Compensated Polarized Light Microscopy Using Cellophane Adhesive Tape

Size: px
Start display at page:

Download "Compensated Polarized Light Microscopy Using Cellophane Adhesive Tape"

Transcription

1 Compensated Polarized Light Microscopy Using Cellophane Adhesive Tape Terrence J. Fagan and Martin D. Lidsky Compensated polarized light microscopy is a useful diagnostic tool whose basis is poorly understood by the clinician. The elementary physics of compensated polarized light are reviewed. A simple method of converting the ordinary light microscope into a compensated polarized light microscope, using cellophane adhesive tape and polarizing sunglass, is described. In 1961 McCarty and Hollander described the use of polarized light microscopy in the identification of monosodium urate crystals in gouty synovial fluid (1). The use of the polarizing microscope led to the discovery of a second type of crystal, calcium pyrophosphate dihydrate (23) in joint fluids from patients with pseudogout. The negatively birefringent urate crystal was shown to be readily distinguished from the positively birefringent calcium pyrophosphate crystal with the use of compensated polarized light (4). Thus the polarizing microscope became established as a vital diagnostic tool in rheumatology. The more widespread use of compensated polarizing microscopy has been hampered by lack of understanding of the physics involved and the notion that complex equipment is required. This paper reviews From the Section of Rheumatology, Department of Medicine, Veterans Administration Hospital, and Baylor College of Medicine, Houston, Texas. TERRENCE J FAGAN, MD: Department of Medicine, Veterans Administration Hospital, Houston, Texas: MARTIN D LIDSKY: Baylor College of Medicine, Houston, Texas. Reprint requests should be addressed to: Dr Martin D Lidsky, 2002 Holcombe Boulevard, Houston, Texas Submitted for publication July 18, 1972: accepted December 4, the elementary physics of compensated polarized light and describes the use of easily available, inexpensive materials which can convert the ordinary light microscope into a compensated polarizing microscope of sufficient quality to provide accurate recognition of joint fluid crystals and other substances encountered in medicine. A similar conversion was developed independently and described in a letter to an editor (5). THE PHYSICAL BASIS OF POLARIZED LIGHT (6) Ordinary light is a random collection of electromagnetic waves. Each wave is characterized by an electric field vector which lies in a plane perpendicular to the propagation of the wave (Figure 1). The magnitude of the electric vector varies with time and oscillates from positive to negative with a frequency which is constant regardless of the medium through which the wave travels. The velocity (V) of propagation of the wave is equal to the frequency multiplied by the wavelength (A). Since the frequency of any given wave is constant, any change in the velocity must be accompanied by a change in wavelength. Velocity of light is also related to the 256 Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974)

2 CELLOPHANE AND POLARIZED LIGHT Fig 1. Diagrammatic representation of plane polarized light wave. index of refraction of the medium (n) through which light travels and is ex- C pressed as V =-when C is the velocity n of light in a vacuum. A polarizing lens has a fixed axis of transmission. Ideally, only waves with electric vectors parallel to the axis of transmission will pass through the polarizing lens unattenuated. Waves with electric vectors perpendicular to the axis will not be transmitted. When light with an electric vector between these two extremes is incident on a polarizing lens, only the component of the vector parallel to the axis of transmission will pass through the lens (Figure 2). Light passing through the polarizing lens is termed plane polarized. When two polarizing lens are crossed so that their axes of transmission are perpendicular to each other, light which is plane polarized by the first lens (polarizer) will not be transmitted by the second lens (analyzer) and hence, the background will appear dark. BIREFRINGENCE (6) The speed of light in ordinary materials is independent of electric vectors. In birefringent materials, the velocity of light is related to the direction of electric vectors and optic axes. Birefringent materials are characterized by having one or more axes of preferential direction called optic axes. This discussion deals only with uniaxia2 birefringent material. Consider a flat plate of such material cut parallel to the optic axis (Figure 3). Light waves traveling parallel to the optic axis possess the same velocity regardless of the direction of electric vectors. A wave striking the plate (and optic axis) perpendicularly and having an electric vector at 45O to the optic axis, is split into two separate waves traveling in the same direction with different velocities and having electric vectors which are mutually perpendicular. The wave whose electric vector is parallel to the optic axis is termed the extraordinary (e) wave and the wave travels C through the plate with velocity of V, =- ne The wave whose electric vector is perpendicular to the optic axis is termed the ordinary (0) wave and has a velocity of v, =-. Birefringence (B) is a quantity n0 expressed by n, - no. For positively birefringent material the difference is positive. If n, < no the material is negatively bire- Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974) 257

3 FAGAN AND LIDSKY Axis of Transmission light Wave Fig 2. Production of plane polarized light wave. fringent. The optic axis of positively birefringent material is often called the slow axis because V, < V,. COMBINED USE OF POLARIZED LIGHT AND BIREFRINGENCE The extraordinary and ordinary waves enter the birefringent material in phase with each other. However, because they have identical frequencies and different velocities, the extraordinary and ordinary waves leave the material with a phase difference. By considering the time necessary for each wave to pass through the birefringent plate, it can be shown that the phase difference (6) (Q) is expressed by the relation, cp = 560' Bt where B = birefring- x ence and t = thickness of the plate. In gen- eral, the emerging extraordinary and ordinary waves recombine when they are out of phase, thus resulting in an elliptically polarized wave whose electric vector is no longer parallel to a single plane. The human eye detects frequency (color) and intensity (brightness) but cannot detect polarization. Since frequency and intensity are not altered by passage through birefringent material, the eye perceives no change. The result differs when the birefringent material is interposed between two crossed polarizing lenses. Since the wave emerging from the birefringent material is not plane polarized, the wave cannot be totally blocked by the second polarizing lens. In this situation, the intensity of transmitted light is altered depending on the phase difference. The intensity of light transmitted through the second polarizing lens 258 Arthritis and Rheumatism, Vol. 17, No. 3 (May-June 1974)

4 CELLOPHANE AND POLARIZED LIGHT of Fig 3. Behavior of plane polarized light wave perpendicularly striking a uniaxial birefringent plate. The electric vector of the incident wave is at 45" to the optic axis. E represents the electric vector of the extraordinary wave. 0 is the electric vector of the ordinary wave. Thickness of plate is represented by t. (analyzer) is expressed as the percent transmission (% T) (7), yo T = sin? - = sin' 180' Bt 2 h For a plate of birefringent material with a Bt product of 565 nm, the percent transmission of the different frequencies of the visible spectrum ( nm) is shown in Figure 4. If white plane polarized light enters a birefringent plate (Bt = 565 nm) and then passes through a second crossed polarizing lens, the emerging light will appear redviolet because of the attenuation of the frequencies around 565 nm. Such a birefringent plate is called a first-order red plate. When the Bt product is different from 565 nm, a different transmission curve is obtained and a different emerging color is observed (Figure 5). COMPENSATED POLARIZED LIGHT Compensated polarized light microscopy involves the use of two polarizing lenses and a birefringent plate. One polarizing lens (polarizer) is placed between the source light and specimen. A second polarizing lens (analyzer) is placed between the specimen and the examiner's eye. When the axes of transmission of the two polarizers are perpendicular to each other, the background appears dark. Any birefringent specimen placed in the microscopic field will appear bright against the dark back- Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974) 259

5 FAGAN AND LIDSKY ( Vief he Green Ydbw 0r-e Red [m] Fig 4. Relation between intensity of light (percent transmission) and wavelength when a first-order red birefringent plate (Bt product = 565 nrn) is interposed between two crossed polarizing lenses. ground. The addition of a positively birefringent plate with a Bt product of 565 nm (first-order red plate) in a slot below the analyzer in the barrel of the microscope produces a change in the color of the background from black to first-order red. The position of the slot insures the optic axis of the birefringent plate to be at 45O to the axis of both polarizing lenses. IDENTIFICATION OF CRYSTALS IN SYNOVIAL FLUID WITH COMPENSATED POLARIZED LIGHT It is generally assumed that the optic axes of crystals are parallel to the long axes. Hence, if a crystal lies parallel to the optic axis of the first-order red plate (the direction of the optic axis is indicated on the plate) and appears blue on the red background, the crystal is positively birefringent (4). The Bt product of such a crystal is added to that of the first-order red compensating plate to give a color consistent B t PRODUCT (nrn] I I ST ORDER I 2 ND ORDER Fig 5. Emerging colors produced by birefringent plates with different Bt products when placed between two crossed polarizing lenses. with a larger Bt product. It should be noted that there is no blue color to the left of the first-order red color in Figure 5. If the positively birefringent crystal lies in a direction in which its optic axis is perpendicular to the optic axis of the red plate, the crystal appears yellow because, in essence, its Bt product is subtracted from that of the plate. It is important to note (Figure 5) that the two colors (blue and yellow) are symmetrically located about the first-order red background. Thus the behavior of the positively birefringent calcium pyrophosphate crystal is described. A negatively birefringent crystal aligned parallel to the axis of the first-order red plate behaves in a manner opposite to that of the positively birefringent crystal; hence the negatively birefringent crystal is yellow (4). At right angle to the optic axis of the plate the negatively birefringent crystal ap pears blue. Thus the behavior of the nega- 280 Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974)

6 CELLOPHANE AND POLARIZED LIGHT tively birefringent sodium urate crystal is described. It should be evident from Figure 5 that if the compensating plate is first-order orange, the crystals might be yellow and violet; if the plate is blue, the crystals might be red and green. CELLOPHANE FIRST-ORDER RED PLATE It is not important whether the birefringent compensator is placed inside the barrel or directly over the polarizing lens (polarizer) covering the light source. However the compensator must reside somewhere between the two polarizing lenses with its optic axis at 45" to both polarizing lenses. Most compensators are made of quartz, gypsum, or mica. Any birefringent substance with a fixed thickness and Bt product around 565 nm can be used. It is generally known that cellophane is positively birefringent. One thickness of ordinary cellophane adhesive tape has a Bt product of about 250 to 350 nm. A compensating plate is made by placing two thicknesses of tape, one piece directly on top of the other, on a glass microscope slide. 'The optic axis of this compensator is parallel to the streak lines in the cellophane. Some experimentation with different tapes may be necessary to obtain the red background color, but as a rule it takes two thicknesses. The cellophane compensator is placed directly over the polarizer covering the microscope's source light. An alternative method of making a compensator is to tape two thicknesses of cellophane adhesive tape onto the plarizer covering the source light. The optic axis (streak lines) is positioned at 45" to the axis of transmission of the polarizer. With the other polarizing lens in the barrel of the microscope, one can view the back- Fig 6. Appearance of a cholesterol-containing fat droplet under compensated polarized light. ground in black and white when the taped side of the polarizer faces the microscope light (the compensator is not between the polarizing lenses) and in color by simply turning over the polarizer so that the tape lies between the two polarizing lenses. CLINICAL USE The polarizing lenses of sunglasses have a transmission axis which is vertical as one wears them since most reflected glare is horizontally polarized. These lenses are inexpensive and can be used effectively by cutting them to fit into the nosepiece or barrel of most ordinary light microscopes. Birefringent substances other than synovial fluid crystals are encountered in clinical work, for example collagen and amyloid fibrils in tissue, cystine crystals in urine, cholesterol crystals in body fluids and cholesterol-containing fat droplets in urine. The characteristic maltese crosses of the latter are bicolored yellow and blue under compensated light (Figure 6). The described simple method of making compensated polarized light microscopy will make readily available to medical students, house staff, and practicing physicians Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974) 261

7 FAGAN AND LIDSKY a useful diagnostic tool which heretofore has been little used because of lack of understanding and equipment. REFERENCES 1. McCarty DJ, Hollander JL: The identification of urate crystals in gouty synovial fluid. Ann Intern Med 54:452460, McCarty DJ, Kohn WN, Faires JS: The significance of calcium phosphate crystals in synovial fluid of arthritic patients: the pseudogout syndrome. Ann Intern Med 56: , Kohn NN, Hughes RE, McCarty DJ, et al: The significance of calcium phosphate crys- tals in the synovial fluid of arthritic patients: the pseudogout syndrome. 4nn Intern Med 56: , Phelps PS, Steele AD, McCarty DJ: Compensated polarized light microscopy. JAMA 203: , Owen DS, Jr: Letter to editor: A cheap and useful compensated polarizing microscope. N Engl J Med 285:1152, Sears FW, Zemansky MW: University Physics. Second edition. Massachusetts, Addison- Wesley, 1955, pp Shubnikov AV: Principles of optical crystallography. New York, Consultants Bureau, 1960, p Arthritis and Rheumatism, Vol. 17, No. 3 (MayJune 1974)

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Lecture 5: Polarisation of light 2

Lecture 5: Polarisation of light 2 Lecture 5: Polarisation of light 2 Lecture aims to explain: 1. Circularly and elliptically polarised light 2. Optical retarders - Birefringence - Quarter-wave plate, half-wave plate Circularly and elliptically

More information

Physics 319 Laboratory: Optics

Physics 319 Laboratory: Optics 1 Physics 319 Laboratory: Optics Birefringence II Objective: Previously, we have been concerned with the effect of linear polarizers on unpolarized and linearly polarized light. In this lab, we will explore

More information

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it.

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it. 4/21 Chapter 27 Color Each wavelength in the visible part of the spectrum produces a different color. Additive color scheme RGB Red Green Blue Any color can be produced by adding the appropriate amounts

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens.

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Interference Figures. Interference Figures. Interference Figures. Uniaxial Minerals

Interference Figures. Interference Figures. Interference Figures. Uniaxial Minerals Interference Figures Uniaxial Minerals Interference Figures Uses: Means by which uniaxial and biaxial minerals can be from each other, and For determining the of a mineral, specifically for uniaxial minerals

More information

Material after quiz and still on everyone s Unit 11 test.

Material after quiz and still on everyone s Unit 11 test. Material after quiz and still on everyone s Unit 11 test. When light travels from a fast material like air into a slow material like glass, Snell s Law always works. Material from here on out though is

More information

Biaxial minerals. with n α. , n β. < n β. , n γ. From: Nesse (2004) Optical Mineralogy. Oxford

Biaxial minerals. with n α. , n β. < n β. , n γ. From: Nesse (2004) Optical Mineralogy. Oxford Biaxial minerals Orthorhombic, monoclinic, triclinic minerals Two optic axes, hence the name Velocity of light is function of ray path Light entering crystal will be polarized into two of three possible

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen?

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen? PreAP Physics Review Chapter 14 & 15 09 Name: Date: Period: _ Use the diagram to answer questions 1 13. The diagram represents three overlapping circles of equally intense light of different pure colors.

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Introduction Visible light is an electromagnetic wave, characterized by a wavelength, an amplitude

Introduction Visible light is an electromagnetic wave, characterized by a wavelength, an amplitude Thin Film Interferences of SiO2 and TiO2 : Thickness and Iridescence Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering MSE 355 Lab Report 201 A Matthew

More information

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only.

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. POLARISATION OF LIGHT Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. Polarisation is a phenomenon exhibited only by transverse

More information

Where should the fisherman aim? The fish is not moving.

Where should the fisherman aim? The fish is not moving. Where should the fisherman aim? The fish is not moving. When a wave hits a boundary it can Reflect Refract Reflect and Refract Be Absorbed Refraction The change in speed and direction of a wave Due to

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

Compact OAM Microscope for Edge Enhancement of Biomedical and Object Samples

Compact OAM Microscope for Edge Enhancement of Biomedical and Object Samples Compact OAM Microscope for Edge Enhancement of Biomedical and Object Samples Richard Gozali, 1 Thien-An Nguyen, 1 Ethan Bendau, 1 Robert R. Alfano 1,b) 1 City College of New York, Institute for Ultrafast

More information

Optical Microscopy and Imaging ( Part 2 )

Optical Microscopy and Imaging ( Part 2 ) 1 Optical Microscopy and Imaging ( Part 2 ) Chapter 7.1 : Semiconductor Science by Tudor E. Jenkins Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science and

More information

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014 Microwave Optics Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 16, 2014 1 Introduction Optical phenomena may be studied at microwave frequencies. Visible light has

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electromagnetic Waves Lecture 14 23.1 The Discovery of Electromagnetic Waves 23.2 Properties of Electromagnetic Waves 23.3 Electromagnetic Waves Carry Energy and Momentum 23.4 Types of Electromagnetic

More information

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued

Interaction of Sound and. logarithms. Logarithms continued. Decibels (db) Decibels (db) continued. Interaction of Sound and Media continued Interaction of Sound and Media continued Interaction of Sound and Media Chapter 6 As sound travels through a media and interacts with normal anatomical structures its intensity weakens through what is

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

The 34th International Physics Olympiad

The 34th International Physics Olympiad The 34th International Physics Olympiad Taipei, Taiwan Experimental Competition Wednesday, August 6, 2003 Time Available : 5 hours Please Read This First: 1. Use only the pen provided. 2. Use only the

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (E-O) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

Stereo Microscope. Optical Components

Stereo Microscope. Optical Components Stereo Microscope A typical stereomicroscope is as shown above. It has three key parts: Viewing Head/Body that houses the optical components in the upper part of the microscope. Focus Block that attaches

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Adaptive lenses based on polarization modulation

Adaptive lenses based on polarization modulation Adaptive es based on polarization modulation Andrew K. Kirby, Philip J.W. Hands and Gordon D. Love University of Durham, Rochester Building, Dept. of Physics, Durham, DH1 3LE, UK ABSTRACT We present and

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Snell's Law 1. Objectives. The objectives of this laboratory are a. to determine the index of refraction of a liquid using Snell's

More information

Exp No.(8) Fourier optics Optical filtering

Exp No.(8) Fourier optics Optical filtering Exp No.(8) Fourier optics Optical filtering Fig. 1a: Experimental set-up for Fourier optics (4f set-up). Related topics: Fourier transforms, lenses, Fraunhofer diffraction, index of refraction, Huygens

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2016 Electro-optic

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Light Microscopy. Upon completion of this lecture, the student should be able to:

Light Microscopy. Upon completion of this lecture, the student should be able to: Light Light microscopy is based on the interaction of light and tissue components and can be used to study tissue features. Upon completion of this lecture, the student should be able to: 1- Explain the

More information

KEY CONCEPTS AND PROCESS SKILLS

KEY CONCEPTS AND PROCESS SKILLS Comparing Colors 94 40- to 1 50-minute session ACTIVITY OVERVIEW L A B O R AT O R Y Students explore light by investigating the colors of the visible spectrum. They first observe how a diffraction grating

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

HOW DO SUNGLASSES WORK? Studying Light Polarization and Attenuation

HOW DO SUNGLASSES WORK? Studying Light Polarization and Attenuation HOW DO SUNGLASSES WORK? Studying Light Polarization and Attenuation What Do Sunglasses Do? Brainstorm in your groups: What are the key objectives of good sunglasses? To reduce the glare such as reflections

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

NEW TECHNIQUES NOTES THE FIRST-ORDER RED COMPENSATOR: AN EFFECTIVE GEMOLOGICAL TOOL

NEW TECHNIQUES NOTES THE FIRST-ORDER RED COMPENSATOR: AN EFFECTIVE GEMOLOGICAL TOOL NOTES A N D NEW TECHNIQUES THE FIRST-ORDER RED COMPENSATOR: AN EFFECTIVE GEMOLOGICAL TOOL By John Ilmarii Koivula This note deals with some gemologjcal applications for n tool well known to microscopists:

More information

Experiment 19. Microwave Optics 1

Experiment 19. Microwave Optics 1 Experiment 19 Microwave Optics 1 1. Introduction Optical phenomena may be studied at microwave frequencies. Using a three centimeter microwave wavelength transforms the scale of the experiment. Microns

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Instruction Manual T Binocular Acromat Research Scope T Trinocular Acromat Research Scope

Instruction Manual T Binocular Acromat Research Scope T Trinocular Acromat Research Scope Research Scope Instruction Manual T-29031 Binocular Acromat Research Scope T-29041 Trinocular Acromat Research Scope T-29032 Binocular Semi-Plan Research Scope T-29042 Trinocular Semi-Plan Research Scope

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

Polarisation. Notes for teachers. on module 5:

Polarisation. Notes for teachers. on module 5: Notes for teachers on module 5: Polarisation Polarisation is a fundamental property of light and understanding how it works has helped researchers to harness and control this effect for various applications.

More information

III III 0 IIOI DID IIO 1101 I II 0II II 100 III IID II DI II

III III 0 IIOI DID IIO 1101 I II 0II II 100 III IID II DI II (19) United States III III 0 IIOI DID IIO 1101 I0 1101 0II 0II II 100 III IID II DI II US 200902 19549A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0219549 Al Nishizaka et al. (43) Pub.

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering

UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering EE 5380 Fall 2011 PhD Diagnosis Exam ID: UTA EE5380 PhD Diagnosis Exam (Fall 2011) Principles of Photonics and Optical Engineering Instructions: Verify that your exam contains 7 pages (including the cover

More information

LIGHT BOX & OPTICAL SET CAT NO. PH0615

LIGHT BOX & OPTICAL SET CAT NO. PH0615 LIGHT BOX & OPTICAL SET CAT NO. PH0615 Experiment Guide ACTIVITIES INCLUDED: Diffraction Angle of Reflection Using a Plane Mirror Refraction of Different Shaped Prisms Refraction (Snell's Law) Index of

More information

Radial Polarization Converter With LC Driver USER MANUAL

Radial Polarization Converter With LC Driver USER MANUAL ARCoptix Radial Polarization Converter With LC Driver USER MANUAL Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Principle of the radial polarization

More information

Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation

Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation 1 Lenses and the Bending of Light light is refracted (bent) when passing from one medium to another refractive index a measure

More information

Systems Biology. Optical Train, Köhler Illumination

Systems Biology. Optical Train, Köhler Illumination McGill University Life Sciences Complex Imaging Facility Systems Biology Microscopy Workshop Tuesday December 7 th, 2010 Simple Lenses, Transmitted Light Optical Train, Köhler Illumination What Does a

More information

NAME SECTION PERFORMANCE TASK # 3. Part I. Qualitative Relationships

NAME SECTION PERFORMANCE TASK # 3. Part I. Qualitative Relationships NAME SECTION PARTNERS DATE PERFORMANCE TASK # 3 You must work in teams of three or four (ask instructor) and will turn in ONE report. Answer all questions. Write in complete sentences. You must hand this

More information

Chapter 24. The Wave Nature of Light

Chapter 24. The Wave Nature of Light Ch-24-1 Chapter 24 The Wave Nature of Light Questions 1. Does Huygens principle apply to sound waves? To water waves? Explain how Huygens principle makes sense for water waves, where each point vibrates

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Stressed plastics by polarization

Stressed plastics by polarization Rochester Institute of Technology RIT Scholar Works Articles 2005 Stressed plastics by polarization Andrew Davidhazy Follow this and additional works at: http://scholarworks.rit.edu/article Recommended

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

AP B Webreview ch 24 diffraction and interference

AP B Webreview ch 24 diffraction and interference Name: Class: _ Date: _ AP B Webreview ch 24 diffraction and interference Multiple Choice Identify the choice that best completes the statement or answers the question.. In order to produce a sustained

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

Very short introduction to light microscopy and digital imaging

Very short introduction to light microscopy and digital imaging Very short introduction to light microscopy and digital imaging Hernan G. Garcia August 1, 2005 1 Light Microscopy Basics In this section we will briefly describe the basic principles of operation and

More information

Microscope anatomy, image formation and resolution

Microscope anatomy, image formation and resolution Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 0-471-25391-X Visit these websites:

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Projector for interference figures and for direct measurement of 2V.

Projector for interference figures and for direct measurement of 2V. 666 Projector for interference figures and for direct measurement of 2V. By H. C. G. VINCENT, M.A., A.R.I.C., F.G.S. Department of Geology, University of Cape Town. [Taken as read March 24, 1955.] T HE

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

More information

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays.

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays. 5.3 Lenses We have seen lenses in our microscopes, cameras or eyeglasses. Lens: Lenses are usually made of and have 2 curved surfaces. Concave lens: A lens curved inward Thinner at the centre than at the

More information

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C 1 Conceptual Questions 1. Which pair of lettered points lie on the central maximum? a) v and t b) x and z c) x and w d) u and y e) v and u 1 ANS: E The central maximum lies on the perpendicular bisector.

More information

24-12 Scattering of Light by the Atmosphere

24-12 Scattering of Light by the Atmosphere Unpolarized sunlight Light scattered at right angles is plane-polarized 02 or N2 molecule Observer \^f FIGURE 24-54 Unpolarized sunlight scattered by molecules of the air. An observer at right angles sees

More information

StarBright XLT Optical Coatings

StarBright XLT Optical Coatings StarBright XLT Optical Coatings StarBright XLT is Celestron s revolutionary optical coating system that outperforms any other coating in the commercial telescope market. Our most popular Schmidt-Cassegrain

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Optics & Light See What I m Talking About Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Overview In this cluster, students broaden their understanding of how light is produced, transmitted, and detected.

More information

Standing waves in the microwave range

Standing waves in the microwave range Related topics Microwaves, electromagnetic waves, reflection, inverse square law Principle If electromagnetic waves are reflected to and fro between two reflectors, a standing wave results. The wavelength

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information