A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS

Size: px
Start display at page:

Download "A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS"

Transcription

1 A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS John J. Degnan, Sigma Space Corporation, Lanham, MD 76 USA FAX: Abstract Low energy, picosecon pulse oscillators typically require several orers of magnitue amplification to be useful in khz satellite laser ranging systems, altimetry, or other applications. The present paper escribes a totally passive amplifier esign, base on egenerate optical resonators, which permits high multipass amplification of ultrashort pulses in a compact package, requires no active switching components, an shoul be relatively simple to align. INTRODUCTION New kilohertz satellite laser ranging systems rely on either passively Q-switche microchip or SESAM (SEmiconuctor Saturable Absorbing Mirrors) laser oscillators for the generation of picosecon pulsewiths. Microchip lasers (e.g. SLR) typically generate several microjoule pulse energies at few khz rates with pulsewiths on the orer of a few hunre picosecons. SESAM evices (e.g. Graz) can prouce much shorter pulses between an psec but with significantly lower energies, typically sub-microjoule. Furthermore, if one operates at khz fire rates, the amplifiers can be pumpe with CW ioe laser arrays for longer life an reliability, but the resulting gain per pass is relatively low compare to pulse-pumpe systems. As a result, the pulse must pass through several stages of low-gain amplification in orer to reach pulse energies of several hunre microjoules require for robust photon-counting of satellite returns. In the NASA SLR system, the oscillator pulse is passe six times through a single amplifier hea using three carefully aligne mirrors while, in the High-Q system use at Graz, the SESAM oscillator pulse is input to a relatively large regenerative amplifier with complex pulse switching electronics followe by a conventional amplifier. As an alternative, we propose a totally passive, multipass amplifier base on the concept of stable egenerate optical resonators [Ramsay an Degnan, 97]. A comparison of the three multipass amplifier techniques is illustrate in Fig.. STABLE DEGENERATE OPTICAL RESONATORS The characteristics of any optical resonator are efine by the raii of curvature of two mirrors, b an b, an the istance between them. Paraxial rays will never walk out of the resonator, i.e. the resonator is stable, if the following stability conition is satisfie () b b At certain mirror separations, the resonator becomes egenerate an can be characterize by an integer N. These iscrete separations are efine by the equation ± b + b πk K= for N= N ( N K ) = ± b + b + b b cos, < K<N/ for N > provie K > is not ivisible into N ()

2 For each value of K an N, there are two istinct separations which prouce the egeneracy. Table illustrates the vali values for K up to N =8 N = K= Table : Vali K-values as a function of the egeneracy factor, N. Passive Amplifier/Multiple Mirrors (e.g. Q-Peak laser in SLR) Laser Slab HV HV Regenerative Amplifiers (e.g. NASA STALAS Laser or High-Q laser at Graz) Q- switch Laser Ro out Q- switch in Out Degenerate Optical Resonators In 7.7 xn j mm Laser Slab a 7.7 z j Figure : Some multipass amplifier approaches. Degenerate resonators exhibit a number of interesting physical effects, among them: The Hermite-Gaussian (TEM mnq ) resonator moes ivie into N iscrete frequencies separate by c/nl where L is the resonator length; thus, N= represents the highest egeneracy where all spatial moes oscillate at the same frequency. Hole-couple lasers exhibit large power losses because the frequency-egenerate TEM moes can couple together to create a low loss composite moe with a null at the coupling hole Internal ray paths can be efine which repeat themselves after N roun trips in the resonator It is this last feature which suggests their use in passive multipass amplifiers.

3 SPECIAL CASE #: SYMMETRIC RESONATORS If the two mirror raii of curvature are equal (b = b = b), the egeneracy equation simplifies to: ± πk ( N, K ) = b ± cos N Figure isplays the resonance positions of a symmetric resonator for N = to 6. The vertical scale inicates the level of egeneracy, N. 6 Degeneracy, N Resonator Length (normalize to b) Figure : Degenerate mirror separations for a symmetric resonator for N = to 6. The stable range is < < b. The + an - positions are inicate by the re an blue lines respectively. For each egenerate separation, there are two types of ray paths, ecliptic or non-ecliptic, as illustrate in Figure for N = an K =. Ecliptic rays make N passes through the amplifier slab before retracing the same path in the opposite irection. Non-ecliptic rays, on the other han, never retrace the same path an therefore have the following potential avantages over ecliptic rays:. The angularly separate input an output beams o not require aitional optical isolation between the oscillator an amplifier. There is no nee for an inepenent means (e.g. polarization rotation) of separating the input an output beams. The circulating beam samples more of the pumpe amplifier volume for better energy extraction Ecliptic ray paths, on the other han, may offer avantages in terms of ease of alignment since the input an output beams are coaxial an normal to the reflecting surface of the input mirror. Furthermore, as we shall see later, ecliptic paths also len themselves more easily to variable pass amplifier systems.

4 Ecliptic z i slab := i i Non-Ecliptic + Ecliptic Ray Trace for + slab Non-Ecliptic Ray Trace for + slab Ecliptic Ray Trace for - slab Non-Ecliptic Ray Trace for - slab (a) (b) Figure : Ray traces for a symmetric resonator with egeneracy N = an K =; (a) Ecliptic ray traces for + (top) an - (bottom) ; (b) Non-ecliptic ray traces for same geometries. SPECIAL CASE #: FLAT-CONCAVE RESONATORS (b = ) If one mirror raius of curvature is infinite ( b = ), the egeneracy equation simplifies to: b πk ( N, K ) = cos N Figure isplays the resonance positions of the flat-concave resonator for N = to 6. The vertical scale again inicates the level of egeneracy, N. Unlike the general or symmetric resonator cases, there is now only one egenerate mirror separation for each value of N an K. For each egenerate position, one can again efine ecliptic an non-ecliptic ray paths which repeat themselves after N roun trips through the resonator.

5 6 Degeneracy, N Resonator Length (normalize to b) Figure : Degenerate mirror separations (normalize to the raius of curvature b of the non-flat mirror) for the generalize flat-concave resonator for N = to 6. The stable region is now efine by < < b. Ecliptic Ray Trace Non-Ecliptic Ray Trace (a) (b) Figure : Ray traces for a Flat-Concave resonator with egeneracy N = an K =; (a) Ecliptic ray trace; (b) Non-ecliptic ray trace. The flat mirror is assume to be locate to the left of each ray trace. VARIABLE PASS AMPLIFIER DESIGN Figure (a) suggests a esign for a simple variable pass amplifier. As illustrate in Figure 6, the incoming collimate p-polarize beam from the oscillator passes through the polarizer an is rotate to circular polarization by a quarter-wave plate. Assume that the left ege of the slab is coate with a highly reflecting mirror at 6 nm except for a small section at the top which is antireflection (AR) coate. The input beam is then inserte normal to the slab surface in the ARcoate region, makes an arbitrary number of passes (N) through the amplifier epenent on the positioning of the single translatable mirror on the right, exits the multipass amplifier through the same AR-coate surface as the entry beam, is rotate to s-polarization by the secon pass through the quarter-wave plate, an is reflecte off the input polarizer. Dioe pumping of the slab can be accomplishe through the eges of the slab or through the top of the slab The

6 amplifier esign also transfers the Gaussian properties (raius, phasefront curvature) of the input beam to the exit beam at all egenerate mirror separations since the roun trip ray matrix for the resonator taken to the Nth power always equals the ientity matrix [Ramsay an Degnan,97]. Thus, the exit beam will have the same spot size an ivergence as the input beam [Degnan, ]. In orer to suppress self-oscillations along or near the amplifier optic axis where the two mirror surfaces are approximately parallel, it may be necessary to introuce a region of low reflectivity in the center of the spherical mirror by either () leaving the center uncoate, () AR-coating the center, or () introucing a central hole. This has no effect on the amplification since the ecliptic rays entering from the flat sie of the resonator never reflect off the center of the spherical mirror. However, the iameter of the low reflectivity area will impose an upper limit on the number of rountrip passes that can be achieve without having the amplifie beam attenuate by the low reflectivity spot. IN λ/ plate N = 7 6 HR Mirror OUT LASER SLAB Mirror on Translation Stage K = Figure 6: Concept for a compact, passive, multipass amplifier base on ecliptic rays in a flat-concave egenerate resonator. The egeneracy N, an the number of passes through the amplifier (N), can be varie by moving the spherical mirror on a precision translation stage. Differently colore rays are associate with ifferent values of N (re =, blue =, green =, etc) SUMMARY Microchip an SESAM oscillators can generate picosecon pulses at multi-khz rates but only at low single pulse energies (several microjoules or less). Since many applications (SLR, D imaging liar, etc.) require pulse energies ranging from several tens of microjoules to several millijoules, there is a general nee for high amplifications in a compact, efficient, ioe-pumpe package. Furthermore, since CW-ioe pumpe amps typically have low single pass gains, many passes through the amplifier may be require to reach the require pulse energies an to extract the store energy efficiently. Regenerative amplifiers can achieve this, but they are usually quite large an require high spee, high voltage electro-optic switches Totally passive egenerate resonator multipass amplifiers are an attractive alternative to multiple mirror systems as use in SLR an can potentially provie : High multipass gain in a compact, easily aligne package

7 . A fair amount of isolation from the oscillator an reuce internal feeback for suppressing self-oscillations within the amplifier Variable number of passes with one translating mirror which can be set for optimum performance or compensate for a egraation in oscillator power Excellent beam control since it preserves the gaussian parameters of the input beam at the output ue to perioic refocusing REFERENCES Ramsay, I. A. an J. J. Degnan, "A Ray Analysis of Optical Resonators Forme by Two Spherical Mirrors", Applie Optics, Vol. 9, pp. 8-98, February, 97. Degnan, J.J., Ray Matrix Approach for the Real Time Control of SLR Optical Elements, these proceeings,.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS

1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS .0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS James C. Wyant Optical Sciences Center University of Arizona Tucson, AZ 8572 jcwyant@u.arizona.eu If we wish to completely characterize the paraxial

More information

Macro-channel cooled, high power, fiber coupled diode lasers exceeding 1.2kW of output power

Macro-channel cooled, high power, fiber coupled diode lasers exceeding 1.2kW of output power Macro-channel coole, high power, fiber couple ioe lasers exceeing 1.2kW of output power Tobias Koenning* a, Kim Alegria a, Zoulan Wang a, Armin Segref a, Dean Stapleton a, Wilhelm Faßbener b, Marco Flament

More information

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography V. Sherstobitov*, A. Rodionov**, D. Goryachkin*, N. Romanov*, L. Kovalchuk*, A. Endo***, K. Nowak*** *JSC Laser Physics, St. Petersburg,

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser High Average Power, High Repetition Rate Side-Pumped Nd:YVO Slab Laser Kevin J. Snell and Dicky Lee Q-Peak Incorporated 135 South Rd., Bedford, MA 173 (71) 75-9535 FAX (71) 75-97 e-mail: ksnell@qpeak.com,

More information

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing Module 4 : Third order nonlinear optical processes Lecture 24 : Kerr lens modelocking: An application of self focusing Objectives This lecture deals with the application of self focusing phenomena to ultrafast

More information

AN-1140 APPLICATION NOTE

AN-1140 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwoo, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Microphone Array Beamforming by Jera Lewis INTRODUCTION All MEMS microphones

More information

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1 Lecture 7 Optical receivers p i n ioes Avalanche ioes Receiver esign Receiver noise Shot noise Thermal noise Signal-to-noise ratio Fiber Optical Communication Lecture 7, Slie 1 Optical receivers The purpose

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

Single frequency MOPA system with near diffraction limited beam

Single frequency MOPA system with near diffraction limited beam Single frequency MOPA system with near diffraction limited beam quality D. Chuchumishev, A. Gaydardzhiev, A. Trifonov, I. Buchvarov Abstract Near diffraction limited pulses of a single-frequency and passively

More information

Measurement of Semi-Anechoic Chamber Using Modified VSWR method above 1GHz

Measurement of Semi-Anechoic Chamber Using Modified VSWR method above 1GHz Measurement of Semi-Anechoic Chamber Using Moifie VSWR metho above 1GHz M. Bittera, K. Kováč, J. Hallon Department of Measurement, Faculty of Electrical Engineering an Information Technology, Slovak University

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS M. Ochiai, T. Miura, H. Kuroa, S. Yamamoto, an T. Onoera Toshiba Corporation, Yokohama, Kanagawa, Japan Abstract: On the nonestructive

More information

Double Closed-loop Control System Design of PMSM Based on DSP MoupengTao1, a,songjianguo2, b, SongQiang3, c

Double Closed-loop Control System Design of PMSM Based on DSP MoupengTao1, a,songjianguo2, b, SongQiang3, c 4th International Conference on Mechatronics, Materials, Chemistry an Computer Engineering (ICMMCCE 2015) Double Close-loop Control System Design of PMSM Base on DSP MoupengTao1, a,songjianguo2, b, SongQiang3,

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

SECOND HARMONIC GENERATION AND Q-SWITCHING

SECOND HARMONIC GENERATION AND Q-SWITCHING SECOND HARMONIC GENERATION AND Q-SWITCHING INTRODUCTION In this experiment, the following learning subjects will be worked out: 1) Characteristics of a semiconductor diode laser. 2) Optical pumping on

More information

Wind sculpture. Cable 2. Cable 1. Sculpture

Wind sculpture. Cable 2. Cable 1. Sculpture Win sculpture Your frien, an artist, has been thinking about an interesting way to isplay a new win sculpture she has just create. In orer to create an aural as well as visual effect, she woul like to

More information

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory ULTRAFAST THEORY The distinguishing aspect of femtosecond laser optics design is the need to control the phase characteristic of the optical system over the requisite wide pulse bandwidth. CVI Laser Optics

More information

Large-Area Interference Lithography Exposure Tool Development

Large-Area Interference Lithography Exposure Tool Development Large-Area Interference Lithography Exposure Tool Development John Burnett 1, Eric Benck 1 and James Jacob 2 1 Physical Measurements Laboratory, NIST, Gaithersburg, MD, USA 2 Actinix, Scotts Valley, CA

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser 880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser The goal of this lab is to give you experience aligning a laser and getting it to lase more-or-less from scratch. There is no write-up

More information

KEY FEATURES TEST CAPABILITIES 8000S HIGH POWER EARTH TESTING SYSTEM STANDARDS COMPLIANCE

KEY FEATURES TEST CAPABILITIES 8000S HIGH POWER EARTH TESTING SYSTEM STANDARDS COMPLIANCE KEY FEATURES 8000S HIGH POWER EARTH TESTING SYSTEM High power earth systems (Substations, Transmission towers, etc) have to be perioically monitore to check if they comply with safety levels establishe

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

OPTI 511L Fall (Part 1 of 2)

OPTI 511L Fall (Part 1 of 2) Prof. R.J. Jones OPTI 511L Fall 2016 (Part 1 of 2) Optical Sciences Experiment 1: The HeNe Laser, Gaussian beams, and optical cavities (3 weeks total) In these experiments we explore the characteristics

More information

DPSS 266nm Deep UV Laser Module

DPSS 266nm Deep UV Laser Module DPSS 266nm Deep UV Laser Module Specifications: SDL-266-XXXT (nm) 266nm Ave Output Power 1-5mW 10~200mW Peak power (W) ~10 ~450 Average power (mw) Average power (mw) = Single pulse energy (μj) * Rep. rate

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applie Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomeical Microscopy, 2017-01-10, 8-13, FA32 Allowe ais: Compenium Imaging Physics (hane out) Compenium Light Microscopy (hane

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

1KHz BBO E/O Q-Switched Diode Pumped Er:Glass Laser Experiment

1KHz BBO E/O Q-Switched Diode Pumped Er:Glass Laser Experiment 1KHz BBO E/O Q-Switched Diode Pumped Er:Glass Laser Experiment Ruikun Wu, J.D.Myers, S.J.Hamlin Kigre, Inc. 1 Marshland road Hilton Hear,SC 29926 Phone# : 83-681-58 Fax #: 83-681-4559 E-mail : kigre@ aol.com

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

6. Optical Resonators. (1) c

6. Optical Resonators. (1) c 6. Optical esonators The icrowave resonators are etal boxes or pipes to buil up large fiel intensit with oerate input power, to act as a special an frequenc filter selectivel to fiels, 3 to be use in spectral

More information

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group VELA PHOTOINJECTOR LASER E.W. Snedden, Lasers and Diagnostics Group Contents Introduction PI laser step-by-step: Ti:Sapphire oscillator Regenerative amplifier Single-pass amplifier Frequency mixing Emphasis

More information

Varilite Datasheet. Thread Mountable Laser Diode Module

Varilite Datasheet. Thread Mountable Laser Diode Module Varilite Datasheet Thread Mountable Laser Diode Module Varilite The Varilite range combines all the features of Global Lasers Premier range with the addition of a threaded barrel to simplify mounting and

More information

A fast F-number 10.6-micron interferometer arm for transmitted wavefront measurement of optical domes

A fast F-number 10.6-micron interferometer arm for transmitted wavefront measurement of optical domes A fast F-number 10.6-micron interferometer arm for transmitted wavefront measurement of optical domes Doug S. Peterson, Tom E. Fenton, Teddi A. von Der Ahe * Exotic Electro-Optics, Inc., 36570 Briggs Road,

More information

PicoBlade 2 Picosecond Micromachining Laser. Precision and flexibility for optimized processes a fully featured, machine-ready system

PicoBlade 2 Picosecond Micromachining Laser. Precision and flexibility for optimized processes a fully featured, machine-ready system PicoBlade 2 Picosecond Micromachining Laser Precision and flexibility for optimized processes a fully featured, machine-ready system www.lumentum.com Data Sheet The PicoBlade 2 laser system is a versatile

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Optics Page: 1 fo/u fopkjr Hkh# tu] ugha vkjehks ke] foifr ns[k NksM+s rqjar e/;e eu j ';kea iq#"k flag layi j] lgrs foifr vus] ^cuk^ u NksM+s /;s; ks] j?kqcj jk[ks

More information

Gigashot TM FT High Energy DPSS Laser

Gigashot TM FT High Energy DPSS Laser Gigashot TM FT High Energy DPSS Laser Northrop Grumman Cutting Edge Optronics (636) 916-4900 / Email: st-ceolaser-info@ngc.com 2015 Northrop Grumman Systems Corporation Gigashot TM FT Key Specifications

More information

5kW DIODE-PUMPED TEST AMPLIFIER

5kW DIODE-PUMPED TEST AMPLIFIER 5kW DIODE-PUMPED TEST AMPLIFIER SUMMARY?Gain - OK, suggest high pump efficiency?efficient extraction - OK, but more accurate data required?self-stabilisation - Yes, to a few % but not well matched to analysis

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Solid-State Laser Engineering

Solid-State Laser Engineering Walter Koechner Solid-State Laser Engineering Fourth Extensively Revised and Updated Edition With 449 Figures Springer Contents 1. Introduction 1 1.1 Optical Amplification 1 1.2 Interaction of Radiation

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

Chapter 2 Review of the PWM Control Circuits for Power Converters

Chapter 2 Review of the PWM Control Circuits for Power Converters Chapter 2 Review of the PWM Control Circuits for Power Converters 2. Voltage-Moe Control Circuit for Power Converters Power converters are electrical control circuits that transfer energy from a DC voltage

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

ROLLING ELEMENT BEARING FREQUENCIES FROM 1986 FOILES REPORT, ROLLING ELEMENT BEARING FREQUENCIES 1. INTRODUCTION

ROLLING ELEMENT BEARING FREQUENCIES FROM 1986 FOILES REPORT, ROLLING ELEMENT BEARING FREQUENCIES 1. INTRODUCTION ROLLING ELEMENT BEARING FREQUENCIES FROM 1986 FOILES REPORT, ROLLING ELEMENT BEARING FREQUENCIES WILLIAM C. FOILES 1. INTRODUCTION FIGURE 1. Rolling element bearing geometry These calculate frequencies

More information

Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments

Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments DISTRIBUTION STATEMENT A. Approve for public release; istribution is unlimite. Wave-Inuce Fluctuations in Unerwater Light Fiel: Analysis of Data from RaDyO Experiments Dariusz Stramski Marine Physical

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Faraday Rotators and Isolators

Faraday Rotators and Isolators Faraday Rotators and I. Introduction The negative effects of optical feedback on laser oscillators and laser diodes have long been known. Problems include frequency instability, relaxation oscillations,

More information

A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION

A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION ELIZABETH SKUBAK AND NICHOLAS STEVENSON ADVISOR: PAUL CULL OREGON STATE UNIVERSITY ABSTRACT. The Towers of Hanoi puzzle can be use to label a

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

Experimental Approach for Determining the Received Pattern of a Rascan Holographic Radar Antenna

Experimental Approach for Determining the Received Pattern of a Rascan Holographic Radar Antenna Eperimental Approach for Determining the Receive Pattern of a Rascan Holographic Raar Antenna Masaharu Inagaki Geophysical survey epartment Walnut Lt. Tachikawa, Japan ina_mas@beige.plala.or.jp Timothy

More information

Thin-Disc-Based Driver

Thin-Disc-Based Driver Thin-Disc-Based Driver Jochen Speiser German Aerospace Center (DLR) Institute of Technical Physics Solid State Lasers and Nonlinear Optics Folie 1 German Aerospace Center! Research Institution! Space Agency!

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

The Analysis and Complementarity of Abbe Principle Application Limited in Coordinate Measurement

The Analysis and Complementarity of Abbe Principle Application Limited in Coordinate Measurement Proceeings of the Worl Congress on Engineering 00 Vol III The Analysis an Complementarity of Abbe Principle Application Limite in Coorinate Measurement Fei Yetai, Shang Ping, Chen Xiaohuai, Huang Qiangxian

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl BACKGROUND Multipass optical systems (MOS) are broadly used in absorption, Raman, fluorescence,

More information

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating Spectral density (db) 0 10 20 30 40 Mirror VBG 1053.0 1053.3 1053.6 Wavelength (nm) Frontiers in Optics 2007/Laser

More information

This series of lasers are available with a choice of Nd:YAG, Nd:YLF, and Nd:YVO 4. System Reliability

This series of lasers are available with a choice of Nd:YAG, Nd:YLF, and Nd:YVO 4. System Reliability Photonics Industries DS Series of UV (351/355 nm) diode pumped solid-state Q-switched lasers offer a compact, hands-free system with the long-term reliability that the manufacturing industry demands. Utilizing

More information

WIND TURBINE AMPLITUDE MODULATION NOISE DUE TO TIME- DEPENDENT INTERFERENCE

WIND TURBINE AMPLITUDE MODULATION NOISE DUE TO TIME- DEPENDENT INTERFERENCE WIND TURBINE AMPLITUDE MODULATION NOISE DUE TO TIME- DEPENDENT INTERFERENCE Abstract Stuart Braley Physics Department, University of Aucklan, Private Bag 9019, Aucklan, New Zealan Email: s.braley@aucklan.ac.nz

More information

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 935 940 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity S K

More information

Notes on Laser Resonators

Notes on Laser Resonators Notes on Laser Resonators 1 He-Ne Resonator Modes The mirrors that make up the laser cavity essentially form a reflecting waveguide. A stability diagram that will be covered in lecture is shown in Figure

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

H90. Intellivox ADC-H90. Datasheet EN Shaping the future of sound reinforcement. Applies to Part Numbers: , and

H90. Intellivox ADC-H90. Datasheet EN Shaping the future of sound reinforcement. Applies to Part Numbers: , and H90 Datasheet Applies to Part Numbers: 576126, 577126 an 577136 Intellivox ADC-H90 EN 54-24 Shaping the future of soun reinforcement AXYS ADC-H90 ata sheet rev 2.3 User Notice: No part of this ocument

More information

Fuzzy Polar Dynamic Voltage Restorer as Voltage Sag Restorer and Active Filter Without Zero Sequence Blocking

Fuzzy Polar Dynamic Voltage Restorer as Voltage Sag Restorer and Active Filter Without Zero Sequence Blocking Fuzzy Polar Dynamic Voltage Restorer as Voltage Sag Restorer an Active Filter Without Zero Sequence Blocking Margo P, M Hery P, M Ashari, Zaenal P *),Takashi Hiyama **) *) Dept. of Electrical Eng, Sepuluh

More information

WHITE PAPER. Programmable narrow-band filtering using the WaveShaper 1000S and WaveShaper 4000S. Abstract. 2. WaveShaper Optical Design

WHITE PAPER. Programmable narrow-band filtering using the WaveShaper 1000S and WaveShaper 4000S. Abstract. 2. WaveShaper Optical Design WHITE PAPER Programmable narrow-band filtering using the WaveShaper 1S and WaveShaper 4S Abstract The WaveShaper family of Programmable Optical Processors provide unique capabilities for the manipulation

More information

EE 230 Lecture 27. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 27. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 23 Lecture 27 Nonlinear Circuits an Nonlinear evices ioe BJT MOSFET eview from Last Time: Wein-Brige Oscillator Noninverting Amplifier 1 2 OUT K o 2 1 3 1 ω OSC 1 C C C C Feeback Network Nonlinearity

More information

Acculase Green PWM. Direct Drive Green Laser Diode Module

Acculase Green PWM. Direct Drive Green Laser Diode Module Acculase Green PWM Direct Drive Green Laser Diode Module Acculase Direct Drive Green Available in 520nm wavelength and with powers output powers up to 35mW the Acculase Direct Drive Green PWM represents

More information

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser D.C. Brown, J.M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper Snake Creek Lasers, LLC, Hallstead, PA 18822 ABSTRACT We discuss progress

More information

Electro-Optic Modulators

Electro-Optic Modulators Electro-Optic Modulators Electro-Optic Modulator Family Scientists and engineers rely on our optical modulators for exceptional performance, quality, ease of use, broad selection, and excellent value.

More information

OPTICS AND LASER PHYSICS LABORATORY #10 INSIDE A LASER CAVITY -- EXPLORING STABILITY, POLARIZATION, AND MODES with Mark Chawla and Chris Baird

OPTICS AND LASER PHYSICS LABORATORY #10 INSIDE A LASER CAVITY -- EXPLORING STABILITY, POLARIZATION, AND MODES with Mark Chawla and Chris Baird -- EXPLORING STABILITY, POLARIZATION, AND MODES with Mark Chawla and Chris Baird What is a laser cavity and how is it deemed to be stable? Most laser cavities are made up of a surprisingly small number

More information

Electro-optic components and systems Toll Free:

Electro-optic components and systems Toll Free: Electro-optic components and systems Toll Free: 800 748 3349 Laser Modulation Choose from our line of modulators and driver electronics Conoptics manufactures an extensive line of low voltage electro-optic

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Research on the mechanism of high power solid laser Wenkai Huang, Yu Wu

Research on the mechanism of high power solid laser Wenkai Huang, Yu Wu International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 015) Research on the mechanism of high power solid laser Wenkai Huang, Yu Wu Lab center, Guangzhou University,

More information

Case Study: Simplifying Access to High Energy sub-5-fs Pulses

Case Study: Simplifying Access to High Energy sub-5-fs Pulses Case Study: Simplifying Access to High Energy sub-5-fs Pulses High pulse energy and long term stability from a one-box Coherent Astrella ultrafast amplifier, together with a novel hollow fiber compressor

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project

The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto-Optic Modulator, and Fiber Optic Cable Coupler Optics Project Stephen W. Jordan Seth Merritt Optics Project PH 464

More information

UNIT IV CONTROLLER TUNING:

UNIT IV CONTROLLER TUNING: UNIT IV CONTROLLER TUNING: Evaluation Criteria IAE, ISE, ITAE An ¼ Decay Ratio - Tuning:- Process Reaction Curve Metho, Continuous Cycling Metho An Dampe Oscillation Metho Determination Of Optimum Settings

More information

Using Chaos to Detect IIR and FIR Filters

Using Chaos to Detect IIR and FIR Filters PIERS ONLINE, VOL. 6, NO., 00 90 Using Chaos to Detect IIR an FIR Filters T. L. Carroll US Naval Research Lab, Coe 66, Washington, DC 07, USA Abstract In many signal processing applications, IIR an FIR

More information

A B C D E F G H REVISIONS NOTES: KP PRESS-FIT INSTALLATIONS ARE SHOWN UNLESS OTHERWISE SPECIFIED.

A B C D E F G H REVISIONS NOTES: KP PRESS-FIT INSTALLATIONS ARE SHOWN UNLESS OTHERWISE SPECIFIED. A B C E F G H ISIONS NOTES: ESCRIPTION BY. THIS OCUMENT CONTROLS INSTALLATION OF INFOCHIP URAPLUG 9. UHF RFI TAG PROUCTS IN THE FOLLOWING PRESS-FIT INSTALLATION TYPES: "NEAR-FLUSH" AN "RECESSE". AHESIVE

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience Michelle Shinn ERL Workshop Jefferson Lab March 22, 2005 Work supported by, the Joint

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

Optical Components - Scanning Lenses

Optical Components - Scanning Lenses Optical Components Scanning Lenses Scanning Lenses (Ftheta) Product Information Figure 1: Scanning Lenses A scanning (Ftheta) lens supplies an image in accordance with the socalled Ftheta condition (y

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

CHARA AO Calibration Process

CHARA AO Calibration Process CHARA AO Calibration Process Judit Sturmann CHARA AO Project Overview Phase I. Under way WFS on telescopes used as tip-tilt detector Phase II. Not yet funded WFS and large DM in place of M4 on telescopes

More information