Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Size: px
Start display at page:

Download "Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping"

Transcription

1 Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, Gummersbach, Germany Abstract: An all-fiber four-wavelength coherent Doppler lidar system in MOPA configuration with feedback controlled pulse shaping was developed. Four cw-lasers tuned to wavelengths of the ITU-grid near 1.55 µm are multiplexed and guided to the detector unit to serve as local oscillators (LO), and to the pulse-shaping unit. In this unit, the demultiplexed cw-wavelengths are individually modulated and collectively frequency shifted. The pulses seed a three-stage erbium-doped fiber amplifier. The feedback controlled pulse-shape unit (FCPS) controls pulse energy and the shape of the amplified pulses, and detects the onset of the back propagating SBS-wave. Application of FCPS results in a higher output energy, because of optimized pulse shapes and long term stability. The received multi-wavelength lidar signals are demultiplexed and mixed with the corresponding LO on a balanced detector and digitized. The data processing is performed by using the graphical processor of a PC. Keywords: all-fiber coherent lidar, multi-wavelength, multi-channel, pulse-shape control 1. Introduction Using fiber amplifiers in all-fiber coherent Doppler lidar systems has become more attractive due to many advantages in terms of stability under vibrations, maintenance, and compactness. The main pulse energy limiting effect of those fiber amplifiers is the stimulated Brillouin scattering (SBS). Due to the large spike on the leading edge of the output pulse, the SBS threshold is reached at very low possible pulse energy. Therefore, an adapted shape of the seed pulse is necessary to prevent SBS at very low energy. [1, 2] One important advantage of fiber amplifiers is that the output shape can be affected by the shape of the seed pulse. In this work, we present some properties of the four-wavelength Doppler lidar system [3] and the improved pulse-shape feedback control technique [4] which is capable of adjusting arbitrary pulse shapes for each channel of this lidar system. 2. Methodology The four-channel coherent Doppler lidar system with the main components is depicted in figure 1. This lidar system mainly consists of five sub-assemblies: the master oscillator unit, the pulse-shape control unit, the amplifier and transceiver unit, the detector unit, and the signal processing unit. All components of this lidar system are polarization maintaining and fiber-based. Four external cavity diode laser modules (LD) generate continuous-wave laser light in the master oscillator unit for each channel. The wavelengths are selected near 1.55 µm for low extinction in the atmosphere. The chosen channels from the ITU-grid (ITU: International Telecommunication Union) are channel 27, 31, 34, and 36. The laser modules parameters, such as temperature and laser diode current, were adjusted for highest side-mode suppression. All channels are simultaneously amplified in one erbium-doped fiber amplifier (EDFA), where the pump power is shared among those channels. However, the strongest channel with the highest gain becomes even stronger while passing through the fiber amplifier, reducing the gain of weaker channels. Due to those aspects, electronically changeable variable attenuators (VOA) are used to CLRC 2016, June 26 July 1 1

2 compensate those changes in intensity. The VOAs are feedback controlled by the local oscillator control unit (LOC). This control system balances the channel power and sets the local power to the maximum efficiency on power penalty (1.6 mw). The local power of every channel is measured, using the monitor outputs of the balanced detectors (BD) as the actual value. All four channels are combined by a wavelength division multiplexer (WDM) and amplified by one EDFA to a total power of 200 mw. A part of that laser light is used as the local oscillator and 80 % of the master oscillator are guided to the pulse-shape control unit. Figure 1. Setup of the multi-channel coherent Doppler lidar system. In the pulse-shape control unit the laser light is demultiplexed, in order to separately shape the pulses of each channel with an electro-optic modulator (EOM). The time scale of every channel has a resolution of 10 bit with a sampling rate of 100 MS/s. Within this time range of μs, arbitrary pulse shapes and sequences can be independently generated on every channel. The pulse amplitude of each channel has a CLRC 2016, June 26 July 1 2

3 dynamic range of 8 bit, in which a value of 0 corresponds to maximum attenuation within the limits of those EOMs (30-35 db). A value of 255 sets the amplitude to minimum attenuation, which corresponds to the insertion loss of such EOMs (~6 db). Then, all pulses are simultaneously frequency shifted by an acoustooptic modulator (AOM) to enable positive and negative radial wind velocity measurements. Using both modulators for pulse shaping, the minimum needed extinction ratio of 85 db is achieved to prevent additional peaks in the Doppler spectrum. The pulses are additionally shaped by this AOM with a 10 bit dynamic range to compensate the pulse distortion due to gain saturation of the following three EDFAs. The insertion loss of this AOM is 4 db, resulting in a 12 db overall insertion loss of the pulse shaping unit, including the loss of the WDMs. The pulse-shape control unit is configured as the master trigger of the lidar system, where the PRF can be set to a value between 100 Hz and 90 khz. The weak pulses are amplified to a peak power of around 2 W by means of a two-stage standard EDFA in order to seed the LMA EDFA. To monitor the pulses to be transmitted, a coupler tapes around 0.5 % of the output pulse power. After attenuation, the wavelength-channels are demultiplexed and four photo diodes (PD) measure the shape of the pulses for each channel separately. The pulses are digitized within the feedback control unit (FCU) with a sampling rate of 100 MS/s. This unit controls the EOMs, the AOM, and the third EDFA stage. For additional shaping with the AOM, which compensates the gain saturation of the three-stage fiber amplifier, a constant second degree polynomial function is applied to the driver voltage. The set values of the EOMs and the EDFA are controlled by the feedback control unit, as shown in figure 2. Figure 2. Schematic of the feedback controlled pulse shaping. The pulse-shape control system consists of two nested controller loops. The EOM control loop controls the amplitude values of each sample point of the pulse and the EDFA control loop controls the overall pulse energy via the pump power. Starting the control system, the EDFA is turned on at low pump power, the EOMs provide a squared shaped pulse on every channel, and the AOM shapes those pulses. Each pulse shape is measured and digitized with M sampling points. The measured actual pulse shapes are converted (A C) and each sampling point is compared to the set value of the target pulse shape. The resulting M control errors are sent through a PI controller. The control signals of all sampling points per channel are filtered to prevent oscillation due to clock jitter. The corrected M values are normalized to the maximum amplitude of all channels within the limits of the EOMs. This ensures maximized seed power for the amplifier chain, because at least one set point of the EOMs is 255. Those corrected values are converted to a voltage and applied to the EOM driver. The actual value of the EDFA control loop is the measured pulse energy, which is proportional to the sum of the sampling amplitudes of all channels. This actual value is compared to the CLRC 2016, June 26 July 1 3

4 set value, which is often the SBS limited pulse energy. The control error is sent through a PI controller and the resulting control signal is limited to the lower and upper limit. The range limited control signal is converted to a voltage, which is applied to the pump power of the EDFA. Via a circulator (CI) the amplified and feedback controlled pulses are directed to the telescope (TC). The polarization sensitive transceiver is realized by a quarter-wave plate and a polarization beam splitter (PBS). With this configuration a transmit pulse isolation of ~80 db is achieved at the expense of a higher loss of the returned signal of about 0.4 db. The backscattered light is guided to the detection unit, where the wavelengths of the local oscillator and the backscattered light are demultiplexed, thus, every channel can be mixed separately onto its balanced detector (BD). The amplified differential signal eliminates the DC and amplifies the AC component of the heterodyne signal. After analog signal processing, the heterodyne signal is digitized and the raw data are sent to the personal computer (PC). An algorithm on the graphical processor extracts the information on wind velocity and signal strength in real time. 3. Results The multi-channel lidar system is capable of controlling arbitrary pulse shapes and sequences. To show one possible example, figure 3 depicts four shifted and shaped pulses, which are simultaneously amplified in one EDFA with a PRF of 10 khz. Since this lidar system runs with four channels in parallel, the effective PRF is 40 khz with the corresponding range ambiguity to 10 khz of 15 km. The advantages of shifting the pulses by 25 µs, compared to the amplification without shifting, are the reduced amplified spontaneous emission (ASE) in the power amplifier and the independent SBS threshold for each channel. At the beginning of the pulse the SBS threshold is higher than at the end of the pulse, which was measured with a SBS detection module. Therefore, it is suitable to create pulse shapes which are higher on the leading edge. We investigated that for pulse durations between 100 ns and 1 µs a ratio of 0.7 is ideal for maximum pulse energy. The possible improvement in pulse energy is about 10 % compared to squared shaped pulses. Figure 3. Measurement of the simultaneously amplified pulse train with energy optimized pulse shapes. The wavelength-channel dependent SBS thresholds for a standard and a LMA EDFA are listed in table 1. Those values correspond to a pulse duration of 300 ns. The SBS threshold increases with longer wavelength due to the lower SBS gain coefficient compared to a shorter wavelength [5]. Therefore, the possible peak power is highest for channel 27 and lowest for channel 36 for both types of amplifiers. During the start-up and due to changes in the ambient temperature, the gain of an EDFA varies until the thermal equilibrium is reached. During that time the averaged output power of the fiber amplifier is not stable at constant pump power. In consequence, those systems have to operate below the SBS threshold. CLRC 2016, June 26 July 1 4

5 Those downsides can be compensated by using this pulse-shape control system, which ensures a reliable and stable long term operation close to the SBS limit. Table 1. SBS limited peak power of the feedback controlled amplified pulses. channel Standard EDFA LMA 1 st Gen. LMA 2 nd Gen. CH nm 7.7 W 88 W CH nm 8.8 W 92 W CH nm 9.1 W 115 W ~ 350 W CH nm 10.9 W 128 W 4. Conclusion and future work We present a feedback control technique which is capable of adjusting any given pulse shape for each channel of a four-wavelength Doppler lidar system. This control system enhances the performance and the long term stability of coherent Doppler lidar systems. In future we will apply this control system to the 2 nd generation LMA EDFA, where a peak value of around 350 W is expected. 5. References [1] S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, Compact all-fiber pulsed coherent Doppler lidar system for wind sensing, Appl. Opt., 46, (2007). [2] N. S. Prasad, R. Sibell, S. Vetorino, R. Higgins, and A. Tracy. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications, in Laser Radar Technology and Applications XX; and Atmospheric Propagation XII, (Society of Photo-Optical Instrumentation Engineers, Baltimore, 2015), 94650C. [3] A. Töws and A. Kurtz, A multi-wavelength LIDAR system based on an erbium-doped fiber MOPA-system, in Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, (Society of Photo-Optical Instrumentation Engineers, Amsterdam, 2014), 92460T. [4] A. Töws and A. Kurtz, Pulse-shape control in an all-fiber multi-wavelength Doppler lidar, (27 th International Laser Radar Conference, New York, 2015). [5] L.V. Kotov, A. Töws, A. Kurtz, K.K. Bobkov, S.S. Aleshkina, M.M. Bubnov, D.S. Lipatov, A.N. Guryanov, and M. Likhachev, Fiber Lasers XIII: Technology, Systems, and Applications, in Fiber Lasers XIII: Technology, Systems, and Applications, (Society of Photo-Optical Instrumentation Engineers, San Francisco, 2016), 97282U. CLRC 2016, June 26 July 1 5

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system Th12 Albert Töws Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system Albert Töws and Alfred Kurtz Cologne University of Applied

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module INFORMATION & COMMUNICATIONS 11.1 Gbit/s Pluggable Small Form Factor DWDM Transceiver Module Yoji SHIMADA*, Shingo INOUE, Shimako ANZAI, Hiroshi KAWAMURA, Shogo AMARI and Kenji OTOBE We have developed

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

Range Dependent Turbulence Characterization by Co-operating Coherent Doppler Lidar with Direct Detection Lidar

Range Dependent Turbulence Characterization by Co-operating Coherent Doppler Lidar with Direct Detection Lidar Range Dependent Turbulence Characterization by Co-operating Coherent Doppler idar with Direct Detection idar Sameh Abdelazim(a), David Santoro(b), Mark Arend(b), Sam Ahmed(b), and Fred Moshary(b) (a)fairleigh

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

ModBox - Spectral Broadening Unit

ModBox - Spectral Broadening Unit ModBox - Spectral Broadening Unit The ModBox Family The ModBox systems are a family of turnkey optical transmitters and external modulation benchtop units for digital and analog transmission, pulsed and

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION Steve Yao Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Lei Zong, Ting Wang lanezong@nec-labs.com NEC Laboratories America, Princeton, New Jersey, USA WOCC 2007

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement

A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement PHOTONIC SENSORS / Vol. 6, No. 2, 216: 121 126 A Hybrid Φ/B-OTDR for Simultaneous Vibration and Strain Measurement Fei PENG * and Xuli CAO Key Laboratory of Optical Fiber Sensing & Communications (Ministry

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

Multiwatts narrow linewidth fiber Raman amplifiers

Multiwatts narrow linewidth fiber Raman amplifiers Multiwatts narrow linewidth fiber Raman amplifiers Yan Feng *, Luke Taylor, and Domenico Bonaccini Calia European Southern Observatory, Karl-Schwarzschildstr., D-878 Garching, Germany * Corresponding author:

More information

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

Femtosecond Synchronization of Laser Systems for the LCLS

Femtosecond Synchronization of Laser Systems for the LCLS Femtosecond Synchronization of Laser Systems for the LCLS, Lawrence Doolittle, Gang Huang, John W. Staples, Russell Wilcox (LBNL) John Arthur, Josef Frisch, William White (SLAC) 26 Aug 2010 FEL2010 1 Berkeley

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams The System-FE-1064nm is set to generate short shaped pulses with high extinction ratio at 1064.1 nm. It allows dynamic extinction ratio up to 55 db with user adjustable pulse duration, repetition rate

More information

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings Optimisation of DSF and SOA based Phase Conjugators by Incorporating Noise-Suppressing Fibre Gratings Paper no: 1471 S. Y. Set, H. Geiger, R. I. Laming, M. J. Cole and L. Reekie Optoelectronics Research

More information

Optical Remote Sensing with Coherent Doppler Lidar

Optical Remote Sensing with Coherent Doppler Lidar Optical Remote Sensing with Coherent Doppler Lidar Part 1: Background and Doppler Lidar Hardware Mike Hardesty 1, Sara Tucker 2, Alan Brewer 1 1 CIRES-NOAA Atmospheric Remote Sensing Group Earth System

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture Basic Lidar Architecture Configurations vs. Arrangements Transceiver with HOE A real example: STAR Na Doppler Lidar Another

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation Manpreet Singh Student, University College of Engineering, Punjabi University, Patiala, India. Abstract Orthogonal

More information

High Peak Power Fiber Seeds & Efficient Stabilized Pumps

High Peak Power Fiber Seeds & Efficient Stabilized Pumps High Peak Power Fiber Seeds & Efficient Stabilized Pumps Features Ultra Narrow Spectral Bandwidth (< 100kHz Instantaneous for single mode diodes) Ultra Track Linear Tracking Photodiode Temperature Stabilized

More information

Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS

Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS Mark W. Phillips Lockheed Martin Coherent Technologies 135 South Taylor Avenue,

More information

1 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

1 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. 1 ECOC 2011 WORKSHOP Space-Division Multiplexed Transmission in Strongly Coupled Few-Mode and Multi-Core Fibers Roland Ryf September 18 th 2011 CONTENTS 1. THE CAPACITY CRUNCH 2. SPACE DIVISION MULTIPLEXING

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber

Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber Gautier Ravet a, Andrei A. Fotiadi a, b, Patrice Mégret a, Michel Blondel a a

More information

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) Masruri Masruri (186520) 22/05/2008 1 Laboratory Setup The laboratory setup using in this laboratory experiment

More information

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Lecture 08. Fundamentals of Lidar Remote Sensing (6) Lecture 08. Fundamentals of Lidar Remote Sensing (6) Basic Lidar Architecture q Basic Lidar Architecture q Configurations vs. Arrangements q Transceiver with HOE q A real example: STAR Na Doppler Lidar

More information

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Chien Hung Yeh, 1* Fu Yuan Shih, 2 Chia Hsuan Wang, 3 Chi Wai Chow, 3 and Sien Chi 2, 3 1 Information and Communications

More information

Suppression of Stimulated Brillouin Scattering

Suppression of Stimulated Brillouin Scattering Suppression of Stimulated Brillouin Scattering 42 2 5 W i de l y T u n a b l e L a s e r T ra n s m i t te r www.lumentum.com Technical Note Introduction This technical note discusses the phenomenon and

More information

High peak power singlefrequency. applications

High peak power singlefrequency. applications High peak power singlefrequency MOPFA for lidar applications L. Lombard, G. Canat, A. Durécu, J. Le Gouët, A. Dolfi- Bouteyre, M. Valla, B. Augère, D Goular, C. Besson. Applications of wind lidars Wake

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

o Conclusion and future work. 2

o Conclusion and future work. 2 Robert Brown o Concept of stretch processing. o Current procedures to produce linear frequency modulation (LFM) chirps. o How sparse frequency LFM was used for multifrequency stretch processing (MFSP).

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System Manpreet Singh 1, Karamjit Kaur 2 Student, University College of Engineering, Punjabi University, Patiala, India 1. Assistant

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

ModBox-SB-NIR Near Infra Red Spectral Broadening Unit

ModBox-SB-NIR Near Infra Red Spectral Broadening Unit The Spectral Broadening ModBox achieves the broadening of an optical signal by modulating its phase via the mean of a very efficient LiNb0 3 phase modulator. A number of side bands are created over a spectral

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

1550 nm Programmable Picosecond Laser, PM

1550 nm Programmable Picosecond Laser, PM 1550 nm Programmable Picosecond Laser, PM The Optilab is a programmable laser that produces picosecond pulses with electrical input pulses. It functions as a seed pulse generator for Master Oscillator

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

SYLLABUS Optical Fiber Communication

SYLLABUS Optical Fiber Communication SYLLABUS Optical Fiber Communication Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 UNIT - 1 PART - A OVERVIEW OF OPTICAL FIBER

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

ModBox Pulse Shaper Arbitrary Optical Waveform Generator

ModBox Pulse Shaper Arbitrary Optical Waveform Generator Delivering Modulation Solutions ModBox The Photline Modbox-Pulse-Shaper is an Optical Modulation Unit to generate short shaped pulses with high extinction ratio at 1030 nm, 1053 nm or 1064 nm. It allows

More information

SodiumStar 20/2 High Power cw Tunable Guide Star Laser

SodiumStar 20/2 High Power cw Tunable Guide Star Laser SodiumStar 20/2 High Power cw Tunable Guide Star Laser Laser Guide Star Adaptive Optics Facilities LIDAR Atmospheric Monitoring Laser Cooling SodiumStar 20/2 High Power cw Tunable Guide Star Laser Existing

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Ultra-long Span Repeaterless Transmission System Technologies

Ultra-long Span Repeaterless Transmission System Technologies Ultra-long Span Repeaterless Transmission System Technologies INADA Yoshihisa Abstract The recent increased traffic accompanying the rapid dissemination of broadband communications has been increasing

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources December 2004 Agilent s Series 819xxA high-power compact tunable lasers enable optical device characterization

More information

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump PHOTONIC SENSORS / Vol. 5, No. 4, 2015: 345 350 Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump Yi LI *, Yi ZHOU, Li ZHANG, Mengqiu FAN, and Jin LI Key Laboratory of Optical

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS

DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS Stephen E. Maxwell, Sensor Science Division, PML Kevin O. Douglass, David F. Plusquellic, Radiation and Biomolecular Physics Division, PML

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Ha Huy Thanh and Bui Trung Dzung National Center for Technology Progress (NACENTECH) C6-Thanh Xuan Bac-Hanoi-Vietnam

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser Fast Widely-Tunable CW Single Frequency 2-micron Laser Charley P. Hale and Sammy W. Henderson Beyond Photonics LLC 1650 Coal Creek Avenue, Ste. B Lafayette, CO 80026 Presented at: 18 th Coherent Laser

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website:

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website: International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages-3183-3188 April-2015 ISSN (e): 2321-7545 Website: http://ijsae.in Effects of Four Wave Mixing (FWM) on Optical Fiber in

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Using a highly linear fiber optic transceiver with IIP3 > 35 dbm, operating at noise level of -160dB/Hz, we demonstrate 71 km RF

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

Micromachining with tailored Nanosecond Pulses

Micromachining with tailored Nanosecond Pulses Micromachining with tailored Nanosecond Pulses Hans Herfurth a, Rahul Patwa a, Tim Lauterborn a, Stefan Heinemann a, Henrikki Pantsar b a )Fraunhofer USA, Center for Laser Technology (CLT), 46025 Port

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry The Lecture Contains: Laser Doppler Vibrometry Basics of Laser Doppler Vibrometry Components of the LDV system Working with the LDV system file:///d /neha%20backup%20courses%2019-09-2011/structural_health/lecture36/36_1.html

More information

Q8384 Q8384. Optical Spectrum Analyzer

Q8384 Q8384. Optical Spectrum Analyzer Q8384 Optical Spectrum Analyzer Can measure and evaluate ultra high-speed optical DWDM transmission systems, and optical components at high wavelength resolution and high accuracy. New high-end optical

More information

Transmitting Light: Fiber-optic and Free-space Communications Holography

Transmitting Light: Fiber-optic and Free-space Communications Holography 1 Lecture 9 Transmitting Light: Fiber-optic and Free-space Communications Holography 2 Wireless Phone Calls http://havilandtelconews.com/2011/10/the-reality-behind-wireless-networks/ 3 Undersea Cable and

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

ModBox-FE-NIR Near-Infra Red Front-End Laser Source

ModBox-FE-NIR Near-Infra Red Front-End Laser Source FEATURES Optical waveform flexibility Low jitter Low rise & fall times Very high extinction ratio and stability Proven solution APPLICATIONS Inertial confinement fusion Interaction of intense light with

More information

High-peak power laser system used in Yb doped LMA fiber

High-peak power laser system used in Yb doped LMA fiber High-peak power laser system used in Yb doped LMA fiber Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan YOSHIDA Hidetsugu, TSUBAKIMOTO Koji, FUJITA Hisanori, NAKATSUKA Masahiro, MIYANAGA

More information

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

Optical Fiber Amplifiers. Scott Freese. Physics May 2008 Optical Fiber Amplifiers Scott Freese Physics 262 2 May 2008 Partner: Jared Maxson Abstract The primary goal of this experiment was to gain an understanding of the basic components of an Erbium doped fiber

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Agilent 83430A Lightwave Digital Source Product Overview

Agilent 83430A Lightwave Digital Source Product Overview Agilent Lightwave Digital Source Product Overview SDH/SONET Compliant DFB laser source for digital, WDM, and analog test up to 2.5 Gb/s 52 Mb/s STM-0/OC-1 155 Mb/s STM-1/OC-3 622 Mb/s STM-4/OC-12 2488

More information

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics High Power Thin Disk Lasers Dr. Adolf Giesen German Aerospace Center Folie 1 Research Topics - Laser sources and nonlinear optics Speiser Beam control and optical diagnostics Riede Atm. propagation and

More information

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser PHOTONIC SENSORS / Vol. 7, No. 3, 217: 26 21 Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser Bing ZHANG, Linghao CHENG *, Yizhi LIANG, Long JIN, Tuan GUO, and Bai-Ou GUAN Guangdong

More information

Coherence control of the FOS-79800F. applications, Stimulated Brillouin Scattering. these reasons, controlling DFB source spectral

Coherence control of the FOS-79800F. applications, Stimulated Brillouin Scattering. these reasons, controlling DFB source spectral Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) FOS Solutions for Multi-Wavelength Test Applications Dependable long-term performance is the trademark of the FOS-79800,

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Yusuf Panbiharwala, Deepa Venkitesh, Balaji Srinivasan* Department of Electrical Engineering, Indian Institute of Technology Madras. *Email

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information