AP Physics - More Dadgum Interference

Size: px
Start display at page:

Download "AP Physics - More Dadgum Interference"

Transcription

1 AP Phsics - More Dagu Interference Single Slit Diffraction: A single slit will also for an interference pattern when light passes through it. Each part of the slit acts as source of waves. This is escribe in Hugen s principle. Hugen s principle Ever point on a wave front acts as a source of tin wavelets that ove forwar with the sae spee as the wave. The wave front at a later instant of tie is the surface that is tangent to the wavelets. You can iagine that across the with of the slit, little wavelets originate an travel through the slit. These waves pass through the slit an for a bright central fringe on the screen, which is at a far istance fro the slit. This istance is so far that all the waves are essentiall parallel to one other. All the wavelets travel the sae istance an arrive at the screen in phase with each other an we get constructive interference. This creates a bright central fringe at the center of the screen irectl opposite the slit. The wavelets that originate in the slit can also interfere estructivel. Here s a rawing that shows the ver thing. incient wave Central Maxia Ver istant screen ipoint of center axia First ark fringe ipoint of center axia incient wave Wavelet froation for ark fringe How interference takes place 508

2 ight fro one part of slit interferes with light fro another part of slit, foring the patterns. Again the cause of the interference is the path ifference for the waves (wavelets in this case). The patterns that for can be escribe in this wa: There will be a bright central fringe surroune b two ark fringes, then a set of weaker bright fringes, a set of ark fringes, a set of weaker (than the central fringe) bright fringes, an so on. et s look at the geoetr of the thing. l The sae euation is use with single slit iffraction as with the ouble slit iffraction, except that the angle we get,, is the angle fro the center of the slit to the center of the ark fringe. sin This euation escribes estructive interference. is the with of the slit, is the angle to the center of the ark fringe, is the integer orer nuber, an is the wavelength of the light. We can analze it the sae wa we i the ouble slit eal to fin the spacings between the central fringe an the ark fringes. sin sin tan 509

3 This general case is: x While this is the sae euation as for a ouble slit eal, for a single slit it gives ou the istance fro the center of the bright central fringe to the esire ark fringe Sin = 2l Sin = l Sin = Sin = Sin = l 2l 575 n light passes through a slit of with An observing screen is set up 3.00 awa. (a) Fin the position of the first ark fringe. (b) What is the with of the central axia? 1 (a) This is the first inia, so = 1. The spacing is given b: x 1575 x x x10 Diffraction Grating: 6 1 Diffraction gratings are a recent invention (well, a lot ore recent than the ol ouble slit eal). Basicall, a iffraction grating is a piece of transparent aterial that has parallel cuts scribe in it. The scribings are so sall that ou can t reall see the. At an rate, the grating has a ver 510

4 large nuber of euall space parallel slits cut into it. This woul be on the orer of hunres to several thousan lines per centieter. The grating acts like a ouble slit setup. It prouces a large nuber of ver bright, sharp fringes separate fro one another b fairl wie inia. Maxia are given b the sae euation as we have seen before: sin is the orer nuber, is the spacing between the slits, is the wavelength of the light, an is the angle fore b a noral to the grating to a line at the center of the fringe. ight fro a istant star enters a telescope an then passes through a iffraction grating onto a screen. A first orer re line appears on the screen at an angle of The lines of the grating are separate b 1.50 x What is the wavelength of the light? sin sin x10 sin x x n n laser bea passes through a iffraction grating that has lines per centieter. An observing screen is set up 3.00 awa. Fin separation of the axia. The slit separation is the inverse of slit ensit c x10 c x sin sin The angle is not sall an we cannot ake the assuption that the sine of is eual to the tangent. We can fin fro the euation an then use the tangent to fin. Y x10 sin x x10 3 o o tan tan tan

5 The pattern of axia fro a iffraction grating looks like this: M l l 0 l 2l The axia are ver bright an sharp, the are also wiel separate fro one another. For this reason, the iffraction grating is preferre to ouble slits. So iffraction gratings are better because: Get ver sharp axia Get ver wie ark areas With a few eas to ake easureents, one can easil calculate the wavelength of the light. Newton s Rings: The last thing we want to talk about in our lovel iscussion of light an optics are Newton s rings. These are not the ugl lines he ha uner his eeballs, nor are the the fabulous finger wear he sporte. This is an optic effect thingee. 2 1 To the right ou can see a rawing of the thing. A rectangular glass plate lies on a table top. ing atop the plate is a circular lens that is flat on top an has a constant raius curvature on its lower surface. It s our basic half of a lens. P r O 512

6 Ra 1 is reflecte fro the surface of the plate. It unergoes a 180 phase change. Ra 2 is reflecte fro botto of lens. Because air has a saller inex of refraction than glass there is no phase change on the reflecte ra. Because of this, there exists a path ifference between the two ras. This will give us interference patterns inia an axia. These will appear in the lens when ou look own into it. You will see ark an bright concentric circles the look like rings, hence the nae. Newton was the ue who iscovere the. Dispersion: The inex of refraction, n, is a function of wavelength. The angle of refraction is varies for ifferent wavelengths of light. The inex of refraction generall ecreases with increasing wavelength. The eans that re light ( = 600 n) bens less than oes blue light ( = 470 n). This phenoenon is calle ispersion. It was iscovere b Isaac Newton. He built a pris an use it to separate out or isperse all the visible colors fro white light. Priss are especiall valuable in evices calle spectroeters. The pris separates light into a spectru of colors which can then be focuse onto a screen with a sste of lenses. ight fro istant stars can be analze in this wa to eterine the star s cheical coposition. re ispersion in a pris blue white light pris increasing wavelength Dispersion is responsible for rainbows. ittle roplets of water act like priss hanging in the sk an isperse the sun s light, foring a spectru, which we call a rainbow. Here s an interesting thing how o rainbows work? Ever woner about that? 513

7 Oka, here s the eal with rainbows. You see rainbow right before, after, uring rain, right? You also see the aroun sprinklers, waterfalls. &tc. The basic iea is that the are aroun water spras. This is where ou get water rops floating in the air. The rainbow is the result of light unergoing ispersion in these tin rops of water suspene in the atosphere. The water rops act like priss. ight enters near the top of the rop on one sie, is reflecte (total internal reflection), which eans it unergoes two refractions. (Refraction as it enters the water rop an refraction when it leaves the water rop.) The colors are therefore isperse. Violet light is refracte the ost (since it goes through the water at a slower spee, recall the higher the freuenc of light, the greater the refraction) an re light is bent the least. The angle between the sunlight entering the rop an the re light leaving the rop is fort two egrees (abe that's the real uestion for the ultiate answer). The angle for the violet light is 40. The other colors are soewhere in between. This ispersion oes not happen with just one rainrop. It happens with gazillions of the little evils. Therefore one sees colors everwhere along a arc. We call this effect a rainbow. To see the rainbow, ou ust have our back to the sun. It appears as a circle, but roughl half the circle is in the groun so ou on't notice the lower half of the circle. You onl see the upper half. If ou see a rainbow fro the air, like when ou are fling in a plane, ou will see a raincircle instea of a rainbow. You can see onl one color fro each rainrop. So if violet light enters our ee fro a rop, the re light travels in a path fro a rop that is actuall a bit higher than the rop that provie ou with the re color. So when ou see a rainbow, re light is the color that is at the top of the rainbow an violet light is below. All the other colors fall in between - re, orange, ellow, green, blue, an violet. 514

8 You see the colors irectl overhea (at 42 ), but ou also see the in an arc that is 42 on either sie of ou. Soeties ou not onl see one rainbow but a bonus, extra one as well. The first rainbow is a regular one - re light on top; violet light on botto. The secon rainbow is above this one, but the colors are reverse. Violet is on top an re is on the botto. This secon rainbow is cause b light being reflecte twice in the water rops. It enters the botto of a rop, is reflecte upwar, reflecte et again, an then leaves the rop. The secon reflection of the light is not at the critical angle, so soe of the light escapes, so the secon rainbow is ier an not as bright. Rainbows appears as cones that extens fro our ees. Your view of the rainbow is uniue - no one else can see it in the sae wa. It's our own personal, private rainbow! As ou ove, the rainbow oves with ou. This is wh chasing after the en of a rainbow is a no win eal - ou can never get there because as ou ove towars it, it oves with ou. So chasing after the gol pot at the en of a rainbow is a foolish task. Sort of the ultiate wil goose chase. Our ancestors knew this, hence the stories of gol at the en of a rainbow - the were cruel jokers on occasion. Another relate effect that one can see is the classic "ring aroun the oon". This is cause b the refraction of light through ice crstals. There is no internal reflection within the ice crstals, so there is no ispersion, so no rainbow. 515

12/2/2010. Chapter 27 Interference and the Wave Nature of Light

12/2/2010. Chapter 27 Interference and the Wave Nature of Light //00 Chapter 7 Interference an the Wave Nature of Light This chapter we will concentrate on the wave properties of light. The wavelength of visible light is 750 nm to 380 nm. All waves obey the superposition

More information

SPH3UW/SPH4UI Unit 10.2 Single Slit Diffraction Page 1 of 7. Maxima (bright fringes), occur at the centre and at

SPH3UW/SPH4UI Unit 10.2 Single Slit Diffraction Page 1 of 7. Maxima (bright fringes), occur at the centre and at SPH3UW/SPH4UI Unit 0.2 Single Slit Diffraction Page of 7 Notes Phsics Tool box ight passing through a single slit creates a diffraction pattern. The saller the slit idth, the larger the distance beteen

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Optics Page: 1 fo/u fopkjr Hkh# tu] ugha vkjehks ke] foifr ns[k NksM+s rqjar e/;e eu j ';kea iq#"k flag layi j] lgrs foifr vus] ^cuk^ u NksM+s /;s; ks] j?kqcj jk[ks

More information

Chapter 9 answers. Section 9.1. Worked example: Try yourself Heinemann Physics 12 4e APPLYING HUYGENS PRINCIPLE

Chapter 9 answers. Section 9.1. Worked example: Try yourself Heinemann Physics 12 4e APPLYING HUYGENS PRINCIPLE Chapter 9 answers Heinemann Physics 12 4e Section 9.1 Worke example: Try yourself 9.1.1 APPLYING HUYGENS PRINCIPLE On the circular waves shown below, sketch some of the seconary wavelets on the outer wavefront

More information

6. Optical Resonators. (1) c

6. Optical Resonators. (1) c 6. Optical esonators The icrowave resonators are etal boxes or pipes to buil up large fiel intensit with oerate input power, to act as a special an frequenc filter selectivel to fiels, 3 to be use in spectral

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

Section 20. Chromatic Effects

Section 20. Chromatic Effects Section 0 Chromatic Eects 0- Chromatic Aberration For a thin lens: n C C Since the inex changes with wavelength, so will the ocal length. 3 0- Where o Re, Green (or Yellow) an Blue ocus? n F C Because

More information

1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS

1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS .0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS James C. Wyant Optical Sciences Center University of Arizona Tucson, AZ 8572 jcwyant@u.arizona.eu If we wish to completely characterize the paraxial

More information

Wind sculpture. Cable 2. Cable 1. Sculpture

Wind sculpture. Cable 2. Cable 1. Sculpture Win sculpture Your frien, an artist, has been thinking about an interesting way to isplay a new win sculpture she has just create. In orer to create an aural as well as visual effect, she woul like to

More information

Chapter 27. Interference and the Wave Nature of Light

Chapter 27. Interference and the Wave Nature of Light 7.1 The Principle of Linear Superposition Chapter 7 When two or more light waves pass through a given point, their electric fields combine according to the principle of superposition. Interference and

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

AN-1140 APPLICATION NOTE

AN-1140 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwoo, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Microphone Array Beamforming by Jera Lewis INTRODUCTION All MEMS microphones

More information

AP B Webreview ch 24 diffraction and interference

AP B Webreview ch 24 diffraction and interference Name: Class: _ Date: _ AP B Webreview ch 24 diffraction and interference Multiple Choice Identify the choice that best completes the statement or answers the question.. In order to produce a sustained

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Phy Ph s y 102 Lecture Lectur 22 Interference 1

Phy Ph s y 102 Lecture Lectur 22 Interference 1 Phys 102 Lecture 22 Interference 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference& diffraction Light as a ray Lecture 17 Introduction

More information

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science.

Chapter 35. Interference. Optical Interference: Interference of light waves, applied in many branches of science. Chapter 35 Interference 35.1: What is the physics behind interference? Optical Interference: Interference of light waves, applied in many branches of science. Fig. 35-1 The blue of the top surface of a

More information

Option G 4:Diffraction

Option G 4:Diffraction Name: Date: Option G 4:Diffraction 1. This question is about optical resolution. The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Construction of Power Efficient Routing Tree for Ad Hoc Wireless Networks using Directional Antenna

Construction of Power Efficient Routing Tree for Ad Hoc Wireless Networks using Directional Antenna Construction of Power Efficient Routing Tree for A Hoc Wireless Networks using Directional Antenna Qing Dai an Jie Wu Department of Computer Science an Engineering Floria Atlantic University Boca Raton,

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

Reflection! Reflection and Virtual Image!

Reflection! Reflection and Virtual Image! 1/30/14 Reflection - wave hits non-absorptive surface surface of a smooth water pool - incident vs. reflected wave law of reflection - concept for all electromagnetic waves - wave theory: reflected back

More information

Interferencija i valna priroda svjetlosti. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Interferencija i valna priroda svjetlosti. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Interferencija i valna priroda svjetlosti 27.1 The Principle of Linear Superposition When two or more light waves pass through a given point, their electric fields combine according to the principle of

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

Optical schemes of spectrographs with a diffractive optical element in a converging beam

Optical schemes of spectrographs with a diffractive optical element in a converging beam J. ur. Opt. Soc.-api 0, 50 205 www.jeos.org Optical schemes of spectrographs with a iffractive optical element in a converging beam.. Muslimov Kazan National esearch Technical University - KAI, Kazan,

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1) INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 6 (2017-2018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more

More information

Activity 1: Diffraction of Light

Activity 1: Diffraction of Light Activity 1: Diffraction of Light When laser light passes through a small slit, it forms a diffraction pattern of bright and dark fringes (as shown below). The central bright fringe is wider than the others.

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Contents Maryland High School Programming Contest 1. 1 Stacked Floating Mountains 2. 2 Chess Puzzle 3. 3 Life Connections 4

Contents Maryland High School Programming Contest 1. 1 Stacked Floating Mountains 2. 2 Chess Puzzle 3. 3 Life Connections 4 2010 Marylan High School Programming Contest 1 Contents 1 Stacke Floating Mountains 2 2 Chess Puzzle 3 3 Life Connections 4 4 Circle of Friens 5 5 Floating Mountain Stability 6 6 Aim It Right! 7 7 Navi

More information

PHYSICS OPTICS. Mr Rishi Gopie

PHYSICS OPTICS. Mr Rishi Gopie OPTICS Mr Rishi Gopie Ray Optics II Images formed by lens maybe real or virtual and may have different characteristics and locations that depend on: i) The type of lens involved, whether converging or

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Physics Test Review Reflection/Refraction/Diffraction & Lenses Session: Name:

Physics Test Review Reflection/Refraction/Diffraction & Lenses Session: Name: Multiple Choice 1. The law of reflection says that a. the angle of reflection from a mirror equals the angle of incidence. b. waves incident on a mirror are partially reflected. c. all waves incident on

More information

Diffraction. modern investigations date from Augustin Fresnel

Diffraction. modern investigations date from Augustin Fresnel Diffraction Diffraction controls the detail you can see in optical instruments, makes holograms, diffraction gratings and much else possible, explains some natural phenomena Diffraction was discovered

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Physics 202, Lecture 28

Physics 202, Lecture 28 Physics 202, Lecture 28 Today s Topics Michelson Interferometer iffraction Single Slit iffraction Multi-Slit Interference iffraction on Circular Apertures The Rayleigh Criterion Wave Superposition Using

More information

Teacher s Resource. 2. The student will see the images reversed left to right.

Teacher s Resource. 2. The student will see the images reversed left to right. Teacher s Resource Answer Booklet Reflection of Light With a Plane (Flat) Mirror Trace a Star Page 16 1. The individual students will complete the activity with varying degrees of difficulty. 2. The student

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

Understanding Optical Specifications

Understanding Optical Specifications Understanding Optical Specifications Optics can be found virtually everywhere, from fiber optic couplings to machine vision imaging devices to cutting-edge biometric iris identification systems. Despite

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

General Physics Laboratory Experiment Report 2nd Semester, Year 2018

General Physics Laboratory Experiment Report 2nd Semester, Year 2018 PAGE 1/13 Exp. #2-7 : Measurement of the Characteristics of the Light Interference by Using Double Slits and a Computer Interface Measurement of the Light Wavelength and the Index of Refraction of the

More information

LIGHT-REFLECTION AND REFRACTION

LIGHT-REFLECTION AND REFRACTION LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Refraction Refraction: The bending of light when it goes from one medium to another obliquely is called refraction of light. Refraction

More information

Experimental Approach for Determining the Received Pattern of a Rascan Holographic Radar Antenna

Experimental Approach for Determining the Received Pattern of a Rascan Holographic Radar Antenna Eperimental Approach for Determining the Receive Pattern of a Rascan Holographic Raar Antenna Masaharu Inagaki Geophysical survey epartment Walnut Lt. Tachikawa, Japan ina_mas@beige.plala.or.jp Timothy

More information

Refraction is the change in speed of a wave due to the wave entering a different medium. light travels at different speeds in different media

Refraction is the change in speed of a wave due to the wave entering a different medium. light travels at different speeds in different media Refraction Refraction is the change in speed of a wave due to the wave entering a different medium light travels at different speeds in different media this causes light to bend as it passes from one substance

More information

Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation

Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN AB DEPARTMENT CERN-AB-4-3 BDI Iproving FFT Frequency Measureent Resolution by Parabolic an Gaussian Spectru Interpolation M. Gasior, J.L. Gonzalez CERN,

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

Chapter 28 Physical Optics: Interference and Diffraction

Chapter 28 Physical Optics: Interference and Diffraction Chapter 28 Physical Optics: Interference and Diffraction 1 Overview of Chapter 28 Superposition and Interference Young s Two-Slit Experiment Interference in Reflected Waves Diffraction Resolution Diffraction

More information

Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation

Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation CERN-AB-4-3 BDI Iproving FFT Frequency Measureent Resolution by Parabolic an Gaussian Spectru Interpolation M. Gasior, J.L. Gonzalez CERN, CH-,Geneva 3, Switzerlan Abstract Discrete spectra can be use

More information

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1 Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction Phys 2435: Chap. 36, Pg 1 Single Slit New Topic Phys 2435: Chap. 36, Pg 2 Diffraction: bending of light around

More information

Electromagnetic Waves

Electromagnetic Waves Slide 1 / 125 Slide 2 / 125 Electromagnetic Waves www.njctl.org Table of Contents Slide 3 / 125 Click on the topic to go to that section An Abridged "History" of Light Reflection, Refraction and ispersion

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

Chapter 4: Fourier Optics

Chapter 4: Fourier Optics Chapter 4: Fourier Optics P4-1. Calculate the Fourier transform of the function rect(2x)rect(/3) The rectangular function rect(x) is given b 1 x 1/2 rect( x) when 0 x 1/2 P4-2. Assume that ( gx (, )) G

More information

Chapters 11, 12, 24. Refraction and Interference of Waves

Chapters 11, 12, 24. Refraction and Interference of Waves Chapters 11, 12, 24 Refraction and Interference of Waves Beats Two overlapping waves with slightly different frequencies gives rise to the phenomena of beats. Beats The beat frequency is the difference

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 28 Physics, 4 th Edition James S. Walker Chapter 28 Physical Optics: Interference and Diffraction Units of Chapter 28 Superposition and Interference Young s Two-Slit Experiment

More information

Lecture 8 Camera Models

Lecture 8 Camera Models Lecture 8 Caera Models Professor Silvio Savarese Coputational Vision and Geoetr Lab Silvio Savarese Lecture 8-5-Oct-4 Lecture 8 Caera Models Pinhole caeras Caeras & lenses The geoetr of pinhole caeras

More information

19. Ray Optics. S. G. Rajeev. April 2, 2009

19. Ray Optics. S. G. Rajeev. April 2, 2009 9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.

More information

YOUNGS MODULUS BY UNIFORM & NON UNIFORM BENDING OF A BEAM

YOUNGS MODULUS BY UNIFORM & NON UNIFORM BENDING OF A BEAM YOUNGS MODULUS BY UNIFORM & NON UNIFORM BENDING OF A BEAM RECTANGULAR BEAM PLACED OVER TWO KNIFE EDGES & DISTANCE BETWEEN KNIFE EDGES IS KEPT CONSTANT AS l= 50cm UNIFORM WEIGHT HANGERS ARE SUSPENDED WITH

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Chapter 29: Light Waves

Chapter 29: Light Waves Lecture Outline Chapter 29: Light Waves This lecture will help you understand: Huygens' Principle Diffraction Superposition and Interference Polarization Holography Huygens' Principle Throw a rock in a

More information

Aberrated Edge imaging with annular apertures

Aberrated Edge imaging with annular apertures IOSR Journal of Applie Physics (IOSR-JAP) e-issn: 78-486.Volume 6, Issue 3 Ver. I (May-Jun. 04), PP 08- A. Narsaiah, M.Venkanna* an D. Karuna Sagar Optics Research Group, Department of Physics, Osmania

More information

MODELLING OF GPS SIGNAL LARGE SCALE PROPAGATION CHARACTERISTICS IN URBAN AREAS FOR PRECISE NAVIGATION

MODELLING OF GPS SIGNAL LARGE SCALE PROPAGATION CHARACTERISTICS IN URBAN AREAS FOR PRECISE NAVIGATION Int. J. Elec&Electr.Eng&Telcomm. 2012 G Sateesh Kumar et al., 2012 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 1, No. 1, October 2012 2012 IJEETC. All Rights Reserve MODELLING OF GPS SIGNAL LARGE

More information

Note on Posted Slides. Fermat s Principle of Least Time. History of Light. Law of Reflection The angle of reflection equals the angle of incidence.

Note on Posted Slides. Fermat s Principle of Least Time. History of Light. Law of Reflection The angle of reflection equals the angle of incidence. Note on Posted Slides These are the slides that I intended to show in class on Thu. Apr. 3, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Physics 1C. Lecture 25B

Physics 1C. Lecture 25B Physics 1C Lecture 25B "More than 50 years ago, Austrian researcher Ivo Kohler gave people goggles thats severely distorted their vision: The lenses turned the world upside down. After several weeks, subjects

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Color image recognition by use of a joint transform correlator of three liquid-crystal televisions

Color image recognition by use of a joint transform correlator of three liquid-crystal televisions Color image recognition by use of a joint transform correlator of three liqui-crystal televisions Mei-Li Hsieh, Ken Y. Hsu, an Hongchen Zhai We present a joint transform correlator for color image recognition

More information

Design and Implementation of Dual Frequency Microstrip Patch Antenna with Koch Fractal Geometry using co-axial Feeding Technique

Design and Implementation of Dual Frequency Microstrip Patch Antenna with Koch Fractal Geometry using co-axial Feeding Technique Design an Implementation of Dual Frequency Microstrip Patch Antenna with Koch Fractal Geometry using co-axial Feeing Technique Mr.V.V.Khairnar Prof.Mrs.K.R.Khanagle Prof.Mrs.Abhilasha Mishra the multiban

More information

Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

More information

PES 2130 Fall 2014, Spendier Lecture 23/Page 1

PES 2130 Fall 2014, Spendier Lecture 23/Page 1 PS 13 Fall 14, Spendier Lecture 3/Page 1 Lecture today: Chapter 35 Interference 1) Intensity in Double-Slit Interference ) Thin Film Interference Announcements: - Shortened office hours this Thursday (1-1:3am).

More information

Unit-23 Michelson Interferometer I

Unit-23 Michelson Interferometer I Unit-23 Michelson Interferometer I Objective: Study the theory and the design of Michelson Interferometer. And use it to measure the wavelength of a light source. Apparatus: Michelson interferometer (include

More information

ELEC2202 Communications Engineering Laboratory Frequency Modulation (FM)

ELEC2202 Communications Engineering Laboratory Frequency Modulation (FM) ELEC Counications Engineering Laboratory ---- Frequency Modulation (FM) 1. Objectives On copletion of this laboratory you will be failiar with: Frequency odulators (FM), Modulation index, Bandwidth, FM

More information

Ray tracing in an inhomogeneous medium

Ray tracing in an inhomogeneous medium /7/1 Waves WKB ray tracing 1 Ray tracing in an inhomogeneous meium Raio waves can "bounce off" the ionosphere, particularly if they are incient at an angle. The inex of refraction of the ionosphere changes

More information

The Physics of Light. Program Support Notes. 29 mins. Physics. VEA Bringing Learning to Life. Suitable for: To order or inquire please contact VEA:

The Physics of Light. Program Support Notes. 29 mins. Physics. VEA Bringing Learning to Life. Suitable for: To order or inquire please contact VEA: VEA Bringing Learning to Life Program Support Notes The Physics of Light 29 mins Program Support Notes by John Nicholson, B Sc (Hons), Dip Ed, Ph D (La Trobe); Grad Dip Comp Ed, M Ed (Melbourne) Produced

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

The Analysis and Complementarity of Abbe Principle Application Limited in Coordinate Measurement

The Analysis and Complementarity of Abbe Principle Application Limited in Coordinate Measurement Proceeings of the Worl Congress on Engineering 00 Vol III The Analysis an Complementarity of Abbe Principle Application Limite in Coorinate Measurement Fei Yetai, Shang Ping, Chen Xiaohuai, Huang Qiangxian

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS

A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS John J. Degnan, Sigma Space Corporation, Lanham, MD 76 USA John.Degnan@sigmaspace.com, FAX: +---9

More information

SSM2040 Filter Analysis Part 1 - Ryan Williams

SSM2040 Filter Analysis Part 1 - Ryan Williams SSM2040 Filter Analysis Part 1 - Ryan Williams http://www.siy.org/estrukto The following analysis is use to etermine the maximum bias current neee for the iscrete OTA cells in the ssm2040 filter (René

More information

AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS

AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS The popularity of high-quality refractors draws attention to color correction in such instruments. There are several point of confusion and misconceptions.

More information

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS M. Ochiai, T. Miura, H. Kuroa, S. Yamamoto, an T. Onoera Toshiba Corporation, Yokohama, Kanagawa, Japan Abstract: On the nonestructive

More information

a) How big will that physical image of the cells be your camera sensor?

a) How big will that physical image of the cells be your camera sensor? 1. Consider a regular wide-field microscope set up with a 60x, NA = 1.4 objective and a monochromatic digital camera with 8 um pixels, properly positioned in the primary image plane. This microscope is

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

Exam 3--PHYS 2021M-Spring 2009

Exam 3--PHYS 2021M-Spring 2009 Name: Class: Date: Exam 3--PHYS 2021M-Spring 2009 Multiple Choice Identify the choice that best completes the statement or answers the question Each question is worth 2 points 1 Images made by mirrors

More information

Physics Learning Guide Name:

Physics Learning Guide Name: Physics Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have this

More information

CH 24 SLOPE. rise = run. Ch 24 Slope. Introduction

CH 24 SLOPE. rise = run. Ch 24 Slope. Introduction 9 CH SLOPE Introduction A line has any attributes, or characteristics. Two of the ost iportant are its intercepts and its slope. The intercepts (previous chapter) tell us where the line crosses the x-axis

More information

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

More information