Wave & Electromagnetic Spectrum Notes

Size: px
Start display at page:

Download "Wave & Electromagnetic Spectrum Notes"

Transcription

1 Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy b/c they do work ) *Waves create wave fronts (circles) that have the same amount of total energy but as the circles get larger the energy spreads out over a larger area. 1) Mechanical Waves: waves that require a medium through which to travel a) Medium: physical environment in which phenomena occur 1) Example: water, air, Earth b) Almost all waves are mechanical waves, except EM waves 2) Electromagnetic Waves: waves that consist of oscillating electric and magnetic fields, which radiate outward at the speed of light (3.0 x 10 8 m/s) (Holy Gazoli! That s fast!) a) Example: visible light, microwaves, etc. b) DO NOT require a medium Wave Vocabulary A) Crest: section of the wave that rises above the equilibrium position B) Trough: section which lies below the equilibrium position C) Wavelength: distance between one point on the wave and the nearest point where the wave repeats itself 1) This can be measured from crest-tocrest, trough-to-trough, or from the start of a wave to the start of the next one. 2) Symbol for wavelength is λ 1

2 D) Amplitude: maximum displacement from the undisturbed position of the medium to the top of a crest. E) Period (T): time required for one wave to complete one full cycle of its motion i.e. The period measures how long it takes for a wave to pass by 1) Example: From its highest point to its lowest and back again 2) Measured in seconds (s) F) Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) 2) Hertz units measure the number of vibrations per second ex. 1 vibration per second is 1 Hz, 2 vibrations per second is 2 Hz 3) Period is related to frequency in that the frequency is the inverse of the period G) Wave speed 1) The frequency and wavelength are related to one another and to the speed of the wave by the following formula, where v is equal to the speed: Speed = Wavelength x Frequency v = λf II.) Traveling Through Mediums A) Mechanical waves require a medium in order to travel through 1) Waves are classified by the direction that they travel through the medium a) Transverse Wave: the particles in the medium move perpendicular to the direction wave is traveling 1) Ex: Light waves b) Longitudinal Wave: the particles in the medium move parallel to the direction the wave is traveling 1) Ex: Sound waves 2

3 Light as electromagnetic radiation The wave particle duality of light: Particle-like properties: photoelectric effect, Compton-effect. Wave-like properties: diffraction, polarisation, interference. Light wave λ = wavelength E = amplitude of electric field M = amplitude of magnetic field E B Propagation of electromagnetic waves x x Magnetic field strength vector Electronic field strength vector Period time (time) wavelength (space) distance Transversal wave Electronic and magnetic field vectors are perpendicular to each other, and to the directon of propagation also! Propagation of electromagnetic waves Laws of light propagation (geometric optics) The direction of light propagation is the direction of the light ray. The light ray is the parallel light beam limited to the smallest radius. Basic rules of geometric optics: Light propagates linearly. On bounderies of different media reflects refracts. Light rays are considered to be independent. Light rays are invertible (reversible). Fermat-principle: principle of minimal time / path. Reflection Refraction Can be regular (specular), diffuse (irregular) and mixed. In case of regular reflection: The incident ray, the normal and the reflected ray are included in the same plain, and the angle of incidence is eqal to the angle of reflection. On the boundary of different media, part of the light passes from one medium into another, while the direction of propagation alters (bends). The reason is the different propagation velocity of light in different media. Snell s law: 3

4 Refraction on prisms, light dispersion Total internal refraction When the light enters a less optically dense medium, it is refracted away from the normal. At a critical angle, the light is refracted along the interface of the media. At an angle greater than the critical engle, there is total internal reflection. Diffraction The direction of propagation of rays bends, when they propagate through a slit or when they collide. Phase delay occurs. Interference patterns can be seen. Interference Occurs when waves meet, and they are superponated. If they meet in the same phase, they amplify each other, in opposite phases they attenuate each other. Coherence of light waves is the most important condition of interference. max. amplification max. attenuation Optical grid Interference Interference 4

5 Polarization Polarization Polarized light: Vibration plain of electric field vectors are similar to all waves. Can be generated by the help of polarization (polar filters, dichroism), or reflection (optical grid). II.) Electromagnetic Spectrum A) The Waves of the Spectrum 1) EM spectrum: all of the frequencies or wavelengths of electromagnetic radiation 2) The EM spectrum includes radio waves, microwaves infrared rays, visible light, UV rays, X-rays, and gamma rays. E = hν c = λν 5

6 B) Radio Waves -Longest wavelength -Lowest Frequency 1) Radio waves are used in radio & TV technologies, as well as in radar. a) Radio 1) Amplitude modulation (AM) 2) Frequency modulation (FM) b) Radar 1) Send out short bursts of radio waves that bounce off objects & return to receiver C) Microwaves -Shorter wavelength than radio waves -Higher frequency than radio, but lower than infrared 1) Only penetrate food at the surface D) Infrared Waves -Shorter wavelength than microwaves -Higher frequency than microwaves, but lower than red light 1) Infrared rays are used as a source of heat & to discover areas of heat difference 2) You can t see infrared radiation, but your skin feels its warmth E) Visible Light -Each wavelength corresponds to a specific frequency ** Color determined by frequency 1) People use visible light to see, help keep them safe, and to communicate with one another. Spectrum of visible light F) UV Rays -Shorter wavelength and higher frequency than violet light 1) UV rays have applications in health and medicine, and in agriculture. a) Helps skin produce Vit. D, can cause sunburn, cancer, and used to kill microorganisms 400nm 500nm 600nm 700nm 6

7 G) X-Rays -Shorter wavelength and higher frequency than UV rays 1) X-rays are used in medicine, industry, and transportation to make pictures of the inside of solid objects. a) X-rays are absorbed by solid objects (teeth, bones) & so solid objects appear white H) Gamma Rays -Shortest wavelength -Highest frequency 1) Gamma rays are used in the medical field to kill cancer cells and to make pictures of the brain & in industrial situations as an inspection tool. 7

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 18.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Electromagnetic Waves Electromagnetic waves are transverse waves produced by the motion of electrically charged

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

Waves.notebook. April 15, 2019

Waves.notebook. April 15, 2019 Waves You will need a protractor! What is a wave? A wave is a vibratory disturbance that propagates through a medium(body of matter) or field. Every wave has, as its source, a particle vibrating or oscillating.

More information

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction Physical Science Test Form A Test 5: Waves Matching. 1. diffraction 2. intensity 3. interference 4. mechanical wave 5. medium 6. pitch 7. reflection 8. refraction 9. translucent 10. transverse wave A.

More information

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW OVERVIEW Wave behaviour explains a great many phenomena, both natural and artificial, for all waves have properties in common. The first topic introduces a basic vocabulary for describing waves. Reflections

More information

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels Chapter 12: Sound Describe production of sounds Measure the speed of sound Relate pitch and loudness to frequency and amplitude Describe how sound travels Sound is a longitudinal (compression) wave Sound

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Wave - Review Waves are oscillations that transport energy. 2 Types of waves: Mechanical waves that require a medium to travel through (sound, water, earthquakes) Electromagnetic

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

WAVES & EM SPECTRUM. Chapters 10 & 15

WAVES & EM SPECTRUM. Chapters 10 & 15 WAVES & EM SPECTRUM Chapters 10 & 15 What s a wave? repeating disturbance transfers energy through matter or space Oscillation back & forth movement carries energy w/o transporting matter can travel through

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Types of waves 2 Describing waves 3 Wave equation 4 Reflection of waves 5 Refraction 6 Diffraction 7 Light waves (reflection) 8 Total internal reflection 9 - Optical fibres

More information

Topic 4: Waves 4.2 Traveling waves

Topic 4: Waves 4.2 Traveling waves Crests and troughs Compare the waves traveling through the mediums of rope and spring. CREST TROUGH TRANSVERSE WAVE COMPRESSION RAREFACTION LONGITUDINAL WAVE Wave speed and frequency The speed at which

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common?

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common? What do waves transfer? Draw and label this wave: - (They do this without transferring what?) What do all electromagnetic waves have in common? Name the electromagnetic spectrum from shortest to longest

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave?

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave? 3. Wave Speed (v=fλ) and Wave period (T=1/f) problems. DIN 1. EOC Review Problem: Two carts are moving on a horizontal frictionless surface. A 8 kilogram cart is moving to the right at 6 m/s. A second

More information

Chapter 18 The Electromagnetic Spectrum

Chapter 18 The Electromagnetic Spectrum Pearson Prentice Hall Physical Science: Concepts in Action Chapter 18 The Electromagnetic Spectrum 18.1 Electromagnetic Waves Objectives: 1. Describe the characteristics of electromagnetic waves in a vacuum

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

OSCILLATIONS and WAVES

OSCILLATIONS and WAVES OSCILLATIONS and WAVES Oscillations Oscillations are vibrations which repeat themselves. EXAMPLE: Oscillations can be driven externally, like a pendulum in a gravitational field EXAMPLE: Oscillations can

More information

Chapter 18 The Electromagnetic Spectrum and Light

Chapter 18 The Electromagnetic Spectrum and Light Chapter 18 Sections 18.1 Electromagnetic Waves 18.2 The 18.3 Behavior of Light 18.4 Color 18.5 Sources of Light Chapter 18 The and Light Section 18.1 Electromagnetic Waves To review: mechanical waves require

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

Waves, Sound and Light. Grade 10 physics Robyn Basson

Waves, Sound and Light. Grade 10 physics Robyn Basson Waves, Sound and Light Grade 10 physics Robyn Basson Heartbeat Flick in hose pipe What is a pulse? A single disturbance that moves through a medium. Stone in water Other? moving Transverse pulse: A pulse

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages Light & the Electromagnetic Spectrum Electromagnetic Waves Electromagnetic waves > transverse waves consisting of changing electric & magnetic fields; carry energy from place to place; differ from mechanical

More information

Physics, P1 Energy for the Home

Physics, P1 Energy for the Home Radiotherapy uses gamma rays to kill cancer cells All waves move energy from place to place. Physics, P1 Energy for the Home Transverse Waves These are caused by shaking. Examples are (1) Waves in a string,

More information

Electromagnetic (Light) Waves Electromagnetic Waves

Electromagnetic (Light) Waves Electromagnetic Waves Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information

Electromagnetic Waves Chapter Questions

Electromagnetic Waves Chapter Questions Electromagnetic Waves Chapter Questions 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person

More information

$100 $400 $400 $400 $500

$100 $400 $400 $400 $500 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 MOVING IN WAVES PURE ENERGY! WHAT S THE FREQUENCY, KENNETH? USE IT OR LOSE IT

More information

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium)

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) SOL: PS. 8 & 9 I. Waves A. Definitionà a disturbance that transfers energy through matter or space II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) 2. Moves at rt. angles

More information

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A disturbance

More information

Electromagnetic Radiation Worksheets

Electromagnetic Radiation Worksheets Electromagnetic Radiation Worksheets Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page Content: Physical Science The Electromagnetic Spectrum Grade Level: High School Creator:

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3. EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.00 x 10 8 m/s So, if they all travel at the same speed, how are they different?

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

A. Amplitude B. Frequency C. Wavelength

A. Amplitude B. Frequency C. Wavelength WAVES Frequency, wavelength, amplitude and electromagnetic spectrum STUDENT BOOK Ch. 4, pp. 92 99 1. For each group of two statements, circle the one that is correct. a) All waves transport energy from

More information

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8)

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8) Waves & Energy Transfer Physics 11 Introduction to Waves Chapter 11 ( 11-1, 11-7, 11-8) Waves are all about Periodic Motion. Periodic motion is motion that repeats after a certain period of time. This

More information

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name: Wallace Hall Academy Physics Department Waves Pupil Notes Name: Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

BVHS Physics: Waves Unit - Targets

BVHS Physics: Waves Unit - Targets BVHS Physics: Waves Unit - Targets Part A: General Wave Properties: Students should be able to 1) describe waves as traveling disturbances which transport energy without the bulk motion of matter. In transverse

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Unit 6 Electromagnetic Radiation:

Unit 6 Electromagnetic Radiation: Unit 6 Electromagnetic Radiation: Electromagnetic Radiation is a wave. Electromagnetic Radiation is not a mechanical wave. Does not need a medium. Can travel through empty space Examples of Electromagnetic

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE Topics Simple Harmonic Motion Springs Pendulums Waves Transverse Longitudinal Pulse Continuous Interference Refraction Diffraction Equations V = 2πr / T a c = V 2 /r F = ma F F = µf N W = Fdcosθ PE = mgh

More information

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17 Light and Color Lesson 9 Fill in the blanks Reading Skill: Compare and Contrast - questions 3, 17 How Do You Get Color From White Light? 1 A(n) is a triangular piece of polished glass that refracts white

More information

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D Science Focus 8 Pop Quiz Master (5 questions) for each Topic Light and Optical Systems Answer Key Science Focus 8 Questions Topics 1. 2. 3. 4. 5. Topic 1 - What is Light? A C B D C Topic 2 Reflection C

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

Name: Date Due: Waves. Physical Science Chapter 6

Name: Date Due: Waves. Physical Science Chapter 6 Date Due: Waves Physical Science Chapter 6 Waves 1. Define the following terms: a. periodic motion = b. cycle= c. period= d. mechanical wave= e. medium = f. transverse wave = g. longitudinal wave= h. surface

More information

Name: Per: Date: Ms. Yanuck. Study Guide - Unit Test Waves, Magnetism and Electricity

Name: Per: Date: Ms. Yanuck. Study Guide - Unit Test Waves, Magnetism and Electricity Name: Per: Date: Ms. Yanuck Study Guide - Unit Test Waves, Magnetism and Electricity Write the correct answer on the line: Word Bank: long short waves longitudinal transverse compressions or rarefactions

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma 6-6 Waves Trilogy.0 Figure shows an incomplete electromagnetic spectrum. Figure A microwaves B C ultraviolet D gamma. Which position are X-rays found in? Tick one box. [ mark] A B C D.2 Which three waves

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1.

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. 1. progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. What is the phase difference between two points that are 50 mm apart on the string? zero 90 180 360 2 Which

More information

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions 2015 Question 9 (i) What are stationary waves? How are they produced? The amplitude of the wave at any point is constant // There is no net transfer

More information

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid 6.7 Describe the method to measure the speed of sound in air and the speed of ripples on the water surface 7.5 Link the properties of EM waves to their practical application (triple 7.6 Apply knowledge

More information

Skoog Chapter 1 Introduction

Skoog Chapter 1 Introduction Skoog Chapter 1 Introduction Basics of Instrumental Analysis Properties Employed in Instrumental Methods Numerical Criteria Figures of Merit Skip the following chapters Chapter 2 Electrical Components

More information

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers 03/02/2014 Electromagnetic Spectrum Review Using Waves Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers To compare and contrast analogue and

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

PHYSICS - Chapter 16. Light and Color and More

PHYSICS - Chapter 16. Light and Color and More PHYSICS - Chapter 16 Light and Color and More LIGHT-fundamentals 16.1 Light is the visible part of the electromagnetic spectrum. The electromagnetic spectrum runs from long Radio and TV waves to short

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

Descriptors crest(positive), trough (negative), wavelength, amplitude

Descriptors crest(positive), trough (negative), wavelength, amplitude Review of Waves Definition transfer of energy through a medium Pulse single disturbance Wave repeated or periodic disturbance Medium a substance or material which carries the wave Particle displacement

More information

... frequency, f speed, v......

... frequency, f speed, v...... PhysicsAndMathsTutor.com 1 1. Define the terms wavelength, frequency and speed used to describe a progressive wave. wavelength, λ... frequency, f... speed, v... Hence derive the wave equation v = fλ which

More information

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet.

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet. 1 This question is about the light from low energy compact fluorescent lamps which are replacing filament lamps in the home. (a) The light from a compact fluorescent lamp is analysed by passing it through

More information

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya LIGHT ENERGY FOR LIFE 2 Presented by- Ms.Priya VOCABULARY 1. Opaque 2. Transparent 3. Translucent 4. Refraction 5. Reflection 6. Ray 7. Image 8. Virtual image 9. Medium 10.Vacuum 11. Lens 12. Spectrum

More information

Ordinary Level SOLUTIONS: WAVES, SOUND AND LIGHT.

Ordinary Level SOLUTIONS: WAVES, SOUND AND LIGHT. Ordinary Level SOLUTIONS: WAVES, SOUND AND LIGHT. 2015 Question 7 [Ordinary Level] (i) Explain the term resonance. transfer of energy between objects of similar natural frequency (ii) Describe a laboratory

More information

17-1 Electromagnetic Waves

17-1 Electromagnetic Waves 17-1 Electromagnetic Waves transfers energy called electromagnetic radiation no medium needed transverse some electrical, some magnetic properties speed is 300,000,000 m/s; nothing is faster; at this speed

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 13 Electromagnetic Waves 13.1 Gamma Rays Gamma rays have a very short wavelength and are very penetrating. They are produced by radioactive substances and are very dangerous to humans unless used

More information

Answers to Chapter 11

Answers to Chapter 11 Answers to Chapter 11 11.1 What is Light? #1 Radiation (light) does NOT need a medium to travel through. Conduction needs a solid medium and convection needs liquid or gas medium to travel through. #2

More information

Lesson 24 Electromagnetic Waves

Lesson 24 Electromagnetic Waves Physics 30 Lesson 24 Electromagnetic Waves On April 11, 1846, Michael Faraday was scheduled to introduce Sir Charles Wheatstone at a meeting of the Royal Society of London. Unfortunately, Wheatstone had

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6.

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6. 1 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave.................... [4] (b) Fig. 6.1 shows a loudspeaker fixed near the

More information

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

Optics looks at the properties and behaviour of light!

Optics looks at the properties and behaviour of light! Optics looks at the properties and behaviour of light! Chapter 4: Wave Model of Light Past Theories Pythagoras believed that light consisted of beams made up of tiny particles that carried information

More information