VIIRS Day- Night Band Cloud- free Composites March 3, 2015

Size: px
Start display at page:

Download "VIIRS Day- Night Band Cloud- free Composites March 3, 2015"

Transcription

1 VIIRS Day- Night Band Cloud- free Composites March 3, 2015 Kimberly Baugh Earth ObservaIon Group (EOG) CIRES - University of Colorado, USA NOAA NaIonal Geophysical Data Center, USA Kim.baugh@noaa.gov Chris Elvidge - NOAA NaIonal Geophysical Data Center, USA Mikhail Zhizhin - CIRES - University of Colorado, USA Feng Chi Hsu - CIRES - University of Colorado, USA

2 Lights At Night Cities and human settlements Boats Industrial Sites Gas Flares Fires 2

3 NighVme Lights Composites The EOG Group at NGDC has a long history of making global annual nighvme lights composites using DMSP- OLS data. h"p://

4 NighVme Lights from Space Earth ObservaIon Group (EOG) at NGDC has been making nighvme lights products with DMSP- OLS since Prior to the SNPP launch in October 2011 the only global nighvme lights dataset was from the Defense Meteorological Satellite Program s OperaIonal Linescan System (DMSP- OLS) DMSP- OLS sensors have been flown on DMSP polar- orbiing pla`orms since the 1960s. Digital OLS data has been archived at NOAA s NaIonal Geophysical Data Center (NGDC) since 1992.

5 VIIRS Day- Night Band vs DMSP- OLS SpaIal ResoluIon The VIIRS DNB footprint is 45 Imes smaller than the nighvme DMSP- OLS pixel footprint! NighVme DMSP OLS 5 km footprint VIIRS Day / Night Band 742 m footprint

6 VIIRS Day- Night Band vs DMSP- OLS Quan%za%on: DNB is 14 bit versus 6 bit for OLS. Dynamic Range: Due to limited dynamic range, OLS data saturate on bright lights in operaional data collecions. Lower Detec*on Limits: DNB can detect dimmer lighing than OLS. Quan%ta%ve: DNB is calibrated, the OLS visible band has no in- flight calibraion. Mul%spectral: VIIRS has addiional spectral bands to discriminate combusion sources from lights and to characterize the opical thickness of clouds.

7 Comparison of DMSP- OLS with VIIRS DNB Attribute DMSP/OLS VIIRS/DNB Orbit Sun-synchronous, ~850 km Sun-synchronous, 827 km Nighttime Nodal Overpass Time ~1930 UTC ~0130 UTC Swath Width 3000 km 3000 km Spectral Response (full-width halfmaximum) Panchromatic nm Panchromatic nm Ground-projected Instantaneous Field of View Spatial Resolution (Ground Sample Distance) 5 km (nadir) / ~7 km (edge) ± km (Scan) ± km (track) 2.7 km; smooth data < km (Scan) < km (track) Minimum Detectable Signal W m -2 sr W m -2 sr -1 Noise Floor ~ W m -2 sr -1 ~ W m -2 sr -1 Radiometric Quantization 6 bit 14 bit Accompanying Spectral Bands 1 (10-12um) 11 at night / 21 at day Radiometric Calibration None On-Board Solar Diffuser Saturation In Urban Cores None 7

8 DMSP- OLS vs VIIRS Day- Night Band DMSP- OLS October 14, :30 VIIRS DNB October 15, :30 Note the lack of DNB saturaion in Bangkok. Also the increased spaial resoluion and lower detecion limits allow DNB to disinguish small roads and more isolated fishing boats.

9 DMSP- OLS vs VIIRS Day- Night Band OLS has saturaion in city centers and less spaial detail as compared to the DNB DMSP- OLS VIIRS DNB

10 DMSP- OLS vs VIIRS Day- Night Band A contrast stretch applied to the same VIIRS DNB image brings out the dimmer lighing features that aren t seen with the DMSP- OLS. DMSP- OLS VIIRS DNB

11 NighVme Lights Composites What are they? A nighvme lights composite is made to serve as a baseline of persistent light sources. Composites are made as an average of the highest quality nighvme lights imagery over desired Ime period usually monthly or annually. EOG group has made 4 temporal prototypes of nighvme lights composites using VIIRS DNB: April 2012, October 2012, January 2013, and May EOG group is producing current monthly DNB nighvme lights composites and will expand to remove ephemeral light sources in 2015.

12 NighVme Lights Composites What goes in? Only the highest quality nighvme data gets averaged into a composite Currently this is defined as DNB data that is: Cloud- free (using the VIIRS cloud- mask IICMO product) NighVme with solar zenith angles greater than 101 Not affected by moonlight (lunar illuminance < lux) Outside the region impacted by stray light (nadir solar zenith angles > 118.5) Middle of swath (DNB has increased noise at edge of scan) Free of lights from lightning Free of lights from South AtlanIc Anomaly

13 Using VIIRS DNB for NighVme Lights Composites Some DMSP- OLS algorithms could be reused Day/night/twilight flagging Zero lunar illuminance flagging Stray light region flagging Cloud algorithm (used M15 in place of OLS thermal band) Some algorithms needed makeovers Lightning detector (to work on 16- line scan) Terrain correcion for geolocaion New algorithms PoinIng correcion for geolocaion SAA filter Blurry lights filter (to remove reliance on cloud mask) Fire removal (taking advantage of other VIIRS spectral bands) Stray light correcion (port Northrup Grumman algorithm)

14 VIIRS DNB Composites First Asempt First prototypes made in Dec 2012 for low- moon nights in April and Oct Average radiance values were constructed on a 15 arc- second grid for data determined to be: Cloud- free Zero lunar- illuminance Out of stray light region Center aggregaion zones

15 Processing VIIRS DNB Aggregates: Flag Bands DNB DNB FLAG Red: DayIme Green: Terminator zone Blue: NighVme Aggregate SVDNB_npp_d _t _e _b05050_c _noaa_ops.h5 For each nighvme VIIRS DNB aggregate, a companion flag band is generated with bit- codes designaing: DayIme (pixel solar zenith angle < 96) Day- Night terminator zone (96 < pixel solar zenith < 101) Zero lunar Illuminance (< lux) Stray light region (90 < nadir solar zenith < 118.5) Lunar illuminance is a funcion of lunar phase, azimuth, and elevaion, which are also based on lat, lon, and Ime of each DNB pixel. This enire aggregate was flagged as having zero lunar illuminance and being affected by stray light.

16 Processing VIIRS DNB Aggregates: Flag Bands Aggregate SVDNB_npp_d _t _e _b05050_c _noaa_ops.h5 DNB DNB FLAG Blue: Stray light region Orange: Edge of Scan (DNB aggregaion zones 29-32). Black: This area is considered high quality nighvme data. Increased noise at edge of scan For each nighvme VIIRS DNB aggregate, edge pixels are discarded due to increased noise (DNB aggregaion zones 29-32). This enire aggregate was flagged as having zero lunar illuminance.

17 Processing VIIRS DNB Aggregates: Cloud Mask Clouds obscure the nighvme lights data. To avoid using data that has been impacted by cloud- cover, a cloud mask is needed. Cloud masks are generated using an NGDC algorithm comparing the VIIRS M15 band (10.763um) with modeled surface temperature. M15 Brightness Temperature DNB Note: Black areas at edges of scans in M15 data are no- data values due to onboard bow- Ie deleions. They do not affect the reprojected image. M15 Cloud Mask Clouds are impacing nighvme lights of Chicago by reducing the intensity of the lights and by blurring the spaial detail of the light features. Aggregate npp_d _t _e _b05050

18 Processing VIIRS DNB Aggregates: ReprojecIon DNB and flag data is reprojected into 15- arc second grids using terrain- corrected posiion informaion VIIRS M- bands and DNB have different sensor and aggregaion characterisics which require them to be reprojected independently. The cloud mask generated from M15 is merged with the flags generated from the DNB auer reprojecion. Flag from DNB Combined VIIRS flag Flag from M15 (cloud mask) Aggregate SVDNB_npp_d _t _e _b05050_c _noaa_ops.h5

19 DNB Average Processing: ComposiIng The 15- arc second DNB grids are masked to areas of highest- quality nighvme data using the flag band. Highest quality for this first asempt meant: cloud- free, zero lunar illuminance, dark nighsime, outside stray- light region, and middle of swath (aggregaion zones 1-28). The masked grids are then composited, creaing a suite of files including an average DNB image, number of cloud- free observaions used, and standard deviaion of DNB for each grid cell. Average DNB N Cloud- free ObservaIons

20 VIIRS DNB Composites First Asempt Composites weren t as sharp as expected. We suspected either the cloud algorithm and/or errors in geolocaion. InvesIgaIon revealed a known DNB poining error. NGDC received a table of esimated poining errors from L. Liao at Northrup Grumman, which were then matched with GEO LUT filenames recorded as an asribute in the DNB h5 files. Adding poining error adjustment to terrain correcion souware made huge improvement in composite feature sharpness.

21 VIIRS DNB Composite (Oct 2012) Before PoinIng Error CorrecIon Close- up of Los Angeles Basin. Toggle with next slide. NoIce westward shiu and increased spread of lighing features due to poining error.

22 VIIRS DNB Composite (Jan 2013) Auer PoinIng Error CorrecIon Close- up of Los Angeles Basin. Toggle with prev slide. NoIce westward shiu and increased spread of lighing features due to poining error.

23 VIIRS DNB Composites Second Asempt Second prototype made in mid for all low- moon nights in Jan It was decided to try using the VIIRS Cloud Mask for the next asempt to see if addiional blurriness was reduced. Composite sill wasn t as sharp as expected in some regions of the world. Some clouds seem to be evading the cloud mask resuling in blurry lights. Calgary, Canada. Jan 2013 DNB Composite.

24 VIIRS DNB Composites Current Asempt Processing May December 2014 data. AddiIonal algorithms being run are: Sharpness Index (remove blurry lights without reliance on cloud mask) Lightning filter South AtlanIc Anomaly (SAA) filter

25 Sharpness Index On the leu is a DNB image showing areas with blur induced by clouds. On the right is the sharpness index image. Blurry areas are dark and sharp lights are bright. By applying a threshold on this index it will be possible to screen blurry areas from the composite.

26 Lightning Filter Example of lightning streaks detected by the DNB. The streaks are sixteen lines wide, arising from individual scans. Removing reliance on a cloud- mask by using the blur index will make filtering for lightning signatures necessary for a clean DNB composite. 26

27 South AtlanIc Anomaly (SAA) Filter Example of high values in DNB due to high energy paricles in South AtlanIc Anomaly region. Red pixels were determined to be SAA hits because they exceed the average of neighboring pixels by more than 99%. March 31, 2012 off coast of Brazil 27

28 NGDC DNB Data Availability AcIve monthly product generaion started 5/1/14. The products are available at: hsp://ngdc.noaa.gov/eog/viirs/download_monthly.html NGDC also generates nightly mosaics in png and Google Earth Super- overlay formats hsp://ngdc.noaa.gov/eog/viirs/download_ut_mos.html 28

29 Nightly Global Mosaics Cover Single UT September 11, 2013 Sunlit Missing 29

30 Next Steps for VIIRS DNB Composites Filter out lights from aurora Normalize historical data from region impacted by stray- light so its usable in the composites use NG algorithm? Implement the sharpness index filter to remove reliance on VIIRS cloud- detecion. Filter out ephemeral lights from boats and fires to create a VIIRS DNB Stable Lights product Nile Delta

31 SeparaIng Fires from Lights in DNB SIll in algorithm development - R&D SeparaIng fires from lights using NGDC Nigh`ire product The image on the leu is the raw DNB. The image on the right shows the masking of biomass burning pixels from the Nigh`ire (VNF) data.

32 Stray light correcion algorithm from Northrup Grumman This algorithm was implemented at the IDPS in August 21, We will likely need to implement the algorithm at NGDC and apply it to archive data acquired prior to that.

33 DNB Atmospheric CorrecIon In development R&D The loss of signal in the DNB due to atmospheric absorpion and scaser is both substanial and highly variable, in the range of 15 to 60%. We are working on an atmospheric correcion for the DNB that uses MODTRAN to esimate the transmissivity of the atmosphere in the DNB. We parameterize MODTRAN using atmospheric profiles generated from ATMS data, which are collected simultaneous to the VIIRS. Specifically, we will use atmospheric pressure, temperature and relaive humidity profiles generated from ATMS data using the MIIRS processing package (NOAA, 2013). The MODTRAN runs are computaionally intensive, therefore the correcion will only be run on pixels that are entering the monthly composites. 33

34 QuesIons? Contact: (USA)

VIIRS Cloud-Free Compositing For Nighttime Lights

VIIRS Cloud-Free Compositing For Nighttime Lights VIIRS Cloud-Free Compositing For Nighttime Lights Kimberly Baugh, CIRES University of Colorado Feng Chi Hsu, CIRES University of Colorado Mikhail Zhizhin, CIRES University of Colorado Tilottama Ghosh,

More information

Nighttime VIIRS LCLUC Applications

Nighttime VIIRS LCLUC Applications Nighttime VIIRS LCLUC Applications Christopher D. Elvidge, Ph.D. Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado USA chris.elvidge@noaa.gov Kimberly Baugh, Feng Chi Hsu,

More information

Fires, Flares and Lights: Mapping Anthropogenic Emission Sources with Nighttime Low light Imaging Satellite Data

Fires, Flares and Lights: Mapping Anthropogenic Emission Sources with Nighttime Low light Imaging Satellite Data Fires, Flares and Lights: Mapping Anthropogenic Emission Sources with Nighttime Low light Imaging Satellite Data Christopher D. Elvidge, Ph.D. Earth Observation Group NOAA National Geophysical Data Center

More information

Tilottama Ghosh and Kimberly Baugh (CIRES, University of Colorado, Boulder, USA)

Tilottama Ghosh and Kimberly Baugh (CIRES, University of Colorado, Boulder, USA) Telecommuting 11.5 time zones Tilottama Ghosh and Kimberly Baugh (CIRES, University of Colorado, Boulder, USA) Asia Pacific Advanced Network 32 nd Meeting New Delhi, India 26 th August, 2011 Brief employment

More information

Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery

Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery Stephen Mills 1 & Steven Miller 2 1 Stellar Solutions Inc., Palo Alto, CA; 2 Colorado State Univ., Cooperative Institute for

More information

Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China

Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China Article Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China Xin Jing 1,2, Xi Shao 1, Changyong Cao 3, Xiaodong Fu 4 and

More information

Detection of Fishing Boats in the Northwest Pacific Using Satellite Nighttime Image

Detection of Fishing Boats in the Northwest Pacific Using Satellite Nighttime Image 2018 International Conference on Communication, Network and Artificial Intelligence (CNAI 2018) ISBN: 978-1-60595-065-5 Detection of Fishing Boats in the Northwest Pacific Using Satellite Nighttime Image

More information

Status of MODIS, VIIRS, and OLI Sensors

Status of MODIS, VIIRS, and OLI Sensors Status of MODIS, VIIRS, and OLI Sensors Xiaoxiong (Jack) Xiong, Jim Butler, and Brian Markham Code 618.0 NASA/GSFC, Greenbelt, MD 20771, USA Acknowledgements: NASA MODIS Characterization Support Team (MCST)

More information

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS Inter comparison of Terra and Aqua Reflective Solar Bands Using Suomi NPP VIIRS Slawomir Blonski, * Changyong Cao, Sirish Uprety, ** and Xi Shao * NOAA NESDIS Center for Satellite Applications and Research

More information

Suomi NPP VIIRS Calibration/ Validation Progress Update

Suomi NPP VIIRS Calibration/ Validation Progress Update Suomi NPP VIIRS Calibration/ Validation Progress Update C. Cao 1, Q. Liu 2, S. Blonski 2, X. Shao 2, and S. Uprety 3 1 NOAA/NESDIS Center for Satellite Applications and Research 2 ESSIC, University of

More information

Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2

Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2 Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2 September 27, 2016 1 Carr Astronautics Corp., Greenbelt, MD, USA jcarr@carrastro.com 2 Harvard-Smithsonian

More information

Introduction of GLI level-1 products

Introduction of GLI level-1 products Introduction of GLI level-1 products JAXA EORC December 24, 2003 http://www.eoc.jaxa.jp/homepage.html 1. JAXA Global Imager The JAXA Global Imager (GLI) orbit and observation method are outlined below.

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

Using Ground Targets for Sensor On orbit Calibration Support

Using Ground Targets for Sensor On orbit Calibration Support EOS Using Ground Targets for Sensor On orbit Calibration Support X. Xiong, A. Angal, A. Wu, and T. Choi MODIS Characterization Support Team (MCST), NASA/GSFC G. Chander SGT/USGS EROS CEOS Libya 4 Workshop,

More information

Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands

Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands Thomas Schwarting Science Systems and Applications, Lanham, MD Jeff McIntire, Science Systems and Applications, Lanham,

More information

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments Lecture Notes Prepared by Prof. J. Francis Spring 2005 Remote Sensing Instruments Material from Remote Sensing Instrumentation in Weather Satellites: Systems, Data, and Environmental Applications by Rao,

More information

Fundamentals of Remote Sensing

Fundamentals of Remote Sensing Climate Variability, Hydrology, and Flooding Fundamentals of Remote Sensing May 19-22, 2015 GEO-Latin American & Caribbean Water Cycle Capacity Building Workshop Cartagena, Colombia 1 Objective To provide

More information

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics Compact High Resolution Imaging Spectrometer (CHRIS) Mike Cutter (Mike_Cutter@siraeo.co.uk) Summary CHRIS Instrument Design Instrument Specification & Performance Operating Modes Calibration Plan Data

More information

AVHRR/3 Operational Calibration

AVHRR/3 Operational Calibration AVHRR/3 Operational Calibration Jörg Ackermann, Remote Sensing and Products Division 1 Workshop`Radiometric Calibration for European Missions, 30/31 Aug. 2017`,Frascati (EUM/RSP/VWG/17/936014) AVHRR/3

More information

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations. Comprehensive Vicarious

More information

Cole Rossiter and B. Guenther. Stellar Solutions, Inc. Palo Alto, CA Algorithm Management Project, JPSS

Cole Rossiter and B. Guenther. Stellar Solutions, Inc. Palo Alto, CA Algorithm Management Project, JPSS Capability Enhancements, Changes, and Limitations of Joint Polar Satellite System (JPSS) -1 Compared to Suomi-National Polar-orbiting Partnership (S-NPP) Cole Rossiter and B. Guenther Stellar Solutions,

More information

Deblurring DMSP nighttime lights

Deblurring DMSP nighttime lights Deblurring DMSP nighttime lights Alexei Abrahams, Nancy Lozano-Gracia, and Christopher Oram February 22, 2017 Nighttime lights very popular in economics research Europe and the Mediterranean at night North

More information

Earth by Night: Exploring Night Light Satellites Imagery for Water Management

Earth by Night: Exploring Night Light Satellites Imagery for Water Management Earth by Night: Exploring Night Light Satellites Imagery for Water Management December 2017 Authors Martijn de Klerk Peter Droogers FutureWater Report 173 FutureWater Costerweg 1V 6702 AA Wageningen The

More information

The Global Imager (GLI)

The Global Imager (GLI) The Global Imager (GLI) Launch : Dec.14, 2002 Initial check out : to Apr.14, 2003 (~L+4) First image: Jan.25, 2003 Second image: Feb.6 and 7, 2003 Calibration and validation : to Dec.14, 2003(~L+4) for

More information

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies Menas Kafatos, CEOSR, George Mason University Jim McManus, CEOSR, GMU and GES DISC

More information

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager 1. INTRODUCTION The Korea Ocean Research and Development Institute (KORDI) releases an announcement of opportunity (AO) to carry out scientific research for the utilization of GOCI data. GOCI is the world

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Meteosat Third Generation (MTG) Lightning Imager (LI) instrument on-ground and in-flight calibration

Meteosat Third Generation (MTG) Lightning Imager (LI) instrument on-ground and in-flight calibration Meteosat Third Generation (MTG) Lightning Imager (LI) instrument on-ground and in-flight calibration Marcel Dobber, Stephan Kox EUMETSAT (Darmstadt, Germany) 1 Contents of this presentation Meteosat Third

More information

NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR

NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR Outline VIIRS Aerosol Optical Depth and Fire Radiative Power ABI Aerosol Optical Depth and Fire Radiative Power

More information

Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo

Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo Zhuosen Wang*, Yan Liu, Qingsong Sun, Crystal Schaaf School for the Environment, University of Massachusetts Boston http://www.umb.edu/spectralmass

More information

Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product

Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product Version 2.0 Date: 15 December 2015 Prepared By: Don Hillger [NOAA/NESDIS/StAR] Thomas Kopp [The Aerospace Corp.] Page

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Sources of Geographic Information

Sources of Geographic Information Sources of Geographic Information Data properties: Spatial data, i.e. data that are associated with geographic locations Data format: digital (analog data for traditional paper maps) Data Inputs: sampled

More information

GOES-16 ABI On-Orbit Performance

GOES-16 ABI On-Orbit Performance GOES-16 ABI On-Orbit Performance Xiangqian WU b, Fangfang YU a, Vladimir KONDRATOVICH a, Boryana EFREMOVA a, Xi SHAO a, Robert IACOVAZZI a, Haifeng QIAN a, Hye Lim YOO a, Li ZHU a, and Changyong CAO b

More information

PLANET SURFACE REFLECTANCE PRODUCT

PLANET SURFACE REFLECTANCE PRODUCT PLANET SURFACE REFLECTANCE PRODUCT FEBRUARY 2018 SUPPORT@PLANET.COM PLANET.COM VERSION 1.0 TABLE OF CONTENTS 3 Product Description 3 Atmospheric Correction Methodology 5 Product Limitations 6 Product Assessment

More information

SPIDR on the Web: Space Physics Interactive

SPIDR on the Web: Space Physics Interactive Radio Science, Volume 32, Number 5, Pages 2021-2026, September-October 1997 SPIDR on the Web: Space Physics Interactive Data Resource on-line analysis tool Karen Fay O'Loughlin Cooperative Institute for

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES A. Hollstein1, C. Rogass1, K. Segl1, L. Guanter1, M. Bachmann2, T. Storch2, R. Müller2,

More information

CUBESAT Nighttime Lights. August, 2016 Dee W. Pack and Brian S. Hardy The Aerospace Corporation

CUBESAT Nighttime Lights. August, 2016 Dee W. Pack and Brian S. Hardy The Aerospace Corporation CUBESAT Nighttime Lights August, 2016 Dee W. Pack and Brian S. Hardy The Aerospace Corporation The Aerospace Corporation 2016 Outline Introduction Nighttime Lights as a CubeSat Mission AeroCube camera

More information

Technical Report Analysis of SSMIS data. Eva Howe. Copenhagen page 1 of 16

Technical Report Analysis of SSMIS data. Eva Howe. Copenhagen page 1 of 16 Analysis of SSMIS data Eva Howe Copenhagen 9 www.dmi.dk/dmi/tr08-07 page 1 of 16 Colophon Serial title: Technical Report 08-07 Title: Analysis of SSMIS data Subtitle: Author(s): Eva Howe Other contributors:

More information

On the use of water color missions for lakes in 2021

On the use of water color missions for lakes in 2021 Lakes and Climate: The Role of Remote Sensing June 01-02, 2017 On the use of water color missions for lakes in 2021 Cédric G. Fichot Department of Earth and Environment 1 Overview 1. Past and still-ongoing

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

Status of Aqua MODIS Reflective Solar Bands Calibration and Performance

Status of Aqua MODIS Reflective Solar Bands Calibration and Performance EOS Status of Aqua MODIS Reflective Solar Bands Calibration and Performance Jack Xiong NASA GSFC, Greenbelt, MD 20771, USA A. Angal, H. Chen, X. Geng, D. Link, Y. Li, and A. Wu SSAI, 10210 Greenbelt Road,

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response Radiometric Use of WorldView-3 Imagery Technical Note Date: 2016-02-22 Prepared by: Michele Kuester This technical note discusses the radiometric use of WorldView-3 imagery. The first two sections briefly

More information

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C.

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C. Multispectral Scanners for Wildland Fire Assessment NASA Earth Science Division Bruce Coffland U.C. Santa Cruz Slide Fire Burn Area (MASTER/B200) R 2.2um G 0.87um B 0.65um Airborne Science & Technology

More information

AVHRR 10-day Mosaic Composite Image Data Sets for Asian Region

AVHRR 10-day Mosaic Composite Image Data Sets for Asian Region AVHRR 10-day Mosaic Composite Image Data Sets for Asian Region Ryuzo Yokoyama *, Liping Lei **, Ts. Purevdorj ** * Asian Center for Research on Remote Sensing (ACRoRS),Asian Institute of Technology P.

More information

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur Histograms of gray values for TM bands 1-7 for the example image - Band 4 and 5 show more differentiation than the others (contrast=the ratio of brightest to darkest areas of a landscape). - Judging from

More information

Cross Track Infrared Sounder (CrIS) Flight Model 1 Test Results

Cross Track Infrared Sounder (CrIS) Flight Model 1 Test Results May 6, 2009 Ronald Glumb, Joseph P. Predina, Robert Hookman, Chris Ellsworth, John Bobilya, Steve Wells, Lawrence Suwinski, Rebecca Frain, and Larry Crawford For Publication at the ASS-FTS14 Conference

More information

From Proba-V to Proba-MVA

From Proba-V to Proba-MVA From Proba-V to Proba-MVA Fabrizio Niro ESA Sensor Performances Products and Algorithm (SPPA) ESA UNCLASSIFIED - For Official Use Proba-V extension in the Copernicus era Proba-V was designed with the main

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

Remote sensing image correction

Remote sensing image correction Remote sensing image correction Introductory readings remote sensing http://www.microimages.com/documentation/tutorials/introrse.pdf 1 Preprocessing Digital Image Processing of satellite images can be

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere

Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere Radiometric performance of Second Generation Global Imager (SGLI) using integrating sphere Taichiro Hashiguchi, Yoshihiko Okamura, Kazuhiro Tanaka, Yukinori Nakajima Japan Aerospace Exploration Agency

More information

J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers

J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers Thomas F. Lee, Jeffrey D. Hawkins, F. Joseph Turk, P. Gaiser, M. Bettenhausen Naval Research Laboratory Monterey CA and Washington

More information

Global hot spot monitoring with Landsat 8 and Sentinel-2. Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST)

Global hot spot monitoring with Landsat 8 and Sentinel-2. Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST) Global hot spot monitoring with Landsat 8 and Sentinel-2 Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST) Motivation for Detecting Hot Spots Hotspot detection using satellite data To monitor wildfire and

More information

Satellite data processing and analysis: Examples and practical considerations

Satellite data processing and analysis: Examples and practical considerations Satellite data processing and analysis: Examples and practical considerations Dániel Kristóf Ottó Petrik, Róbert Pataki, András Kolesár International LCLUC Regional Science Meeting in Central Europe Sopron,

More information

ROSCOSMOS Agency Report. 36 th CEOS WGCV Plenary May 2013, Shanghai, China

ROSCOSMOS Agency Report. 36 th CEOS WGCV Plenary May 2013, Shanghai, China ROSCOSMOS Agency Report 36 th CEOS WGCV Plenary 13-17 May 2013, Shanghai, China Denisov Pavel «Research Center for Earth Operative Monitoring» Joint-Stock Company «Russian Space Systems» 1 PURPOSE AND

More information

Remote Sensing Exam 2 Study Guide

Remote Sensing Exam 2 Study Guide Remote Sensing Exam 2 Study Guide Resolution Analog to digital Instantaneous field of view (IFOV) f ( cone angle of optical system ) Everything in that area contributes to spectral response mixels Sampling

More information

AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING.

AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING. AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING. International Working Group on Green house Gazes Monitoring from Space IWGGMS-12 Francois BUISSON CNES With Didier PRADINES, Veronique

More information

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Andrew M. Sayer, N. Christina Hsu (PI), Corey Bettenhausen, Myeong-Jae Jeong Climate & Radiation Laboratory, NASA Goddard

More information

DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, Ray Perkins, Teledyne Brown Engineering

DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, Ray Perkins, Teledyne Brown Engineering DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, 2016 Ray Perkins, Teledyne Brown Engineering 1 Presentation Agenda Imaging Spectroscopy Applications of DESIS

More information

Modeling Nightscapes of Designed Spaces Case Studies of the University of Arizona and Virginia Tech Campuses

Modeling Nightscapes of Designed Spaces Case Studies of the University of Arizona and Virginia Tech Campuses 455 Modeling Nightscapes of Designed Spaces Case Studies of the University of Arizona and Virginia Tech Campuses Mintai KIM Abstract This paper examines two methods for modeling the interaction between

More information

Kazuhiro TANAKA GCOM project team/jaxa April, 2016

Kazuhiro TANAKA GCOM project team/jaxa April, 2016 Kazuhiro TANAKA GCOM project team/jaxa April, 216 @ SPIE Asia-Pacific 216 at New Dehli, India 1 http://suzaku.eorc.jaxa.jp/gcom_c/index_j.html GCOM mission and satellites SGLI specification and IRS overview

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

NIRST, a satellite based IR instrument for fire and sea surface temperature measurement

NIRST, a satellite based IR instrument for fire and sea surface temperature measurement NIRST, a satellite based IR instrument for fire and sea surface temperature measurement Hugo Marraco a and Linh Ngo Phong b a Comisión Nacional de Actividades Espaciales, Paseo Colón 751, C1063ACH Buenos

More information

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU Sensor resolutions from space: the tension between temporal, spectral, spatial and swath David Bruce UniSA and ISU 1 Presentation aims 1. Briefly summarize the different types of satellite image resolutions

More information

Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies. Raju Datla, Michael Weinreb

Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies. Raju Datla, Michael Weinreb Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies CALCON 2012 Conference August 28, 2012 Raju Datla, Michael Weinreb Riverside Technology,

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

The Advanced Along-Track Scanning Radiometer (AATSR) Mission Status and Early Results

The Advanced Along-Track Scanning Radiometer (AATSR) Mission Status and Early Results The Advanced Along-Track Scanning Radiometer (AATSR) Mission Status and Early Results M. C. Edwards (University of Leicester, UK) D. Llewellyn-Jones (University of Leicester, UK) D. L. Smith (Rutherford

More information

Sentinel-2 Products and Algorithms

Sentinel-2 Products and Algorithms Sentinel-2 Products and Algorithms Ferran Gascon (Sentinel-2 Data Quality Manager) Workshop Preparations for Sentinel 2 in Europe, Oslo 26 November 2014 Sentinel-2 Mission Mission Overview Products and

More information

VICARIOUS CALIBRATION SITE SELECTION FOR RAZAKSAT MEDIUM-SIZED APERTURE CAMERA (MAC)

VICARIOUS CALIBRATION SITE SELECTION FOR RAZAKSAT MEDIUM-SIZED APERTURE CAMERA (MAC) VICARIOUS CALIBRATION SITE SELECTION FOR RAZAKSAT MEDIUM-SIZED APERTURE CAMERA (MAC) Lee Yee Hwai a, Mazlan Hashim b, Ahmad Sabirin Arshad a a Astronautic Technology (M) Sdn Bhd (yee_hwai, sabirin)@atsb.com.my

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg 1, and Fuzhong Weng 1. Introduction

Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg 1, and Fuzhong Weng 1. Introduction Intersatellite Calibration of HIRS from 1980 to 2003 Using the Simultaneous Nadir Overpass (SNO) Method for Improved Consistency and Quality of Climate Data Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg

More information

Advanced Optical Satellite (ALOS-3) Overviews

Advanced Optical Satellite (ALOS-3) Overviews K&C Science Team meeting #24 Tokyo, Japan, January 29-31, 2018 Advanced Optical Satellite (ALOS-3) Overviews January 30, 2018 Takeo Tadono 1, Hidenori Watarai 1, Ayano Oka 1, Yousei Mizukami 1, Junichi

More information

On-orbit spatial resolution estimation of IRS: CARTOSAT-1 Cameras with images of artificial and man-made targets Preliminary Results

On-orbit spatial resolution estimation of IRS: CARTOSAT-1 Cameras with images of artificial and man-made targets Preliminary Results On-orbit spatial resolution estimation of IRS: CARTOSAT-1 Cameras with images of artificial and man-made targets Preliminary Results A. Senthil Kumar*, A.S. Manjunath, K.M.M. Rao, A.S. Kiran Kumar 1, R.R.

More information

Workshop on Practical Applications of MODIS Data in Australia

Workshop on Practical Applications of MODIS Data in Australia Workshop on Practical Applications of MODIS Data in Australia Leeuwin Centre, Floreat WA November 26-29, 2002 Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison Introduction

More information

HIMAWARI-8 COHERENT NOISE REDUCTION

HIMAWARI-8 COHERENT NOISE REDUCTION Place image here (10 x 3.5 ) HIMAWARI-8 COHERENT NOISE REDUCTION DR. PAUL GRIFFITH Harris Space and Intelligence Systems, Fort Wayne, Indiana USA NON-EXPORT CONTROLLED THESE ITEM(S) / DATA HAVE BEEN REVIEWED

More information

S3 Product Notice SLSTR

S3 Product Notice SLSTR S3 Product Notice SLSTR Mission Sensor Product S3-A SLSTR Level 2 Land Surface Temperature Product Notice ID S3A.PN-SLSTR-L2L.02 Issue/Rev Date 05/07/2017 Version 1.0 Preparation Approval This Product

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Application of GIS to Fast Track Planning and Monitoring of Development Agenda Application of GIS to Fast Track Planning and Monitoring of Development Agenda Radiometric, Atmospheric & Geometric Preprocessing of Optical Remote Sensing 13 17 June 2018 Outline 1. Why pre-process remotely

More information

The Nightsat mission concept

The Nightsat mission concept International Journal of Remote Sensing Vol. 28, No. 12, 20 June 2007, 2645 2670 The Nightsat mission concept C. D. ELVIDGE*{, P. CINZANO{, D. R. PETTIT", J. ARVESEN**, P. SUTTON{{, C. SMALL{{, R. NEMANI,

More information

RADIOMETRIC CALIBRATION

RADIOMETRIC CALIBRATION 1 RADIOMETRIC CALIBRATION Lecture 10 Digital Image Data 2 Digital data are matrices of digital numbers (DNs) There is one layer (or matrix) for each satellite band Each DN corresponds to one pixel 3 Digital

More information

Haze Detection and Removal in Sentinel 3 OLCI Level 1B Imagery Using a New Multispectral Data Dehazing Method

Haze Detection and Removal in Sentinel 3 OLCI Level 1B Imagery Using a New Multispectral Data Dehazing Method Haze Detection and Removal in Sentinel 3 OLCI Level 1B Imagery Using a New Multispectral Data Dehazing Method Xinxin Busch Li, Stephan Recher, Peter Scheidgen July 27 th, 2018 Outline Introduction» Why

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Radiometric Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

Japan's Greenhouse Gases Observation from Space

Japan's Greenhouse Gases Observation from Space 1 Workshop on EC CEOS Priority on GHG Monitoring Japan's Greenhouse Gases Observation from Space 18 June, 2018@Ispra, Italy Masakatsu NAKAJIMA Japan Aerospace Exploration Agency Development and Operation

More information

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD WORKSHOP on Best Practices under National Land Records

More information

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS Place image here (10 x 3.5 ) RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS RONALD GLUMB, JAY OVERBECK, CHRISTOPHER LIETZKE, JOHN FORSYTHE, ALAN BELL, AND JASON MILLER NON-EXPORT

More information

IASI L0/L1 NRT Monitoring at EUMETSAT: Comparison of Level 1 Products from IASI and HIRS on Metop-A

IASI L0/L1 NRT Monitoring at EUMETSAT: Comparison of Level 1 Products from IASI and HIRS on Metop-A IASI L0/L1 NRT Monitoring at EUMETSAT: Comparison of Level 1 Products from IASI and HIRS on Metop-A Lars Fiedler, Yakov Livschitz, Jörg Ackermann, Peter Schlüssel and Gökhan Kayal EUMETSAT Slide: 1 Outline

More information

METimage Calibration & Performance Verification. Xavier Gnata ICSO 2016

METimage Calibration & Performance Verification. Xavier Gnata ICSO 2016 METimage Calibration & Performance Verification Xavier Gnata ICSO 2016 METimage factsheet Mission Passive imaging radiometer (multi-spectral) 20 spectral channels (443 13.345nm) Global coverage within

More information

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier Evaluation of FLAASH atmospheric correction Note Note no Authors SAMBA/10/12 Øystein Rudjord and Øivind Due Trier Date 16 February 2012 Norsk Regnesentral Norsk Regnesentral (Norwegian Computing Center,

More information

COMPATIBILITY AND INTEGRATION OF NDVI DATA OBTAINED FROM AVHRR/NOAA AND SEVIRI/MSG SENSORS

COMPATIBILITY AND INTEGRATION OF NDVI DATA OBTAINED FROM AVHRR/NOAA AND SEVIRI/MSG SENSORS COMPATIBILITY AND INTEGRATION OF NDVI DATA OBTAINED FROM AVHRR/NOAA AND SEVIRI/MSG SENSORS Gabriele Poli, Giulia Adembri, Maurizio Tommasini, Monica Gherardelli Department of Electronics and Telecommunication

More information

29 th Annual Louisiana RS/GIS Workshop April 23, 2013 Cajundome Convention Center Lafayette, Louisiana

29 th Annual Louisiana RS/GIS Workshop April 23, 2013 Cajundome Convention Center Lafayette, Louisiana Landsat Data Continuity Mission 29 th Annual Louisiana RS/GIS Workshop April 23, 2013 Cajundome Convention Center Lafayette, Louisiana http://landsat.usgs.gov/index.php# Landsat 5 Sets Guinness World Record

More information

Current and Future Meteorological Satellite Program of China

Current and Future Meteorological Satellite Program of China Current and Future Meteorological Satellite Program of China ZHANG Wenjian, DONG Chaohua XU Jianmin, YANG Jun China Meteorological Administration May 30, 2005 Beijing, CHINA Outline of the Presentation

More information

Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT

Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT Remote sensing in the O 2 A band Two-linear-polarization measurement of O 2 A band with TANSO-FTS onboard GOSAT July 7, 2016, De Bilt Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Nobuhiro Kikuchi, Makiko Hashimoto

More information

Present and future of marine production in Boka Kotorska

Present and future of marine production in Boka Kotorska Present and future of marine production in Boka Kotorska First results from satellite remote sensing for the breeding areas of filter feeders in the Bay of Kotor INTRODUCTION Environmental monitoring is

More information

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements MR-i Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements FT-IR Spectroradiometry Applications Spectroradiometry applications From scientific research to

More information