Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Size: px
Start display at page:

Download "Lecture 7 Fiber Optical Communication Lecture 7, Slide 1"

Transcription

1 Lecture 7 Optical receivers p i n ioes Avalanche ioes Receiver esign Receiver noise Shot noise Thermal noise Signal-to-noise ratio Fiber Optical Communication Lecture 7, Slie 1

2 Optical receivers The purpose of a traitional receiver for OOK is: Convert the optical signal into an electrical signal Recover the ata by: Doing clock recovery Performing ecisions on the obtaine signal In state-of-the-art coherent receivers, aitional functionality is performe in igital signal processing (DSP) Electronic ispersion compensation (EDC) Aaptive equalization Phase synchronization This lecture is about OOK systems Necessary to know about......an still common Fiber Optical Communication Lecture 7, Slie

3 Photoetectors The most critical component is the photoetector Converts the optical signal to an electrical current We want these components to have: High sensitivity Fast response time Low noise High reliability Size compatible with fibers This means that semiconuctor materials are exclusively use Photons are absorbe an generate electron hole (e h) pairs This prouces a photo-current. Basic requirement: The etector material bangap energy (E g ) < the photon energy (hν) Fiber Optical Communication Lecture 7, Slie 3

4 The photocurrent is proportional to the optical power The constant R is the responsivity η = the quantum efficiency = the number of e h pairs per incient photon Ieally η = 1 R R increases with λ until hν = E g R 0 when the photon energy becomes too low Si or GaAs can be use for short wavelengths (λ < 900 nm) InGaAs is most common at 1.3 an 1.55 μm Most communication systems use reverse-biase p n junctions (photoioes) of two main types: p i n photoioes Avalanche photoioes (APD) Photoioes (4.1.1) q h 1.4 [A/W] with in μm I p R P in Fiber Optical Communication Lecture 7, Slie 4

5 p i n ioes (4..) absorption of photons e h pair generation carrier rift ue to built-in an applie fiel inuce current in the external circuit Electric fiel Energy levels p i n ioe: p n junction with an intrinsic (un-ope) layer Response time is limite by the transit time through the i-region W tr v s Responsivity increases with W a trae-off between responsivity an spee High spee (~50 GHz) ioes with η close to unity are available Fiber Optical Communication Lecture 7, Slie 5

6 p i n ioes, performance p n ioes are limite by iffusion (absorption outsie the epletion region) In a p i n ioe, the epletion region is wie (intrinsic, unope) p i n banwith limitations: Parasitic capacitance Reuces the spee of voltage changes Transit time Takes time to collect the carriers The ark current shoul be low Current without input signal Due to stray light an thermal generation of carriers Fiber Optical Communication Lecture 7, Slie 6

7 Examples of p i n ioes Schematic picture of a p i n ioe Green is anti-reflection coating p i n ioes without an with pigtail Important parameters are: Banwith Sensitivity Responsivity Polarization epenence No epenence is preferre Fiber Optical Communication Lecture 7, Slie 7

8 Avalanche photoioes (APDs) (4..3) An APD is a p i n ioe with an extra layer next to the i-region Gives gain through impact ionization an amplifies the signal The responsivity can be >> q/hν The responsivity of an APD is M is the multiplication factor R APD M q h MR The increase responsivity comes at the expense of Enhance noise Reuce banwith Fiber Optical Communication Lecture 7, Slie 8

9 APD multiplication factor The multiplication factor M epens on the geometry of the APD, the electric fiel etc The frequency epenence is M (0) M ( ) 1[ e M (0)] τ e is the effective transit time for the multiplication process A trae-off between multiplication an banwith Si-APDs have very goo performance M > 100, high banwith, relatively low noise Very useful for systems operating near 0.8 μm InGaAs-APDs can be use at 1.3 an 1.55 μm Suffer from smaller multiplication an banwith, an higher noise Fiber Optical Communication Lecture 7, Slie 9

10 Receiver esign (4.3) The igital receiver consists of three parts: Front en (photo-etector, trans-impeance amplifier) Linear channel (amplifier, low-pass filter) Data recovery (clock recovery, ecision circuit) front en linear channel ata recovery h photoioe preamplifier amplifier filter ecision circuit ata voltage supply automatic gain control clock recovery Fiber Optical Communication Lecture 7, Slie 10

11 Receiver front-ens (4.3.1) Transimpeance front-en Rf + - P Cp RL - Vout P Cp + Vout Simple Electrically stable Low sensitivity for small R L High banwith High sensitivity Potentially unstable Small banwith for high R L f 1 R C L p f G R f C p Effective input resistance = R f /G Fiber Optical Communication Lecture 7, Slie 11

12 The linear channel consists of: Linear channel (4.3.) A high-gain amplifier with automatic gain control Constant average output voltage irrespective of the input (within limits) A low-pass filter with banwith chosen to: Reject noise outsie signal banwith Avoi introucing inter-symbol-interference (ISI) The best situation is when the filter (an not other components) limits the overall banwith of the receiver The output voltage spectrum is given by H out (ω) = H T (ω)h p (ω) H p (ω) is the photocurrent spectrum H T (ω) is the total transfer function of the front en an the linear channel Normally, H T (ω) is ominate by the filter transfer function H T (ω) H f (ω) Fiber Optical Communication Lecture 7, Slie 1

13 Data recovery (4.3.3) The ata-recovery section consists of A clock-recovery circuit Extracting a sinusoial component at f = B to enable proper synchronization of the ecision circuit Easily one for an OOK RZ signal with a narrow-ban filter The signal contains a elta function at f = B More ifficult for NRZ No sinusoial spectral components are present Can use a full-wave rectifier to convert the NRZ signal to RZ containing a elta function at f = B A ecision circuit comparing the input voltage with a threshol at the time obtaine from the clock recovery input NRZ ata RZ waveform extracte clock Deciing whether a "1" or a "0" was receive Fiber Optical Communication Lecture 7, Slie 13

14 Eye iagrams The eye iagram is a superposition of all bits on top of each other Looks like an eye Gives a visual way to monitor the receiver performance Left: An ieal NRZ eye iagram Right: An eye iagram egrae by noise an timing jitter A measure RZ eye iagram at 640 Gbit/s Fiber Optical Communication Lecture 7, Slie 14

15 Eye iagram interpretation Fiber Optical Communication Lecture 7, Slie 15

16 Receiver noise (4.4) The etecte photo current in the receiver will contain noise There are two funamental sources of noise Shot noise ue to fiel an charge quantization Thermal noise ue to thermal motion of charges The total current, signal + noise, can be written I( t) R Pin ( t) i ( t) i ( t) s T In aition, there can also be optical noise in P in Comes from lasers an optical amplifiers Will be treate later in the course Remember I p ( t) R Pin ( t) Fiber Optical Communication Lecture 7, Slie 16

17 Shot noise Shot noise arises from the particle nature of the photocurrent Current consists of electrons that can only be escribe statistically Current is not constant but fluctuates Compare with cars on a highway or hails on a roof The variance of the shot noise photocurrent is s i s ( t) Δf is the effective noise banwith of the receiver S s (f) is the shot noise two-sie power spectral ensity (PSD) If the etector ark current I cannot be neglecte we have s q( I I ) f Originating from stray light or thermally generate e h pairs f 0 S s p ( f ) f qi p f Fiber Optical Communication Lecture 7, Slie 17

18 Thermal noise Thermal noise originates from the thermal motion of the electrons The two-sie PSD is hf kbt ST ( f ) R exp( hf / k T) 1 R k B is Boltzmann s constant T is the temperature R L is the loa resistance The noise variance is T i T ( t) B L In aition, thermal noise is also generate in electrical amplifiers Introuce the amplifier noise figure F n to obtain L f 0 S T ( f ) f (4k B T / R L ) f T (4k T / R ) F f B L n Fiber Optical Communication Lecture 7, Slie 18

19 Signal-to-noise ratio (SNR) The ifferent noise sources are uncorrelate We obtain the total noise power accoring to ( I) s T q( I p I ) f (4k B T / R L ) F f n The signal-to-noise ratio (SNR) of an electrical signal is efine as average signal power SNR noise power This efinition is for an analog signal This is not the usual meaning of SNR in igital communication theory Instea E b /N 0 or E s /N 0 is use there E b is the energy per bit E s is the energy per symbol N 0 is the noise PSD I p Fiber Optical Communication Lecture 7, Slie 19

20 For a p i n receiver we have Noise in p i n receivers (4.4.) SNR q( R P When thermal noise ominates, we have When shot noise ominates, we have SNR We note: I R ) f Pin 4( k T / R Different scaling with input power in the two limits Thermal noise ominates at low input power Shot noise ominates at high input power in SNR R 4k L B R Pin qf R Pin TF f n Pin h f 0 B P in P in L ) F f n Fiber Optical Communication Lecture 7, Slie 0

21 Noise in APD receivers (4.4.3) Since R APD = M R, the power of the current increases by M But the noise increases too, so the SNR increase is smaller The APD shot noise variance is The excess noise factor is 1 < F A < M since 0 < k A < 1, (k A = α h /α e, see (4..3)) The SNR becomes qm F ( R P I ) f The shot-noise is increase by M F A F A s SNR qm F A ( M) k M (1 k )( 1/ M) A ( R A P in in A ( MR Pin) I ) f 4( k B T / R L ) F f n Fiber Optical Communication Lecture 7, Slie 1

22 In the thermal noise limit we have A factor of M higher than for the p i n In the shot noise limit we have Noise in APD receivers SNR RLR M P 4k TF f A factor of F A lower than for the p i n ioe A B R Pin SNR qf f n in M Pin h F 0 A f P in P F in A The SNR is increase by an APD in the thermal-noise limit The SNR is ecrease by an APD in the shot-noise limit Fiber Optical Communication Lecture 7, Slie

23 APD avantage over PIN The SNR (Δf = 30 GHz) for a p i n receiver an an APD receiver APD is best at low power p i n is best at high power M = 10 is worse than M = 5 The APD vs the p i n APD avantage over p-i-n ioe SNR M M opt SNR p-i-n 1/M There is an optimum value for M M M opt k A 4kBTF qr ( R P L n in I ) 1/3 Optimum value epens on k A = α h /α e Highest M opt 100 for silicon APD Highest M opt 10 for InGaAs APD Fiber Optical Communication Lecture 7, Slie 3

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 Lecture 4 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Opto-electronic Receivers

Opto-electronic Receivers Purpose of a Receiver The receiver fulfils the function of optoelectronic conversion of an input optical signal into an output electrical signal (data stream). The purpose is to recover the data transmitted

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

RF Microelectronics. Hanyang University. Oscillator. Changsik Yoo. Div. Electrical and Computer Eng. Hanyang University.

RF Microelectronics. Hanyang University. Oscillator. Changsik Yoo. Div. Electrical and Computer Eng. Hanyang University. RF Microelectronics Oscillator Changsik Yoo Div. Electrical an Computer Eng. anyang University. Barkausen s Criterion RF oscillators can be viewe as a feeback circuit with frequency selective network.

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

S Optical Networks Course Lecture 3: Modulation and Demodulation

S Optical Networks Course Lecture 3: Modulation and Demodulation S-72.3340 Optical Networks Course Lecture 3: Modulation and Demodulation Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information

Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component.

Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component. PIN Photodiode 1 OBJECTIVE Investigate the characteristics of PIN Photodiodes and understand the usage of the Lightwave Analyzer component. 2 PRE-LAB In a similar way photons can be generated in a semiconductor,

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

Avalanche Photodiode. Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam. 4/19/2005 Photonics and Optical communicaton

Avalanche Photodiode. Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam. 4/19/2005 Photonics and Optical communicaton Avalanche Photodiode Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam 1 Outline Background of Photodiodes General Purpose of Photodiodes Basic operation of p-n, p-i-n and avalanche photodiodes

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #4, May 9 2006 Receivers OVERVIEW Photodetector types: Photodiodes

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

UNIT III. By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT III. By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT III By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun SYLLABUS Optical Absorption in semiconductors, Types of Photo

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

UNIT - 5 OPTICAL RECEIVER

UNIT - 5 OPTICAL RECEIVER UNIT - 5 LECTURE-1 OPTICAL RECEIVER Introduction, Optical Receiver Operation, receiver sensitivity, quantum limit, eye diagrams, coherent detection, burst mode receiver operation, Analog receivers. RECOMMENDED

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Lecture 2 Fiber Optical Communication Lecture 2, Slide 1

Lecture 2 Fiber Optical Communication Lecture 2, Slide 1 Lecture 2 General concepts Digital modulation in general Optical modulation Direct modulation External modulation Modulation formats Differential detection Coherent detection Fiber Optical Communication

More information

AN-1140 APPLICATION NOTE

AN-1140 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 9106 Norwoo, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Microphone Array Beamforming by Jera Lewis INTRODUCTION All MEMS microphones

More information

Optical Fibre Communication Systems

Optical Fibre Communication Systems Optical Fibre Communication Systems Lecture 4 - Detectors & Receivers Professor Z Ghassemlooy Northumbria Communications Laboratory Faculty of Engineering and Environment The University of Northumbria

More information

ELG3336: Diodes. Riadh Habash,

ELG3336: Diodes. Riadh Habash, ELG3336: ioes Riah Habash, 2012 1 What are ioes? ioes are semiconuctor evices which might be escribe as passing current in one irection only. ioes however are far more versatile evices than that. ioes

More information

A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS

A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS A COMPACT, TOTALLY PASSIVE, MULTI-PASS SLAB LASER AMPLIFIER BASED ON STABLE, DEGENERATE OPTICAL RESONATORS John J. Degnan, Sigma Space Corporation, Lanham, MD 76 USA John.Degnan@sigmaspace.com, FAX: +---9

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

Chapter 2 Review of the PWM Control Circuits for Power Converters

Chapter 2 Review of the PWM Control Circuits for Power Converters Chapter 2 Review of the PWM Control Circuits for Power Converters 2. Voltage-Moe Control Circuit for Power Converters Power converters are electrical control circuits that transfer energy from a DC voltage

More information

ELG2136: Electronics I Diodes

ELG2136: Electronics I Diodes ELG2136: Electronics I ioes Riah W. Y. Habash School of Electrical Engineering an Computer Science University of Ottawa Ottawa, Ontario, Canaa. Riah Habash, SITE, 2012 1 What are ioes? ioes are semiconuctor

More information

Jitter Limitations on a Gigabit Copper Multi- Carrier System

Jitter Limitations on a Gigabit Copper Multi- Carrier System Jitter Limitations on a Gigabit Copper Multi- Carrier System Jan H. Rutger Schraer, Eric A.M. Klumperink, Jan L. Visschers, Bram Nauta University of Twente, IC-Design Group, P.O. Box 7, 75 AE, Enschee,

More information

Photon Count. for Brainies.

Photon Count. for Brainies. Page 1/12 Photon Count ounting for Brainies. 0. Preamble This document gives a general overview on InGaAs/InP, APD-based photon counting at telecom wavelengths. In common language, telecom wavelengths

More information

for optical communication system

for optical communication system High speed Ge waveguide detector for optical communication system Xingjun Wang, Zhijuan Tu and Zhiping Zhou State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics

More information

Using Chaos to Detect IIR and FIR Filters

Using Chaos to Detect IIR and FIR Filters PIERS ONLINE, VOL. 6, NO., 00 90 Using Chaos to Detect IIR an FIR Filters T. L. Carroll US Naval Research Lab, Coe 66, Washington, DC 07, USA Abstract In many signal processing applications, IIR an FIR

More information

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester 2 2009 101908 OPTICAL COMMUNICATION ENGINEERING (Elec Eng 4041) 105302 SPECIAL STUDIES IN MARINE ENGINEERING (Elec Eng 7072) Official Reading Time:

More information

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified High Speed Photodetector. This user s guide will help answer any questions you may have regarding the safe

More information

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec.

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec. MS Thesis esign and Implementation of High-Speed CMOS Clock and ata Recovery Circuit for Optical Interconnection Applications Seong-Jun Song ec. 20, 2002 oratory, epartment of Electrical Engineering and

More information

Professor of Computer Engineering, Shobra Faculty of Engineering, Benha University, Cairo,Egypt, Cairo,Egypt

Professor of Computer Engineering, Shobra Faculty of Engineering, Benha University, Cairo,Egypt, Cairo,Egypt Visible Light Communication (VLC) Channel Moeling [1] M.Mohanna, [2] Raafat A.EL-Kammar, [3] M.LotfyRabeh, [4] Mohame I.Gabr [1] Professor, National Research Institute an Geophysics, Cairo, Egypt [2] Professor

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

Switch-Mode DC-AC Converters

Switch-Mode DC-AC Converters Switch-Moe DC-AC Converters EE 442/642 8-1 Some Applications: AC Motor Drives & P Inverters 8-2 Switch-Moe DC-AC Inverter Four quarants of operation. 8-3 Half-Brige Inverter: 1. Capacitors provie the mi-point.

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal

More information

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS

SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS SIZING OF SMALL SURFACE-BREAKING TIGHT CRACKS BY USING LASER-ULTRASONICS M. Ochiai, T. Miura, H. Kuroa, S. Yamamoto, an T. Onoera Toshiba Corporation, Yokohama, Kanagawa, Japan Abstract: On the nonestructive

More information

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters

Performance of Digital Optical Communication Link: Effect of In-Line EDFA Parameters PCS-7 766 CSDSP 00 Performance of Digital Optical Communication Link: Effect of n-line EDFA Parameters Ahmed A. Elkomy, Moustafa H. Aly, Member of SOA, W. P. g 3, Senior Member, EEE, Z. Ghassemlooy 3,

More information

Module 10 : Receiver Noise and Bit Error Ratio

Module 10 : Receiver Noise and Bit Error Ratio Module 10 : Receiver Noise and Bit Error Ratio Lecture : Receiver Noise and Bit Error Ratio Objectives In this lecture you will learn the following Receiver Noise and Bit Error Ratio Shot Noise Thermal

More information

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University Optical Digital Transmission Systems Xavier Fernando ADROIT Lab Ryerson University Overview In this section we cover point-to-point digital transmission link design issues (Ch8): Link power budget calculations

More information

Analog Input. Current

Analog Input. Current A Continuous-Time Switche- Moulator with Reuce Loop Delay Louis Luh John Choma,Jr. Jerey Draper Electrical Engineering Information Sciences Institute University of Southern California University of Southern

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 016 Lecture 7: Transmitter Analysis Sam Palermo Analog & Mixed-Signal Center Texas A&M University Optical Modulation Techniques

More information

EE 230 Lecture 27. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 27. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 23 Lecture 27 Nonlinear Circuits an Nonlinear evices ioe BJT MOSFET eview from Last Time: Wein-Brige Oscillator Noninverting Amplifier 1 2 OUT K o 2 1 3 1 ω OSC 1 C C C C Feeback Network Nonlinearity

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applie Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomeical Microscopy, 2017-01-10, 8-13, FA32 Allowe ais: Compenium Imaging Physics (hane out) Compenium Light Microscopy (hane

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Non-amplified Photodetectors

Non-amplified Photodetectors Non-amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 9 EOT NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

InGaAs Avalanche Photodiode. IAG-Series

InGaAs Avalanche Photodiode. IAG-Series InGaAs Avalanche Photodiode IAG-Series DESCRIPTION The IAG-series avalanche photodiode is the largest commercially available InGaAs APD with high responsivity and extremely fast rise and fall times throughout

More information

Clocking Techniques (II)

Clocking Techniques (II) Phase-Locke Loops Clocking Techniques (II) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Three-stage ifferential current moe ring oscillator 0.8-m n-well CMOS process

More information

Lecture 5 Fiber Optical Communication Lecture 5, Slide 1

Lecture 5 Fiber Optical Communication Lecture 5, Slide 1 Lecture 5 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 5, Slide 1 Bit error

More information

QUANTUM EFFICIENCY (Q.E)

QUANTUM EFFICIENCY (Q.E) 31 I נספח 1: אופייני פוטודיודות SPETAL ESPONSE The photocurrent produced by a given level of incident light varies with wavelength This wavelength/ response relationship is known as the spectral response

More information

Receiver and Amplifier. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Receiver and Amplifier. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Receiver and Amplifier Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Basic Concept: Optical Receiver Optical Receiver converts the optical signal back into electrical form and retrieve the

More information

Amplified Photodetectors

Amplified Photodetectors Amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 6 EOT AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified Photodetector from EOT. This

More information

A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide

A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide Circuit Level Fault Moel for esistive Shorts of MOS Gate Oxie Xiang Lu, Zhuo Li, Wangqi Qiu, D. M. H. Walker an Weiping Shi Dept. of Electrical Engineering Texas &M University College Station, TX 77843-34,

More information

Chapter 8. Digital Links

Chapter 8. Digital Links Chapter 8 Digital Links Point-to-point Links Link Power Budget Rise-time Budget Power Penalties Dispersions Noise Content Photonic Digital Link Analysis & Design Point-to-Point Link Requirement: - Data

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS

SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS Xiaohua Li 1 1 Department of ECE State University of New York at Binghamton Binghamton, NY 139, USA {xli,jhwu1}@binghamton.eu

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

A 4 th Order Continuous-Time ΔΣ ADC with VCO-Based Integrator and Quantizer

A 4 th Order Continuous-Time ΔΣ ADC with VCO-Based Integrator and Quantizer A 4 th Orer Continuous-Time ΔΣ ADC with VCO-Base Integrator an Quantizer ISSCC 2009, Session 9.5 Matt Park 1, Michael H. Perrott 2 1 Massachusetts Institute of Technology, Cambrige, MA USA 2 SiTime Corporation,

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS High Signal-to-Noise Ratio Ultrafast up to 9.5 GHz Free-Space or Fiber-Coupled InGaAs Photodetectors Wavelength Range from 750-1650 nm FPD310 FPD510-F https://www.thorlabs.com/newgrouppage9_pf.cfm?guide=10&category_id=77&objectgroup_id=6687

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

Where detectors are used in science & technology

Where detectors are used in science & technology Lecture 9 Outline Role of detectors Photomultiplier tubes (photoemission) Modulation transfer function Photoconductive detector physics Detector architecture Where detectors are used in science & technology

More information

Optical schemes of spectrographs with a diffractive optical element in a converging beam

Optical schemes of spectrographs with a diffractive optical element in a converging beam J. ur. Opt. Soc.-api 0, 50 205 www.jeos.org Optical schemes of spectrographs with a iffractive optical element in a converging beam.. Muslimov Kazan National esearch Technical University - KAI, Kazan,

More information

New M-ary QAM Transmission Payload System

New M-ary QAM Transmission Payload System r AIAA ICSSC-005 New M-ary QAM Transmission Payloa System Masayoshi TANAKA * Nihon University, College of Inustrial Technology, --, Izumicho, Narashino, 75-8575, Japan This paper presents a new M-ary moulation

More information

An Introduction to the Silicon Photomultiplier

An Introduction to the Silicon Photomultiplier An Introduction to the Silicon Photomultiplier The Silicon Photomultiplier (SPM) addresses the challenge of detecting, timing and quantifying low-light signals down to the single-photon level. Traditionally

More information

Introduction to Wireless Communication Systems ECE 476/ECE 501C/CS 513 Winter 2003

Introduction to Wireless Communication Systems ECE 476/ECE 501C/CS 513 Winter 2003 Introuction to Wireless ommunication Systems EE 476/EE 5/S 53 Winter 3 Review for Exam # April 5, 3 Exam Details Must follow seating chart - Poste 3 minutes before exam. heating will be treate very seriously.

More information

A-CUBE-Series High Sensitivity APD Detector Modules

A-CUBE-Series High Sensitivity APD Detector Modules Series Description Laser Components new A-CUBE range of APD modules has been designed for customers interested in experimenting with APDs. Featuring a low-noise silicon (or InGaAs) APD with matched preamplifier

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

Optical Sources and Detectors

Optical Sources and Detectors Optical Sources and Detectors 1. Optical Sources Optical transmitter coverts electrical input signal into corresponding optical signal. The optical signal is then launched into the fiber. Optical source

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency

Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency Takuya Kataoka, Masakazu Kato Nagaoka University of Technology Nagaoka, Niigata,Japan takuya_kataoka@stn.nagaokaut.ac.jp

More information

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 8 (August 2013), PP.34-39 Design and Simulation of N-Substrate Reverse Type

More information

Optical Communications. and Optical Networks

Optical Communications. and Optical Networks Optical Communications 128 Gbit/s DP-QPSK (Coherent) Balanced Receiver by Fujitsu (1528 1567 nm) and Optical Networks Demodulation and Detection Professor Syvridis Dimitris 10 Gbit/s PIN-TIA Fiber Coupled

More information

COMPTON SCATTERING. Phys 2010 Brown University March 13, 2009

COMPTON SCATTERING. Phys 2010 Brown University March 13, 2009 COMPTON SCATTERING Phys 00 Brown University March 3, 009 Purpose The purpose of this experiment is to verify the energy epenence of gamma raiation upon scattering angle an to compare the ifferential cross

More information

Photomixer as a self-oscillating mixer

Photomixer as a self-oscillating mixer Photomixer as a self-oscillating mixer Shuji Matsuura The Institute of Space and Astronautical Sciences, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 9-8510, Japan. e-mail:matsuura@ir.isas.ac.jp Abstract Photomixing

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Course Name Course Coe Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dunigal, Hyeraba - 00 04 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK : Power Electronic

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

SOA preamp performance: theoretical modeling

SOA preamp performance: theoretical modeling SOA preamp performance: theoretical modeling ene Bonk, Dora van Veen, Vincent Houtsma, Bell Labs Ed Harstead, member Fixed Networks CTO January 2017 1 eceiver Model for SOA+Filter+PIN / APD Analytical

More information

Chapter 9 answers. Section 9.1. Worked example: Try yourself Heinemann Physics 12 4e APPLYING HUYGENS PRINCIPLE

Chapter 9 answers. Section 9.1. Worked example: Try yourself Heinemann Physics 12 4e APPLYING HUYGENS PRINCIPLE Chapter 9 answers Heinemann Physics 12 4e Section 9.1 Worke example: Try yourself 9.1.1 APPLYING HUYGENS PRINCIPLE On the circular waves shown below, sketch some of the seconary wavelets on the outer wavefront

More information

Engineering Medical Optics BME136/251 Winter 2018

Engineering Medical Optics BME136/251 Winter 2018 Engineering Medical Optics BME136/251 Winter 2018 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) *1/17 UPDATE Wednesday, 1/17 Optics and Photonic Devices III: homework

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

RECENTLY, the 2G standard GSM was enhanced by

RECENTLY, the 2G standard GSM was enhanced by 274 IEEE TRANSACTIONS ON WIREESS COMMUNICATIONS, VO. 5, NO. 2, FEBRUARY 2006 The Training Sequence Coe Depenence of EDGE Receivers using Zero IF Sampling Martin Krueger, Member, IEEE, Robert Denk, an Bin

More information

Notes on Optical Amplifiers

Notes on Optical Amplifiers Notes on Optical Amplifiers Optical amplifiers typically use energy transitions such as those in atomic media or electron/hole recombination in semiconductors. In optical amplifiers that use semiconductor

More information

EE 230: Optical Fiber Communication Transmitters

EE 230: Optical Fiber Communication Transmitters EE 230: Optical Fiber Communication Transmitters From the movie Warriors of the Net Laser Diode Structures Most require multiple growth steps Thermal cycling is problematic for electronic devices Fabry

More information

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007 EE 171 MOS Transistors (Chapter 5) Uniersity of California, Santa Cruz May 1, 007 FET: Fiel Effect Transistors MOSFET (Metal-Oxie-Semiconuctor) N-channel (NMOS) P-channel (PMOS) Enhancement type (V to

More information

Lecture 4 INTEGRATED PHOTONICS

Lecture 4 INTEGRATED PHOTONICS Lecture 4 INTEGRATED PHOTONICS What is photonics? Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages

More information