat dissipation Use rotating anodes - Rotate away the hot spot Do both 5/13

38 Power Densities Conventional sealed tube IµS Microstar rotating anode Power (W) 1, ,700 Focal size (mm 2 ) 0.4 x x x 1.5 Power density (W/mm 2 ) 469 5,429 18,000 6/13

39 Why improve the power density? Power density is proportional to brightness (brilliance) Brightness = flux density / divergence High brightness means higher flux density at lower divergence 7/13

40 Rotating anode mains cable IµS mains cable 8/13

41 Why IµS? Low power consumption; no maintenance; air cooled High brightness means higher flux density at lower divergence Compact tube design makes shorter distances between tube focus and optics possible This leads to a more efficient use of the X-rays emitted by a source (large capturing angles) 9/13

42 Capturing Angle Minimum d-spacing = 3 nm Minimum distance to source = 30 mm capturing angle (mrad^2) cm optics 10 cm optics 15 cm optics distance between source and mirror center (mm) 10/13

43 IµS models - Optics with 5 x 5 mrad 2 divergence for high flux density - Single crystal diffraction - Transmission powder diffraction - Optics with 1 x 1 mrad 2 divergence and moderate flux density - Small angle scattering - Optics with 1 x 5 mrad 2 divergence ( hybrid ) - Reflection powder diffraction - (high resolution) microdiffraction 11/13 Brightness = flux density / divergence

44 Single Crystal Diffraction with IµS TM Chemical Crystallography (Mo-K α, optic 5 mrad) Flux density: > 4x of 2 kw ST system* and > 1.2x of 4 kw RAG system* FWHM = 0.12 focus fold (integrated) intensity gain over 2 kw ST system* Excellent for small crystals Biological Crystallography (Cu-K α, optic 5 mrad) Flux density: > 1.5x of 4 kw RAG system** FWHM = 0.25 focus S-SAD Phasing, Protein screening Small molecule crystallography: ~ 10 2 (integrated) intensity gain over 1.5 kw ST system* Glucose 80 s/ : 1.50 Å 20 s/ : 1.41 Å 12/13 * plus graphite monochromator ** plus 1 st gen. multilayer mirrors

45 More XRD 2 Fabline and µ-hrxrd SAXS; Nanostar 13/13

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER

MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER 29 MICROFOCUSING X-RAY EQUIPMENT FOR THE LAB DIFFRACTOMETER Jörg Wiesmann, 1 Jürgen Graf, 1 Christian Hoffmann, 1 Carsten Michaelsen, 1 Alexandra Oehr, 1 Uwe Preckwinkel, 2 Ning Yang, 2 Holger Cordes,

More information

State-of-the-art thin film X-ray optics for synchrotrons and FEL sources. Frank Hertlein Incoatec GmbH Geesthacht, Germany

State-of-the-art thin film X-ray optics for synchrotrons and FEL sources. Frank Hertlein Incoatec GmbH Geesthacht, Germany State-of-the-art thin film X-ray optics for synchrotrons and FEL sources Frank Hertlein Incoatec GmbH Geesthacht, Germany Incoatec: Innovative Coating Technologies Incoatec is founded with Bruker AXS in

More information

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION

X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 332 ABSTRACT X-RAY OPTICS FOR TWO-DIMENSIONAL DIFFRACTION Bob B. He and Uwe Preckwinkel Bruker

More information

Lesson 2 Diffractometers

Lesson 2 Diffractometers Lesson 2 Diffractometers Nicola Döbelin RMS Foundation, Bettlach, Switzerland January 14 16, 2015, Bern, Switzerland Repetition: Generation of X-rays / Diffraction SEM: BSE detector, BSED / SAED detector

More information

Macromolecular SAXS. Size Shape Flexibility Assemblies Solution State. Solution scattering from biological molecules

Macromolecular SAXS. Size Shape Flexibility Assemblies Solution State. Solution scattering from biological molecules Macromolecular SAXS Size Shape Flexibility Assemblies Solution State Solution scattering from biological molecules Rigaku s BioSAXS-2000 System for Biological Solutio SAXS cameras There are two basic designs

More information

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD

LYNXEYE XE-T. < 380 ev. Innovation with Integrity. Energy. Resolution. High-Resolution Position Sensitive Detector with Superb Energy Resolution XRD Energy < 380 ev Resolution High-Resolution Position Sensitive Detector with Superb Energy Resolution The is the next generation "Compound Silicon Strip" detector with superb energy resolution for ultrafast

More information

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD

LYNXEYE XE. Innovation with Integrity. High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction XRD High-Resolution Energy-Dispersive Detector for 0D, 1D, and 2D Diffraction The is the first energy dispersive 0D, 1D, and 2D detector operating at room temperature for ultra fast X-ray diffraction measurements.

More information

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror

Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Applications of New, High Intensity X-Ray Optics - Normal and thin film diffraction using a parabolic, multilayer mirror Stephen B. Robie scintag, Inc. 10040 Bubb Road Cupertino, CA 95014 Abstract Corundum

More information

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70%

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70% PARALLEL BEAM X-RAY OPTICS y Mirror length L Θ = f(x) b p/2 λ = 2d eff (x) sin Θ(x) eff x m Parallel beam width b=f(p,λ,l,,l,x m ) x Fabrication of high precision 6 mm parallel beam optics both on prefigured

More information

Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector

Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector Bruker D8 HRXRD Collecting X-Ray Reflectivity Data using the PathFinder Detector Abridged SOP for Manually Aligning a Sample and Collecting Data using XRD Commander Scott A Speakman, Ph.D. MIT Center for

More information

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues

Instructions XRD. 1 Choose your setup , Sami Suihkonen. General issues Instructions XRD 28.10.2016, Sami Suihkonen General issues Be very gentle when closing the doors Always use Cu attenuator when count rate exceeds 500 000 c/s Do not over tighten optical modules or attach

More information

Structural Biology. Single crystal X-ray diffraction and SAXS. Systems designed for structural biology

Structural Biology. Single crystal X-ray diffraction and SAXS. Systems designed for structural biology Structural Biology Single crystal X-ray diffraction and SAXS Systems designed for structural biology Rigaku Oxford Diffraction THE POWER OF SYNERGY Combining the single crystal groups from Rigaku and Oxford

More information

MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS

MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS THE RIGAKU JOURNAL VOL. 19 / NO.1 / 2002 MICROFOCUSING SOURCE AND MULTILAYER OPTICS BASED X- RAY DIFFRACTION SYSTEMS BORIS VERMAN, LICAI JIANG AND BONGLEA KIM Osmic, Inc., 1900 Taylor Rd., Auburn Hills,

More information

Development of X-ray Tool For Critical- Dimension Metrology

Development of X-ray Tool For Critical- Dimension Metrology Development of X-ray Tool For Critical- Dimension Metrology Boris Yokhin, Alexander Krokhmal, Alexander Dikopoltsev, David Berman, Isaac Mazor Jordan Valley Semiconductors Ltd., Ramat Gabriel Ind. Zone,

More information

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: )

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: 2012.10.17) The following instructions

More information

RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS

RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 166 RIETVELD REFINEMENT OF POWDER DATA FROM MULTILAYER OPTICS ABSTRACT Scott T. Misture NYS College

More information

Basic P-XRD instructions for Operating the Instrument

Basic P-XRD instructions for Operating the Instrument Basic P-XRD instructions for Operating the Instrument Instrument Parts Incident Beam Optics (left arm) 1) X-ray source (Cu) i. Rest settings: 45 kv, 20mA ii. Run settings: 45 kv, 40mA 2) Monochromator

More information

Pixel Array Detectors: Counting and Integrating

Pixel Array Detectors: Counting and Integrating Pixel Array Detectors: Counting and Integrating Roger Durst, Bruker AXS October 13, 2016 1 The quest for a perfect detector There is, of course, no perfect detector All available detector technologies

More information

LECTURE 10. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 10. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 10 Dr. Teresa D. Golden University of North Texas Department of Chemistry Components for the source include: -Line voltage supply -high-voltage generator -x-ray tube X-ray source requires -high

More information

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays.

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays. XRD X-Ray Diffractometer Innovative, Integrated, Multifunctional By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4

Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4 Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4 S.V. Roth, R. Döhrmann, M. Dommach, I. Kröger, T. Schubert, R. Gehrke Definition of the upgrade The wiggler beamline BW4 is dedicated to

More information

Compact High Intensity Light Source

Compact High Intensity Light Source Compact High Intensity Light Source General When a broadband light source in the ultraviolet-visible-near infrared portion of the spectrum is required, an arc lamp has no peer. The intensity of an arc

More information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information

R-AXIS RAPID. X-ray Single Crystal Structure Analysis System. Product Information The Rigaku Journal Vol. 15/ number 2/ 1998 Product Information X-ray Single Crystal Structure Analysis System R-AXIS RAPID 1. Introduction X-ray single crystal structure analysis is known as the easiest

More information

Bruker D8 HRXRD. Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector

Bruker D8 HRXRD. Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector Bruker D8 HRXRD Collecting Reciprocal Space Maps using the LynxEye Position Sensitive Detector Scott A Speakman, Ph.D. MIT Center for Materials Science and Engineering For help in the X-ray Lab, contact

More information

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta

Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta Rigaku Innovative Technologies Europe (RITE) Presented by: Dr.Peter Oberta 1 Introducing Rigaku Since its inception in Japan in 1951, Rigaku has been at the forefront of analytical and industrial instrumentation

More information

Experience of synchrotron sources and optics modelling at Diamond Light Source

Experience of synchrotron sources and optics modelling at Diamond Light Source Experience of synchrotron sources and optics modelling at Diamond Light Source Lucia Alianelli Outline Microfocus MX beamline optics design (Principal Beamline Scientist G. Evans) Surface and interface

More information

Powder diffractometer operation instructions D8 Advance with a Cu Kα sealed tube and Lynxeye MARCH 30, 2016

Powder diffractometer operation instructions D8 Advance with a Cu Kα sealed tube and Lynxeye MARCH 30, 2016 Powder diffractometer operation instructions D8 Advance with a Cu Kα sealed tube and Lynxeye MARCH 30, 2016 1 SAFETY. For radiation safety materials refer to http://www.ehs.wisc.edu/raddevices.htm. There

More information

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator

research papers First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Journal of Applied Crystallography ISSN 0021-8898 First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator Received 7 September

More information

Small Angle Scattering Platform for Structural Biology

Small Angle Scattering Platform for Structural Biology Small Angle Scattering Platform for Structural Biology Petra Pernot, ESRF OUTLINE: SAXS/SANS in Grenoble: new SAS platform of CISB Conversion of ID14-EH3 from MX to bio-saxs MAXINF2 Integration Workshop

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

White Paper: Modifying Laser Beams No Way Around It, So Here s How

White Paper: Modifying Laser Beams No Way Around It, So Here s How White Paper: Modifying Laser Beams No Way Around It, So Here s How By John McCauley, Product Specialist, Ophir Photonics There are many applications for lasers in the world today with even more on the

More information

Pre-Lab 10. Which plan or plans would work? Explain. Which plan is most efficient in regard to light power with the correct polarization? Explain.

Pre-Lab 10. Which plan or plans would work? Explain. Which plan is most efficient in regard to light power with the correct polarization? Explain. Pre-Lab 10 1. A laser beam is vertically, linearly polarized. For a particular application horizontal, linear polarization is needed. Two different students come up with different plans as to how to accomplish

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments

Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 17 Low Cost Rolled X-ray Prism Lenses to Increase Photon Flux Density in Diffractometry Experiments H. Vogt a, A. Last a, J.

More information

Optical Coherence: Recreation of the Experiment of Thompson and Wolf

Optical Coherence: Recreation of the Experiment of Thompson and Wolf Optical Coherence: Recreation of the Experiment of Thompson and Wolf David Collins Senior project Department of Physics, California Polytechnic State University San Luis Obispo June 2010 Abstract The purpose

More information

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 34 SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES S. Cornaby 1, A. Reyes-Mena 1, P. W. Moody 1,

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

First test experiments with FMB- Oxford direct drive DCM at the Sirius beamline of Synchrotron SOLEIL

First test experiments with FMB- Oxford direct drive DCM at the Sirius beamline of Synchrotron SOLEIL First test experiments with FMB- Oxford direct drive DCM at the Sirius beamline of Synchrotron SOLEIL Ciatto G., Moreno T., Aubert N., Feret P., Fontaine P. Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin,

More information

Polycapillary optic source combinations for protein crystallography

Polycapillary optic source combinations for protein crystallography Journal of Applied Crystallography ISSN 0021-8898 Polycapillary optic source combinations for protein crystallography F. A. Hofmann, W. M. Gibson, C. A. MacDonald, D. A. Carter, J. X. Ho and J. R. Ruble

More information

Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection)

Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection) Standard Instructions for the Bruker D8 Advance Diffractometer, EPFL Valais Bragg Brentano and GID (Reflection) For any questions regarding the X-ray facility, contact: Pascal Schouwink pascal.schouwink@epfl.ch

More information

Historical. McPherson 15 Mount

Historical. McPherson 15 Mount McPherson 15 Mount Normal incidence designs include the McPherson 15 (classical 1.0 meter focal length) and modern NIM units. The latter features smaller included angles, longer focal lengths (e.g. 3,

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Monochromatic X-ray sources based on Table-top electron accelerators and X-ray tubes. A.P. Potylitsyn TPU, Tomsk, Russia

Monochromatic X-ray sources based on Table-top electron accelerators and X-ray tubes. A.P. Potylitsyn TPU, Tomsk, Russia Monochromatic X-ray sources based on Table-top electron accelerators and X-ray tubes A.P. Potylitsyn TPU, Tomsk, Russia The main radiation mechanisms in amorphous targets: Bremsstrahlung Transition radiation

More information

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding AKL`12 9th May 2012 Dr. Daniel Vogler Page 1 Motivation: Quality and flexibility diffractive spot shaping

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Coherent Laser Measurement and Control Beam Diagnostics

Coherent Laser Measurement and Control Beam Diagnostics Coherent Laser Measurement and Control M 2 Propagation Analyzer Measurement and display of CW laser divergence, M 2 (or k) and astigmatism sizes 0.2 mm to 25 mm Wavelengths from 220 nm to 15 µm Determination

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits...

Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits... Introduction... 3 Slits for AIR Operation... 4 Slits in Vacuum Vessels... 5 Slits for High Vacuum Operation... 6 Custom Slits... 7 Steel Slits... 10 Non-magnetic Options for Slits... 12 Slits with Passive

More information

Howie's Laser Collimator Instructions:

Howie's Laser Collimator Instructions: Howie's Laser Collimator Instructions: WARNING: AVOID DIRECT OR MIRROR REFLECTED EYE EXPOSURE TO LASER BEAM The laser collimator is a tool that enables precise adjustment of the alignment of telescope

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE

MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE 228 MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE D. CARUSO, M. DINSMORE TWX LLC, CONCORD, MA 01742 S. CORNABY MOXTEK, OREM, UT 84057 ABSTRACT Miniature x-ray sources present

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

QE65000 Spectrometer. Scientific-Grade Spectroscopy in a Small Footprint. now with. Spectrometers

QE65000 Spectrometer. Scientific-Grade Spectroscopy in a Small Footprint. now with. Spectrometers QE65000 Spectrometer Scientific-Grade Spectroscopy in a Small Footprint QE65000 The QE65000 Spectrometer is the most sensitive spectrometer we ve developed. Its Hamamatsu FFT-CCD detector provides 90%

More information

Beam-Restricting Devices

Beam-Restricting Devices Beam-Restricting Devices Three factors contribute to an increase in scatter radiation: Increased kvp Increased Field Size Increased Patient or Body Part Size. X-ray Interactions a some interact with the

More information

Beam Analysis BeamWatch Non-contact, Focus Spot Size and Position monitor for high power YAG, Diode and Fiber lasers. Disruptive Technology

Beam Analysis BeamWatch Non-contact, Focus Spot Size and Position monitor for high power YAG, Diode and Fiber lasers. Disruptive Technology 3.8 BeamWatch Non-contact, Focus Spot Size and Position monitor for high power YAG, Diode and Fiber lasers Instantly measure focus spot size Dynamically measure focal plane location during start-up From

More information

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars Andreas Bayer*, Andreas Unger, Bernd Köhler, Matthias Küster, Sascha Dürsch, Heiko Kissel, David

More information

PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: )

PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: ) University of Minnesota College of Science and Engineering Characterization Facility PANalytical X pert Pro High Resolution Specular and Rocking Curve Scans User Manual (Version: 2012.10.17) The following

More information

NL300 series. Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers FEATURES APPLICATIONS NANOSECOND LASERS

NL300 series. Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers FEATURES APPLICATIONS NANOSECOND LASERS NL200 NL210 NL230 NL300 NL740 electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 6 ns duration. Pulse repetition rate can be selected in range of 5 20 Hz. NL30 HT models

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Spectroscopy Lab 2. Reading Your text books. Look under spectra, spectrometer, diffraction.

Spectroscopy Lab 2. Reading Your text books. Look under spectra, spectrometer, diffraction. 1 Spectroscopy Lab 2 Reading Your text books. Look under spectra, spectrometer, diffraction. Consult Sargent Welch Spectrum Charts on wall of lab. Note that only the most prominent wavelengths are displayed

More information

Performance of the SASE3 monochromator equipped with a provisional short grating. Variable line spacing grating specifications

Performance of the SASE3 monochromator equipped with a provisional short grating. Variable line spacing grating specifications TECHNICAL REPORT Performance of the SASE monochromator equipped with a provisional short grating. Variable line spacing grating specifications N. Gerasimova for the X-Ray Optics and Beam Transport group

More information

TOWARDS FAST RECIPROCAL SPACE MAPPING

TOWARDS FAST RECIPROCAL SPACE MAPPING Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 165 ABSTRACT TOWARDS FAST RECIPROCAL SPACE MAPPING J.F. Woitok and A. Kharchenko PANalytical B.V.,

More information

ADVANCED OPTICS LAB -ECEN Basic Skills Lab

ADVANCED OPTICS LAB -ECEN Basic Skills Lab ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 Revised KW 1/15/06, 1/8/10 Revised CC and RZ 01/17/14 The goal of this lab is to provide you with practice

More information

Transmission SAXS/WAXS using the Pilatus3R 300K detector

Transmission SAXS/WAXS using the Pilatus3R 300K detector Transmission SAXS/WAXS using the Pilatus3R 300K detector on the SAXSLAB instrument By Charles M. Settens, Ph.D. Center for Materials Science and Engineering at MIT For assistance in the CMSE X-ray facility

More information

Table of Content. Fiber-Coupled LED s Light-Guide-Coupled LED s LED Collimator Sources Low-cost LED Spot Lights...

Table of Content. Fiber-Coupled LED s Light-Guide-Coupled LED s LED Collimator Sources Low-cost LED Spot Lights... LIGHT SOURCES Table of Content Fiber-Coupled s... 40 -Guide-Coupled s... 41 Collimator... 42 Low-cost Spot s... 43 Precision Spot s... 45 Spectrum Synthesizing ( Cubic S )... 46 Spectrometers 39 sources

More information

CONFIGURING. Your Spectroscopy System For PEAK PERFORMANCE. A guide to selecting the best Spectrometers, Sources, and Detectors for your application

CONFIGURING. Your Spectroscopy System For PEAK PERFORMANCE. A guide to selecting the best Spectrometers, Sources, and Detectors for your application CONFIGURING Your Spectroscopy System For PEAK PERFORMANCE A guide to selecting the best Spectrometers, s, and s for your application Spectral Measurement System Spectral Measurement System Spectrograph

More information

Who is GBC Scientific Equipment?

Who is GBC Scientific Equipment? Who is GBC Scientific Equipment? GBC Scientific Equipment Pty Ltd commenced operations in 1978. GBC designs, manufactures and markets a range of scientific instruments comprising Atomic Absorption spectrometers

More information

Compact EUV Source for Metrology and Inspection

Compact EUV Source for Metrology and Inspection Compact EUV Source for Metrology and Inspection Klaus Bergmann, Jochen Vieker, Alexander von Wezyk 2015 EUV Source Workshop, 10.11.2015, Dublin Overview Introduction Xenon based EUV Source FS5420 Consideration

More information

A Possible Design of Large Angle Beamstrahlung Detector for CESR

A Possible Design of Large Angle Beamstrahlung Detector for CESR A Possible Design of Large Angle Beamstrahlung Detector for CESR Gang Sun Wayne State University, Detroit MI 482 June 4, 1998 1 Introduction Beamstrahlung radiation occurs when high energy electron and

More information

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 346 DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY

More information

Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for. Lithium-ion Batteries

Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for. Lithium-ion Batteries Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for Lithium-ion Batteries Alireza Kohandehghan a,b, Peter Kalisvaart a,b,*, Martin Kupsta b, Beniamin Zahiri a,b, Babak Shalchi

More information

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl BACKGROUND Multipass optical systems (MOS) are broadly used in absorption, Raman, fluorescence,

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer :

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer components Excitation sources Deuterium Lamp Tungsten

More information

General Measurement (BB) Part

General Measurement (BB) Part General Measurement (BB) Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Setting measurement origin and oscillation/spin conditions... 7 General Measurement (BB)

More information

Veraviewepocs 2D High Speed Panoramic X-Ray Crystal Clear Images with Reduced Radiation

Veraviewepocs 2D High Speed Panoramic X-Ray Crystal Clear Images with Reduced Radiation Diagnostic and Imaging Equipment Treatment Units Handpieces and Instruments Endodontic Systems Laser Equipment Laboratory Devices Veraviewepocs 2D High Speed Panoramic X-Ray Crystal Clear Images with Reduced

More information

membrane sample EUV characterization

membrane sample EUV characterization membrane sample EUV characterization Christian Laubis, PTB Outline PTB's synchrotron radiation lab Scatter from structures Scatter from random rough surfaces Measurement geometries SAXS Lifetime testing

More information

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Rotation By: Michael Case and Roy Grayzel, Acton Research Corporation Introduction The majority of modern spectrographs and scanning

More information

The designs for a high resolution Czerny-Turner spectrometer are presented. The results of optical

The designs for a high resolution Czerny-Turner spectrometer are presented. The results of optical ARTICLE High Resolution Multi-grating Spectrometer Controlled by an Arduino Karl Haebler, Anson Lau, Jackson Qiu, Michal Bajcsy University of Waterloo, Waterloo, Ontario, Canada Abstract The designs for

More information

Nmark AGV-HPO. High Accuracy, Open Frame, Thermally Stable Galvo Scanner. Highest accuracy scanner available attains singledigit,

Nmark AGV-HPO. High Accuracy, Open Frame, Thermally Stable Galvo Scanner. Highest accuracy scanner available attains singledigit, Nmark AGV-HPO Galvanometer Nmark AGV-HPO High Accuracy, Open Frame, Thermally Stable Galvo Scanner Highest accuracy scanner available attains singledigit, micron-level accuracy over the field of view Optical

More information

Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627

Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627 Single Photon Interference Katelynn Sharma and Garrett West University of Rochester, Institute of Optics, 275 Hutchison Rd. Rochester, NY 14627 Abstract: In studying the Mach-Zender interferometer and

More information

Slit. Spectral Dispersion

Slit. Spectral Dispersion Testing Method of Off-axis Parabolic Cylinder Mirror for FIMS K. S. Ryu a,j.edelstein b, J. B. Song c, Y. W. Lee c, J. S. Chae d, K. I. Seon e, I. S. Yuk e,e.korpela b, J. H. Seon a,u.w. Nam e, W. Han

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

Dinnebier & Billinge, TA+PXRD course - Part 1, The Equipment

Dinnebier & Billinge, TA+PXRD course - Part 1, The Equipment Powder X-ray Diffraction (PXRD) in short MATR362 - Workshop on X-ray diffraction and thermoanalytical methods (5 cr) Prof. Markku Leskelä / Mikko Heikkilä Dinnebier & Billinge, 1 2 Aim of these lectures

More information

DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY. H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli

DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY. H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli Copyright (C) JCPDS International Centre for Diffraction Data 1999 379 DOUBLE MULTILAYER MONOCHROMATOR WITH FIXED EXIT GEOMETRY H.Gatterbauer, P.Wobrauschek, F.Hegediis, P.Biini, C.Streli Atominsitut der

More information

SPECIFICATION. Kilovoltage X-ray calibration system for protection and diagnostic level dosimetry. Prepared by

SPECIFICATION. Kilovoltage X-ray calibration system for protection and diagnostic level dosimetry. Prepared by SPECIFICATION Kilovoltage X-ray Prepared by Igor Gomola, Technical Officer, Project ECU6023, Date 2015-Oct-06 Revision Date Status Comments 0.1 2015-Oct-06 Draft Igor Gomola Page 1 of 12 1. Scope This

More information

Video-based X-Ray Beam Position Monitoring at CHESS Peter Revesz, Cornell University, CHESS Ithaca, NY 14850

Video-based X-Ray Beam Position Monitoring at CHESS Peter Revesz, Cornell University, CHESS Ithaca, NY 14850 Video-based X-Ray Beam Position Monitoring at CHESS Peter Revesz, Cornell University, CHESS Ithaca, NY 14850 Basic Types of XBPMs: Intercepting barely intercepting non-intercepting Most fluorescent photo-electron

More information

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response (response time) 5) Stability 6) Cost 7) convenience Photoelectric

More information

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax:

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax: Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore 658079 Tel: +65 63167112 Fax: +65 63167113 High-power Nd:YAG Self-floating Laser Cutting Head We supply the laser

More information

Light Microscopy. Upon completion of this lecture, the student should be able to:

Light Microscopy. Upon completion of this lecture, the student should be able to: Light Light microscopy is based on the interaction of light and tissue components and can be used to study tissue features. Upon completion of this lecture, the student should be able to: 1- Explain the

More information

Guide to SPEX Optical Spectrometer

Guide to SPEX Optical Spectrometer Guide to SPEX Optical Spectrometer GENERAL DESCRIPTION A spectrometer is a device for analyzing an input light beam into its constituent wavelengths. The SPEX model 1704 spectrometer covers a range from

More information

metcon meteorologieconsultgmbh, Instruments for Atmospheric Research W1aa_Feb_2017_1.doc 1 -

metcon meteorologieconsultgmbh, Instruments for Atmospheric Research W1aa_Feb_2017_1.doc 1 - metcon meteorologieconsultgmbh, Instruments for Atmospheric Research W1aa_Feb_2017_1.doc 1 - ACTINIC FLUX SPECTRAL RADIOMETERS Ultra-fast CCD-Detector Spectrometer, UVB enhanced Cooled CCD, 512 pixel *

More information

eye in hell CD 3002 Sensor Manual

eye in hell CD 3002 Sensor Manual Your eye in hell CD 3002 Sensor Manual Siemens Laser Analytics AB Oct 2001 CD 3002 Sensor manual Document number: CID 3002-1102 Rev. 2A LDS 3000 Sensor manual Content Content 1. CD 3002 1 1.1 General 1

More information