A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC

Size: px
Start display at page:

Download "A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC"

Transcription

1 A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London J.P. Crooks, B. Levin, M.Lynch M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani STFC-Rutherford Appleton Laboratory

2 The ILC 2625 ILC calorimetry focused on Particle Flow Approach (PFA) Requirement of highly granular calorimeters Goal : Jet Energy resolution ~ 30 % / E ILC environment is very different compared to LHC Bunch spacing of ~ 300 ns (baseline) 2625 bunches in 1ms 199 ms quiet time Occupancy dominated by beam background & noise 2

3 What are Particle Flow Algorithms (PFA)? Track reconstruction Calorimeter Clustering Match Tracks with Calorimeter Clusters Charged particles Remove associated Calorimeter Clusters Remaining EM-only Calorimeter Clusters Photons Remove Photon Calorimeter Clusters Remaining Calorimeter Clusters Neutral Hadrons DONE 3

4 SiW EM Calorimetry The baseline for the SiD & ILD detector concepts Sampling Calorimeter ECAL MODULE Silicon sensors embedded in tungsten sheets 30 layers meters radius COIL HCAL m2 silicon area Analog read out (4x4-5x5 mm pixels) Compact, has to fit inside the coil 4

5 Increasing the granularity PFA based on track-shower matching clear shower separation Granularity of 5x5 mm may not be sufficient for e.g. π0 identification from τ decays shower separation in dense jets Digital Pixels with 50x50 microns basically a Particle Counter requires highly integrated sensor ideal for MAPS-> TPAC design but 1 TeraPixel system... 5 τ decay

6 TPAC Sensor requirements Sensitive to MIP signal Pixels determine hit status (binary readout) Store bunch crossing number & location of hits Target noise rate 10-6 per Bunch crossing Design to buffer data for up to 8192 bunch crossings Readout in quiet time Masking & trimming individual pixels Minimize dead space 6

7 The INMAPS process Standard 0.18 micron CMOS Used in the TPAC 1.0 sensor 6 metal layers Analog & 1.8 V & 3.3 V 12 micron epitaxial layer Additional module: Deep PWell Developed specifically for this project Added beneath all active circuits in the pixel Should reflect charge, preventing unwanted loss in charge collection efficiency Device simulations using TCAD confirm shielding effect Test chip processing variants TPAC 1.0 manufactured with/without deep p-well for comparison 7

8 The TPAC 1.0 Sensor Four columns of logic + SRAM of which 11.1% dead (logic) Logic columns serve 42 pixels Record hit locations & timestamps Local SRAM Sa mp ler Pre 8.2 million transistors pixels (168 x 168) ; 50 microns; 4 variants Main variants PreShaper and PreSampler Minor variants Capacitor variants Sensitive area 79.4 mm2 P re Sha per 3 Data readout Slow (<5Mhz) 30 bit parallel data output 8

9 TPAC Architecture Details The two main variants PreSampler problematic in array PreShaper 4 diodes 1 resistor (4 MΩ) Configuration SRAM & Mask Comparator trim (4 bits) Two PreShaper variants only the PreShaper worked well in the array Deep p-well subtle changes to capacitors Predicted Performance Gain 94 μv/e Noise 23 e- Power 8.9 μw Diodes Circuit N-Wells 9

10 Sensor testing Test pixels presample pixel variant Analog output nodes IR laser stimulus (1064 nm) 55Fe stimulus quad0 Single pixel in array preshape (quad0/1) Per pixel masks IR Laser Stimulus (1064 nm) 55 Fe stimulus quad1 Full pixel array preshape (quad0/1) Pedestals & trim adjustment Gain uniformity Crosstalk 10

11 Analog Test Pixel : Laser Using 1064 nm Laser back-illuminate through substrate 2x2 μm spot, 2 μm steps Take Profile through 2 diodes in test pixel 11

12 Analog Test Pixel: 55 Generates 1640 e If a photon hits a diode 5.9 kev photon All energy deposited in approx 1 μm3 silicon Fe Fe main decay 55 no diffusion Absolute Gain calibration 12

13 Array : Pixel Response to laser Use same laser setup as for analog scans Single active pixel with/without laser firing Fire Laser at fixed point in pixel Threshold Scan with and without Laser Plateau due to memory saturation 13

14 Array : Single Pixel comparison Amplitude results from Laser Scan With/without deep p-well Compare Simulations GDS Measurements Real Pixel profiles F B 14

15 Array: Single Pixel 55 Fe response use Do a threshold Scan Need the derivative to reconstruct 55 Fe source on Pixel Array 55 Fe peak Derivative approximated using bin subtraction Single active pixel with/without source 15

16 Array: Pixel Noise Threshold scan required to see pedestal and noise Comparator fires on signal going high across threshold level No hits when far above or below threshold Width of distribution equivalent to noise RMS ~ 5.5 Threshold Units (TU) ~ 44 e ~ 170 ev on average Minimum is ~ 4 TU ~ 32 e ~ 120 ev Target level was ~ 90 ev No correlation with position on sensor Spread not fully understood Quad1 ~ 20% larger than Quad0 16 Threshold

17 Array: Pedestal adjustments Plot the distribution of pedestals Mean of Noise Calculate necessary trim adjustment Per-pixel trim file uni-directional adjustment Mean (TU) Re-scan pixels with trims Trim=0: Quad0; Quad1 Trimmed: Quad0; Quad1 Re-plot the distribution of pedestals Planned to have pedestal width ~ ½ Noise width have more trim bits Mean (TU) 17

18 Array: Pixel Gain Use laser to inject fixed-intensity signal into many pixels GAIN Quad0; Quad1 Relative position should be equivalent for each pixel scanned Adjust/trim for known pixel pedestals Results Gain uniform to 12% Quad1 ~ 40% more gain than Quad0 Quad1 ~ 20% better S/N than Quad0 18 Threshold

19 Array Pixel Cross-talk Scan one pixel in the column, all others off. scan entire pixel column Effect of all pixels (other than the one being scanned) is to increase the general noise around zero. Shared power mesh between comparator and and monostable prime culprit, will be fixed 19

20 Future Plans TPAC 1.1 Have received TPAC1.1 a week ago Only one pixel variant (preshaper quad1) Upgrade trim adjustment from 4 bits to 6 bits Compatible format: size, pins, PCB/DAQ etc. Minor bugs fixed (e.g. cross-talk) Additional test pixels & devices for further process characterization 20

21 Conclusion TPAC 1.0 has been a success See response to Laser, Proved deep p-well approach for MAPS Only minor problems found Finishing characterization TPAC 1.1 Fe 55 will be evaluated in the upcoming months We plan to make full-reticle size sensor after that 2.5 x 2.5 cm 21

MAPS-based ECAL Option for ILC

MAPS-based ECAL Option for ILC MAPS-based ECAL Option for ILC, Spain Konstantin Stefanov On behalf of J. Crooks, P. Dauncey, A.-M. Magnan, Y. Mikami, R. Turchetta, M. Tyndel, G. Villani, N. Watson, J. Wilson v Introduction v ECAL with

More information

SiD Workshop RAL Apr Nigel Watson Birmingham University. Overview Testing Summary

SiD Workshop RAL Apr Nigel Watson Birmingham University. Overview Testing Summary MAPS ECAL SiD Workshop RAL 14-16 Apr 2008 Nigel Watson Birmingham University Overview Testing Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel, E.G.Villani

More information

Design and performance of a CMOS study sensor for a binary readout electromagnetic calorimeter

Design and performance of a CMOS study sensor for a binary readout electromagnetic calorimeter Preprint typeset in JINST style - HYPER VERSION Design and performance of a CMOS study sensor for a binary readout electromagnetic calorimeter J. A. Ballin a, R. Coath b, J. P. Crooks b, P. D. Dauncey

More information

Monolithic Active Pixel Sensors (MAPS) in a quadruple well technology for nearly 100% fill factor and full CMOS pixels

Monolithic Active Pixel Sensors (MAPS) in a quadruple well technology for nearly 100% fill factor and full CMOS pixels Sensors 2006, 6 Sensors 2007, 7, 1-x manuscripts sensors ISSN 1424-8220 2007 by MDPI www.mdpi.org/sensors Full Research Paper, Review, Communication (Type of Paper) Monolithic Active Pixel Sensors (MAPS)

More information

PImMS Pixel Imaging Mass Spectrometry

PImMS Pixel Imaging Mass Spectrometry PImMS Pixel Imaging Mass Spectrometry Jaya John John, on behalf of the PImMS Collaboration 18 September 2013, HV CMOS Meeting, QMUL 1 What is PImMS? A CMOS sensor designed for mass spectrometry and related

More information

CALICE Software. Data handling, prototype reconstruction, and physics analysis. Niels Meyer, DESY DESY DV Seminar June 29, 2009

CALICE Software. Data handling, prototype reconstruction, and physics analysis. Niels Meyer, DESY DESY DV Seminar June 29, 2009 CALICE Software Data handling, prototype reconstruction, and physics analysis Niels Meyer, DESY DESY DV Seminar June 29, 2009 The ILC Well, the next kid around the block (hopefully...) Precision physics

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

CMOS Image Sensors aka Monolithic Active Pixel

CMOS Image Sensors aka Monolithic Active Pixel DESY University Hamburg Instrumentation seminar 22 nd October 2010 CMOS Image Sensors aka Monolithic Active Pixel Sensors(MAPS) for scientific applications Dr Renato Turchetta STFC-RAL Rutherford Appleton

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

optimal hermeticity to reduce backgrounds in missing energy channels, especially to veto two-photon induced events.

optimal hermeticity to reduce backgrounds in missing energy channels, especially to veto two-photon induced events. The TESLA Detector Klaus Mönig DESY-Zeuthen For the superconducting linear collider TESLA a multi purpose detector has been designed. This detector is optimised for the important physics processes expected

More information

First Results with the Prototype Detectors of the Si/W ECAL

First Results with the Prototype Detectors of the Si/W ECAL First Results with the Prototype Detectors of the Si/W ECAL David Strom University of Oregon Physics Design Requirements Detector Concept Silicon Detectors - Capacitance and Trace Resistance Implications

More information

Highly Miniaturised Radiation Monitor (HMRM) Status Report. Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad

Highly Miniaturised Radiation Monitor (HMRM) Status Report. Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad Highly Miniaturised Radiation Monitor (HMRM) Status Report Yulia Bogdanova, Nicola Guerrini, Ben Marsh, Simon Woodward, Rain Irshad HMRM programme aim Aim of phase A/B: Develop a chip sized prototype radiation

More information

Micromegas calorimetry R&D

Micromegas calorimetry R&D Micromegas calorimetry R&D June 1, 214 The Micromegas R&D pursued at LAPP is primarily intended for Particle Flow calorimetry at future linear colliders. It focuses on hadron calorimetry with large-area

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

A new single channel readout for a hadronic calorimeter for ILC

A new single channel readout for a hadronic calorimeter for ILC A new single channel readout for a hadronic calorimeter for ILC Peter Buhmann, Erika Garutti,, Michael Matysek, Marco Ramilli for the CALICE collaboration University of Hamburg E-mail: sebastian.laurien@desy.de

More information

Some Studies on ILC Calorimetry

Some Studies on ILC Calorimetry Some Studies on ILC Calorimetry M. Benyamna, C. Carlogan, P. Gay, S. Manen, F. Morisseau, L. Royer (LPC-Clermont) & Y. Gao, H. Gong, Z. Yang (Tsinghua Univ.) Topics of the collaboration - Algorithm for

More information

Noise Characteristics Of The KPiX ASIC Readout Chip

Noise Characteristics Of The KPiX ASIC Readout Chip Noise Characteristics Of The KPiX ASIC Readout Chip Cabrillo College Stanford Linear Accelerator Center What Is The ILC The International Linear Collider is an e- e+ collider Will operate at 500GeV with

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

CMOS Detectors Ingeniously Simple!

CMOS Detectors Ingeniously Simple! CMOS Detectors Ingeniously Simple! A.Schöning University Heidelberg B-Workshop Neckarzimmern 18.-20.2.2015 1 Detector System on Chip? 2 ATLAS Pixel Module 3 ATLAS Pixel Module MCC sensor FE-Chip FE-Chip

More information

Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill Factor and Full CMOS Pixels

Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill Factor and Full CMOS Pixels Sensors 2008, 8, 5336-5351; DOI: 10.3390/s8085336 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill

More information

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration The LHCb Upgrade BEACH 2014 XI International Conference on Hyperons, Charm and Beauty Hadrons! University of Birmingham, UK 21-26 July 2014 Simon Akar on behalf of the LHCb collaboration Outline The LHCb

More information

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven Chronopixe status J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven EE work is contracted to Sarnoff Corporation 1 Outline of

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

The CMS Outer HCAL SiPM Upgrade.

The CMS Outer HCAL SiPM Upgrade. The CMS Outer HCAL SiPM Upgrade. Artur Lobanov on behalf of the CMS collaboration DESY Hamburg CALOR 2014, Gießen, 7th April 2014 Outline > CMS Hadron Outer Calorimeter > Commissioning > Cosmic data Artur

More information

ITk silicon strips detector test beam at DESY

ITk silicon strips detector test beam at DESY ITk silicon strips detector test beam at DESY Lucrezia Stella Bruni Nikhef Nikhef ATLAS outing 29/05/2015 L. S. Bruni - Nikhef 1 / 11 Qualification task I Participation at the ITk silicon strip test beams

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

Cllb 31 May 2007 LCWS R&D Review - Overview 1

Cllb 31 May 2007 LCWS R&D Review - Overview 1 WWS Calorimetry R&D Review: Overview of CALICE Paul Dauncey, Imperial College London On bhlf behalf of fh the CALICE Collaboration Cllb 31 May 2007 LCWS R&D Review - Overview 1 The CALICE Collaboration

More information

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic Outline Short history of MAPS development at IPHC Results from TowerJazz CIS test sensor Ultra-thin

More information

Performance of 8-stage Multianode Photomultipliers

Performance of 8-stage Multianode Photomultipliers Performance of 8-stage Multianode Photomultipliers Introduction requirements by LHCb MaPMT characteristics System integration Test beam and Lab results Conclusions MaPMT Beetle1.2 9 th Topical Seminar

More information

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker Robert P. Johnson Pavel Poplevin Hartmut Sadrozinski Ned Spencer Santa Cruz Institute for Particle Physics The GLAST Project

More information

Characterizing the Noise Performance of the KPiX ASIC. Readout Chip. Jerome Kyrias Carman

Characterizing the Noise Performance of the KPiX ASIC. Readout Chip. Jerome Kyrias Carman Characterizing the Noise Performance of the KPiX ASIC Readout Chip Jerome Kyrias Carman Office of Science, Science Undergraduate Laboratory Internship (SULI) Cabrillo College Stanford Linear Accelerator

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/349 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 09 October 2017 (v4, 10 October 2017)

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

arxiv: v1 [physics.ins-det] 5 Sep 2011

arxiv: v1 [physics.ins-det] 5 Sep 2011 Concept and status of the CALICE analog hadron calorimeter engineering prototype arxiv:1109.0927v1 [physics.ins-det] 5 Sep 2011 Abstract Mark Terwort on behalf of the CALICE collaboration DESY, Notkestrasse

More information

Concept and status of the LED calibration system

Concept and status of the LED calibration system Concept and status of the LED calibration system Mathias Götze, Julian Sauer, Sebastian Weber and Christian Zeitnitz 1 of 14 Short reminder on the analog HCAL Design is driven by particle flow requirements,

More information

Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC TIPP - 22-26 May 2017, Beijing Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC Francesco Romeo On behalf of the CMS collaboration

More information

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades for High Luminosity LHC Upgrades R. Carney, K. Dunne, *, D. Gnani, T. Heim, V. Wallangen Lawrence Berkeley National Lab., Berkeley, USA e-mail: mgarcia-sciveres@lbl.gov A. Mekkaoui Fermilab, Batavia, USA

More information

TPC Readout with GEMs & Pixels

TPC Readout with GEMs & Pixels TPC Readout with GEMs & Pixels + Linear Collider Tracking Directional Dark Matter Detection Directional Neutron Spectroscopy? Sven Vahsen Lawrence Berkeley Lab Cygnus 2009, Cambridge Massachusetts 2 Our

More information

The Commissioning of the ATLAS Pixel Detector

The Commissioning of the ATLAS Pixel Detector The Commissioning of the ATLAS Pixel Detector XCIV National Congress Italian Physical Society Genova, 22-27 Settembre 2008 Nicoletta Garelli Large Hadronic Collider MOTIVATION: Find Higgs Boson and New

More information

Optimization of amplifiers for Monolithic Active Pixel Sensors

Optimization of amplifiers for Monolithic Active Pixel Sensors Optimization of amplifiers for Monolithic Active Pixel Sensors A. Dorokhov a, on behalf of the CMOS & ILC group of IPHC a Institut Pluridisciplinaire Hubert Curien, Département Recherches Subatomiques,

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Esteban Currás1,2, Marcos Fernández2, Christian Gallrapp1, Marcello Mannelli1, Michael

More information

What do the experiments want?

What do the experiments want? What do the experiments want? prepared by N. Hessey, J. Nash, M.Nessi, W.Rieger, W. Witzeling LHC Performance Workshop, Session 9 -Chamonix 2010 slhcas a luminosity upgrade The physics potential will be

More information

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Rita De Masi IPHC-Strasbourg On behalf of the IPHC-IRFU collaboration Physics motivations. Principle of operation

More information

The Calice Analog Scintillator-Tile Hadronic Calorimeter Prototype

The Calice Analog Scintillator-Tile Hadronic Calorimeter Prototype SNIC Symposium, Stanford, California -- 3-6 April 26 The Calice Analog Scintillator-Tile Hadronic Calorimeter Prototype M. Danilov Institute of Theoretical and Experimental Physics, Moscow, Russia and

More information

The Detector at the CEPC: Calorimeters

The Detector at the CEPC: Calorimeters The Detector at the CEPC: Calorimeters Tao Hu (IHEP) and Haijun Yang (SJTU) (on behalf of the CEPC-SppC Study Group) IHEP, Beijing, March 11, 2015 Introduction Calorimeters Outline ECAL with Silicon and

More information

ISIS2 as a Pixel Sensor for ILC

ISIS2 as a Pixel Sensor for ILC ISIS2 as a Pixel Sensor for ILC Yiming Li (University of Oxford) on behalf of UK ISIS Collaboration (U. Oxford, RAL, Open University) LCWS 10 Beijing, 28th March 2010 1 / 24 Content Introduction to ISIS

More information

CSPADs: how to operate them, which performance to expect and what kind of features are available

CSPADs: how to operate them, which performance to expect and what kind of features are available CSPADs: how to operate them, which performance to expect and what kind of features are available Gabriella Carini, Gabriel Blaj, Philip Hart, Sven Herrmann Cornell-SLAC Pixel Array Detector What is it?

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

BaBar and PEP II. Physics

BaBar and PEP II. Physics BaBar and PEP II BaBar SVT DCH DIRC ECAL IFR Trigger Carsten Hast LAL Orsay December 8th 2000 Physics Main Goal: CP Violation sin2β,sin2α PEP II Performance Backgrounds December 8th 2000 Carsten Hast PEP

More information

Phase 1 upgrade of the CMS pixel detector

Phase 1 upgrade of the CMS pixel detector Phase 1 upgrade of the CMS pixel detector, INFN & University of Perugia, On behalf of the CMS Collaboration. IPRD conference, Siena, Italy. Oct 05, 2016 1 Outline The performance of the present CMS pixel

More information

The CMS HGCAL detector for HL-LHC upgrade

The CMS HGCAL detector for HL-LHC upgrade on behalf of the CMS collaboration. National Taiwan University E-mail: arnaud.steen@cern.ch The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges

More information

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector CLICdp-Pub-217-1 12 June 217 Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector I. Kremastiotis 1), R. Ballabriga, M. Campbell, D. Dannheim, A. Fiergolski,

More information

Data acquisi*on and Trigger - Trigger -

Data acquisi*on and Trigger - Trigger - Experimental Methods in Par3cle Physics (HS 2014) Data acquisi*on and Trigger - Trigger - Lea Caminada lea.caminada@physik.uzh.ch 1 Interlude: LHC opera3on Data rates at LHC Trigger overview Coincidence

More information

Final Results from the APV25 Production Wafer Testing

Final Results from the APV25 Production Wafer Testing Final Results from the APV Production Wafer Testing M.Raymond a, R.Bainbridge a, M.French b, G.Hall a, P. Barrillon a a Blackett Laboratory, Imperial College, London, UK b Rutherford Appleton Laboratory,

More information

Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4. Final design and pre-production.

Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4. Final design and pre-production. high-granularity sfcal Performance simulation, option selection and R&D Figure 41. Overview of the time-line and milestones for the implementation of the high-granularity sfcal. tooling and cryostat modification,

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/308 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 28 September 2017 (v2, 11 October 2017)

More information

Calorimeter Monitoring at DØ

Calorimeter Monitoring at DØ Calorimeter Monitoring at DØ Calorimeter Monitoring at DØ Robert Kehoe ATLAS Calibration Mtg. December 1, 2004 Southern Methodist University Department of Physics Detector and Electronics Monitoring Levels

More information

Development of a CMOS pixel sensor for embedded space dosimeter with low weight and minimal power dissipation

Development of a CMOS pixel sensor for embedded space dosimeter with low weight and minimal power dissipation Development of a CMOS pixel sensor for embedded space dosimeter with low weight and minimal power dissipation Yang ZHOU Ph.D. thesis defense 23 th of September 2014 Outline Challenges in space radiation

More information

The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC Journal of Physics: Conference Series OPEN ACCESS The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC To cite this article: Philippe Gras and the CMS collaboration 2015 J. Phys.:

More information

Introduction Test results standard tests Test results extended tests Conclusions

Introduction Test results standard tests Test results extended tests Conclusions Production and Tests of Hybrid Photon Detectors for the LHCb RICH Detectors, University of Edinburgh On behalf of the LHCb experiment Introduction Test results standard tests Test results extended tests

More information

SPD VERY FRONT END ELECTRONICS

SPD VERY FRONT END ELECTRONICS 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10 14 Oct 2005, PO2.0684 (2005) SPD VERY FRONT END ELECTRONICS S. Luengo 1, J. Riera 1, S. Tortella 1, X. Vilasis

More information

Beam Condition Monitors and a Luminometer Based on Diamond Sensors

Beam Condition Monitors and a Luminometer Based on Diamond Sensors Beam Condition Monitors and a Luminometer Based on Diamond Sensors Wolfgang Lange, DESY Zeuthen and CMS BRIL group Beam Condition Monitors and a Luminometer Based on Diamond Sensors INSTR14 in Novosibirsk,

More information

Calibration of Scintillator Tiles with SiPM Readout

Calibration of Scintillator Tiles with SiPM Readout EUDET Calibration of Scintillator Tiles with SiPM Readout N. D Ascenzo, N. Feege,, B. Lutz, N. Meyer,, A. Vargas Trevino December 18, 2008 Abstract We report the calibration scheme for scintillator tiles

More information

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance 26 IEEE Nuclear Science Symposium Conference Record NM1-6 The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance R. Ballabriga, M. Campbell,

More information

Liejian Chen (IHEP) On behalf of IHEP ATLAS Group

Liejian Chen (IHEP) On behalf of IHEP ATLAS Group Liejian Chen (IHEP) On behalf of IHEP ATLAS Group Many thanks for ATLAS CMOS Strip Calibration Yubo Han 1, Hongbo Zhu 1, Giulio Villani 2, Iain Sedgwick 2, Jens Dopke 2, Zhige Zhang 2, Steve MacMahon 2,

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2010/043 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 23 March 2010 (v4, 26 March 2010) DC-DC

More information

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara Outline Requirements Detector Description Performance Radiation SVT Design Requirements and Constraints

More information

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration CMS Tracker Upgrade for HL-LHC Sensors R&D Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration Outline HL-LHC Tracker Upgrade: Motivations and requirements Silicon strip R&D: * Materials with Multi-Geometric

More information

CMS Conference Report

CMS Conference Report Available on CMS information server CMS CR 2004/067 CMS Conference Report 20 Sptember 2004 The CMS electromagnetic calorimeter M. Paganoni University of Milano Bicocca and INFN, Milan, Italy Abstract The

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

Improved Pre-Sample pixel

Improved Pre-Sample pixel Improved Pre-Sample pixel SUMMARY/DIALOGUE 2 PRESAMPLE PIXEL OVERVIEW 3 PRESAMPLE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESAMPLE PIXEL SIMULATION: SMALL SIGNALS AROUND THRESHOLD 6 PRESAMPLE PIXEL SIMULATION:

More information

http://clicdp.cern.ch Hybrid Pixel Detectors with Active-Edge Sensors for the CLIC Vertex Detector Simon Spannagel on behalf of the CLICdp Collaboration Experimental Conditions at CLIC CLIC beam structure

More information

A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology

A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology Pascal Mellot / Bruce Rae 27 th February 2018 Summary 2 Introduction to ranging device Summary

More information

Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris

Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris Paris in the framework of the SiLC R&D Collaboration Jean-Francois Genat, Thanh Hung Pham, Herve Lebbolo, Marc Dhellot and Aurore

More information

The ILD Detector Concept and the LoI Process

The ILD Detector Concept and the LoI Process The ILD Detector Concept and the LoI Process Karsten Buesser for Ties Behnke SILC Collaboration Meeting 18.12.2007 The Goal ILC is precision experiment -> consequences for the detector M. Thomson, Cambridge

More information

CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg

CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg CMOS Monolithic Pixel Sensors for Particle Tracking: a short summary of seven years R&D at Strasbourg Wojciech Dulinski, IPHC, Strasbourg, France Outline Short history of beginnings Review of most important

More information

Resistive Micromegas for sampling calorimetry

Resistive Micromegas for sampling calorimetry C. Adloff,, A. Dalmaz, C. Drancourt, R. Gaglione, N. Geffroy, J. Jacquemier, Y. Karyotakis, I. Koletsou, F. Peltier, J. Samarati, G. Vouters LAPP, Laboratoire d Annecy-le-Vieux de Physique des Particules,

More information

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector, Miho Yamada, Toru Tsuboyama, Yasuo Arai, Ikuo Kurachi High Energy Accelerator

More information

CALICE Workpackages 2, 3 and 4

CALICE Workpackages 2, 3 and 4 CALICE Workpackages 2, 3 and 4 Paul Dauncey Imperial College London 1 Feb 2005 CALICE - Paul Dauncey 1 Hardware workpackages Strategic decision Want to ensure UK is positioned to take large role in calorimeters

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama Introduction and motivation for this study Silicon photomultipliers ), often called SiPM

More information

Measurement results of DIPIX pixel sensor developed in SOI technology

Measurement results of DIPIX pixel sensor developed in SOI technology Measurement results of DIPIX pixel sensor developed in SOI technology Mohammed Imran Ahmed a,b, Yasuo Arai c, Marek Idzik a, Piotr Kapusta b, Toshinobu Miyoshi c, Micha l Turala b a AGH University of Science

More information

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes HF Upgrade Studies: Characterization of Photo-Multiplier Tubes 1. Introduction Photomultiplier tubes (PMTs) are very sensitive light detectors which are commonly used in high energy physics experiments.

More information

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Andrew Clarke a*, Konstantin Stefanov a, Nicholas Johnston a and Andrew Holland a a Centre for Electronic Imaging, The Open University,

More information

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review Chapter 4 Vertex Qun Ouyang Nov.10 th, 2017Beijing Nov.10 h, 2017 CEPC detector CDR mini-review CEPC detector CDR mini-review Contents: 4 Vertex Detector 4.1 Performance Requirements and Detector Challenges

More information

Electron-Bombarded CMOS

Electron-Bombarded CMOS New Megapixel Single Photon Position Sensitive HPD: Electron-Bombarded CMOS University of Lyon / CNRS-IN2P3 in collaboration with J. Baudot, E. Chabanat, P. Depasse, W. Dulinski, N. Estre, M. Winter N56:

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Deliverable Report. CERN pixel beam telescope for the PS

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators. Deliverable Report. CERN pixel beam telescope for the PS AIDA-2020-D15.1 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Deliverable Report CERN pixel beam telescope for the PS Dreyling-Eschweiler, J (DESY) et al 25 March 2017 The AIDA-2020

More information

Track Triggers for ATLAS

Track Triggers for ATLAS Track Triggers for ATLAS André Schöning University Heidelberg 10. Terascale Detector Workshop DESY 10.-13. April 2017 from https://www.enterprisedb.com/blog/3-ways-reduce-it-complexitydigital-transformation

More information

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Università degli Studi di Firenze and INFN Sezione di Firenze E-mail: candi@fi.infn.it CMS has started a campaign to identify the future

More information

Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades

Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades Journal of Instrumentation OPEN ACCESS Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades To cite this article: Malte Backhaus Recent citations - Module and electronics developments

More information

Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters

Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters Frank Simon MPI for Physics & Excellence Cluster Universe Munich, Germany for the CALICE Collaboration Outline The

More information

Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC

Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC Kirchhoff-Institute for Physics (DE) E-mail: sebastian.mario.weber@cern.ch ATL-DAQ-PROC-2017-026

More information

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Plans for RPC DHCAL Prototype. David Underwood Argonne National Laboratory

Plans for RPC DHCAL Prototype. David Underwood Argonne National Laboratory Plans for RPC DHCAL Prototype David Underwood Argonne National Laboratory Linear Collider Meeting, SLAC 7-10 January 2004 Outline Collaborators Goals Motivation Mechanical Structure Chamber Description

More information

Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors

Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors Light High Precision CMOS Pixel Devices Providing 0(µs) Timestamping for Future Vertex Detectors M. Winter, on behalf of PICSEL team of IPHC-Strasbourg IEEE/NSS-MIC - Anaheim(CA) Novembre 2012 Contents

More information