Introduction Test results standard tests Test results extended tests Conclusions

Size: px
Start display at page:

Download "Introduction Test results standard tests Test results extended tests Conclusions"

Transcription

1 Production and Tests of Hybrid Photon Detectors for the LHCb RICH Detectors, University of Edinburgh On behalf of the LHCb experiment Introduction Test results standard tests Test results extended tests Conclusions LHCb RICH1 RICH2

2 LHCb RICH RICH1 side view RICH = Ring Imaging CHerenkov detector 3 radiator media aerogel, C 4F 1,, CF 4 cos(θ ) c = 1 n v c RICH2 Flat mirrors Spherical Mirrors Support Structure spherical mirrors focusing ring image tilt outside acceptance secondary flat mirrors magnetic shielding 7.2 m acceptance RICH1: 25-3mrad RICH2 :15-12mrad 12mrad Central Tube Photon Funnel + Shielding 2

3 RICH Photondetector Requirements 6 4 RICH1 1 6 RICH 2 4 RICH2 2 2 y (c cm) y (c cm) -2-2 C 4 F 1 (small) -4 Aerogel (large) x (cm) x (cm) single event ent in the full GEANT3 based simulation used in performance studies photodetector area: 2.6 m 2 active area fraction: 65% single photon sensitivity: 2-6 nm # of electronic channels: 5k quantum efficiency: >2% LHCb DAQ rate: 4MHz good granularity: 2.5 x 2.5 mm 2 rad. tolerant: 3kRad/year CF 4 answer: 484 3

4 Specifications Anode Photon detector: Quartz window, S2 photocathode Typical QE de >.7eV Cross-focussing optics (tetrode structure): De-magnification by ~5 Active diameter 72mm 484 tubes for overall RICH system 2 kv operating voltage (~5 e [eq. Si]) Vacuum photon detector Anode: pixel Si-sensor array ( Alice mode ) small pixels low noise bump-bonded to binary readout chip assembly encapsulated in vacuum tube LHCb readout mode : 8-fold binary OR effective pixel array pixel size 5μm 5μm sufficient 4

5 Photon Detector Test Facilities Photon Detector Test Facilities (PDTF): (Edinburgh & Glasgow) 2 test stations per site design test rate: 1 / day / site standard preparation and test programme per : ~6hrs extended tests: on ~1% of s Quantum Efficiency (Edinburgh) Backpulse Signal (Glasgow) Storage: under He-free atmosphere: N 2 gas flow (.2 l/min) PDTF station Dark box flat & pointing light source Electronics & Power supplies DAQ PC 5

6 Testing Programme 6

7 Classification System guideline for usability in RICH: 161x class A+ : exceed specifications significantly 282x class A : clear pass in all aspects 6x class B : may fail specs, but recommended for usage s with slightly increased dark count 42x class E : flagged with an issue, still usable in RICH s with increased LC or 1 5% dead pixels 12x class F : clear fail reject 12 failed s: 9x replaced with good 3x accepted as failure within LHCb responsibility misc: 4x repaired, retested and accepted as good 2x anode problem, but usable, under study, not classified pass: of 559 > 97.8% fail: 12 of 559 < 2.2% 282 category 6 A+ A B E F

8 Mechanical Tests t 555 passed 2 failed on first test leaned by ~.4mm tubes repaired to pass as well point of first possible contact PDTF: mechanical test jig : 83.mm +.mm -.1mm Teflon tape:.1mm Jig : 83.4mm gap:.1mm any contact = failure 8

9 Pixel Chip Threshold and Noise excellent signal over noise: specification <measured> average signal 2kV: C = 5 e - average threshold: T = < 2 e e - average electronic noise: N = < 25 e e - signal over noise: S/N = (C-T)/N > (min, max) = (21,33) 16 global threshold setting 16 electonic noise of pixel chip 14 signal-over-noise of pixel chip <threshold>: 12 <noise>: <S/N>: e e threshold [e-] noise [e-] S/N

10 Anode Channel Yields very good yields for response of individual pixels: in Alice mode 8192 pixels / <dead pixels>: 12.4 pixels / <poor pixels>: 1.6 pixels / dead pixels per <dead pixels>: 12.4 pixels signal response < 5% <noisy pixels>: 2.1 pixels / need masking pixels noisy pixels per 45 poor pixels per <noisy ypixels>: 2.1 pixels <poor pixels>: 1.6 pixels pixels pixels bias of averages 1

11 Anode Leakage Current goal: typical value of: LC ~ 1μA achieved for all bare chips when unpowered with bias of 8V in : bad heat dissipation anode heat up by ~12-15 C increase in leakage current: ~*2 for 6 C found two classes: low 8V (<1μA): quadratic behaviour up to 9V bias medium 8V (~1μA 3μA): turn up point between: 4 6V Bias Curre ent [arbitrary units] IV scans for sample of s normalised Bias Voltage [V] Anode Leakage Current: at 8V bias class E & F ((corresponds to two sensor batches)) Leakage Current [μa] 11

12 . Imaging g pulsed LED run (2k events, ~3 npe/event) fit of sensor position batch 1-7 batch 8-25 Distribution of image centres cylindrical reflection: reflection on Al coating -5 fit of image diameter linear demagnification Deviation from centre of chip [μm] Y circles: LHCb pixel Ø -15 X Deviation from centre of chip [μm] sensor displacement: due to positioning error linear demagnification: <D> = x >1mm (2 LHCb pixel): signal loss possible in magnetic field linear demagnification 12

13 Photoelectron Response HV scan: look for photon yield onset of response onset of charge sharing between pixels slope due to increasing efficiency for back-scattered e- Dark Count settling: typical decay: factor 2 in 3min after initial ramp-up time constants vary 13

14 Anode Response Bias Voltage Scan Bias voltage scan: look for photon yield very sensitive to timing: onset of response charge signal vs. strobe pulse bias of full depletion drift time in sensor bias V plateau of over-depletion >5V test stations tuned to: 4ns lised) optimal timing 8ns to fast 8ns too slow working point photo oelectrons (norma bias voltage [V] 14

15 Ion Feed Back due to e - ionising residual gas atoms ion produces bunch of photoelectrons at PC cluster of hits with 2-3ns delay we find: very low IFB very good tube vacuum Hits Per Ev vent 4 4. Strobe Scan H5244 response to LED pulses with varied delay Very low IFB <<1% Raw hits Clusters Poisson estimate Ion Feedback x Ion Feed Back from Strobe Scan <IFB> =.4% spec: max. 1% Delay [ns] Ion Feed Back [% ] 15

16 Dark Count specification: DC < 5kHz/cm 2 H5169: 7.3 khz/cm 2 H51618: 1. khz/cm 2 safety margin: ~ factor 1 before we exceed 1% occupancy 3 Dark Count from 5M events high red sensitivity increased IFB prob out of 557 s exceed 5 khz/cm 2 : accepted outside spec: class B two types: high red sensitivity increased IFB probability accepted range: 5 2 khz/cm perfectly fine to be used in RICH Dark Count [khz/cm2] 16

17 Quantum Efficiency DEP Data Excellent blue sensitivity: 27nm> = 3.8% increase due to process tuning at DEP single most helpful improvement to RICH performance typical: average QE [%] <QE> per batch running <QE> (batch -25) 27 nm (per batch) RMS of batch spread 23.3% minimum: 2.% batch no. more tuning improvements: fill of sensitivity dip between UV and visible reduction of red 8nm anti-correlated to blue sensitivity cause of thermal e - -emission (dark count) 17

18 QE PDTF Test Setup Dark Box measurement of the photocurrent, referenced with calibrated photodiode Reference Photodiode Filter System Quartz-Tungsten Halogen Lamp photocurrent: <16nA image Ø: ~ 5mm Interlock Fused Silica Lens R L I [pa] I PD [pa] Shutter, 1nm BP filter, IR or VIS block, ND filter η q ( λ) = η PD q ( λ) I I ( PD ( λ) ( λ ) Bias [V] default: 1V cross-check: 22V (just below He ionisation i threshold) h differing DEP parameters: Bias: 9V Ø: 1-15mm large photo currents 18

19 QE LHCb Verification PDTF measurement: 7 wavelengths, 1nm bandpass filter error: 2% 76 measured.2 PDTF QE measurements typically matches DEP values within 3% PDTF measurements confirm shape of spectra & absolute values full trust in DEP measurements complication for few (9) production : atypical large IFB fakes higher QE corrected from measurements as 22V bias QE, ηq, (n no units) Quantum Efficiency - typical sample H6485: DEP H6485: PDTF H61211: DEP H61211: PDTF H653: DEP H653: PDTF H5452: DEP H5452: PDTF Wavelength λ / nm extreme case for illustration 22V 19

20 Photoelectron Efficiency Backpulse comparison of binary to analog event yield with constant light source binary: through readout chip npe analog: measurement of the charge pulse on the bias line Poisson <μ> capacity of whole chip: noise*1 4 wrt. single pixel Poisson fit to analog spectrum Results: efficiency = npe / <μ> strobe length efficiency 25ns 5ns PDTF 27 88% 94% events (production s) 1 CERN 24 84% 92% (prototype s) error estimation pending pedestal subtracted analog ph.el. spectrum photo electrons data fit an almost perfect match fit yields Poisson <μ> ADC counts 2

21 Conclusions Production & testing of >55 s has finished rigorous test programme with >97.8% of s accepted s meet requirements of LHCb RICH detectors Very good results for vacuum quality and Dark Count Excellent results on QE and S/N DEP QE results confirmed by PDTF commissioning is underway with 288 installed in RICH2 21

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

Performance of 8-stage Multianode Photomultipliers

Performance of 8-stage Multianode Photomultipliers Performance of 8-stage Multianode Photomultipliers Introduction requirements by LHCb MaPMT characteristics System integration Test beam and Lab results Conclusions MaPMT Beetle1.2 9 th Topical Seminar

More information

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors F. Muheim a edin]department of Physics and Astronomy, University of Edinburgh Mayfield Road, Edinburgh EH9 3JZ,

More information

Stato del progetto RICH di LHCb. CSN1 Lecce, 24 settembre 2003

Stato del progetto RICH di LHCb. CSN1 Lecce, 24 settembre 2003 Stato del progetto RICH di LHCb CSN1 Lecce, 24 settembre 2003 LHCb RICH detectors Particle ID over 1 100 GeV/c provided by 2 RICH detectors RICH2: No major changes since RICH TDR PRR in february 2003 Superstructure

More information

hybrides à pixels et à leurs applications

hybrides à pixels et à leurs applications FACULTÉ DES SCIENCES Section de physique Département de physique nucléaire et corpusculaire Séminaire du mercredi 5 novembre 2003 Introduction à la technologie des photodétecteurs hybrides à pixels et

More information

The HPD DETECTOR. Michele Giunta. VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea"

The HPD DETECTOR. Michele Giunta. VLVnT Workshop Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea The HPD DETECTOR VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea" In this presentation: The HPD working principles The HPD production CLUE Experiment

More information

Electron-Bombarded CMOS

Electron-Bombarded CMOS New Megapixel Single Photon Position Sensitive HPD: Electron-Bombarded CMOS University of Lyon / CNRS-IN2P3 in collaboration with J. Baudot, E. Chabanat, P. Depasse, W. Dulinski, N. Estre, M. Winter N56:

More information

Extension of the MCP-PMT lifetime

Extension of the MCP-PMT lifetime RICH2016 Bled, Slovenia Sep. 6, 2016 Extension of the MCP-PMT lifetime K. Matsuoka (KMI, Nagoya Univ.) S. Hirose, T. Iijima, K. Inami, Y. Kato, K. Kobayashi, Y. Maeda, R. Omori, K. Suzuki (Nagoya Univ.)

More information

VErtex LOcator (VELO)

VErtex LOcator (VELO) Commissioning the LHCb VErtex LOcator (VELO) Mark Tobin University of Liverpool On behalf of the LHCb VELO group 1 Overview Introduction LHCb experiment. The Vertex Locator (VELO). Description of System.

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

R & D for Aerogel RICH

R & D for Aerogel RICH 1 R & D for Aerogel RICH Ichiro Adachi KEK Proto-Collaboration Meeting March 20, 2008 2 1 st Cherenkov Image detected by 3 hybrid avalanche photon detectors from a beam test About 3:00 AM TODAY Clear image

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Timing and cross-talk properties of Burle multi-channel MCP PMTs

Timing and cross-talk properties of Burle multi-channel MCP PMTs Timing and cross-talk properties of Burle multi-channel MCP PMTs Peter Križan University of Ljubljana and J. Stefan Institute RICH07, October 15-20, 2007 Contents Motivation for fast single photon detection

More information

HAPD Status. S. Nishida KEK. Dec 11, st Open Meeting of the SuperKEKB collaboration. HAPD Status. 1st SuperKEKB Meeting 1

HAPD Status. S. Nishida KEK. Dec 11, st Open Meeting of the SuperKEKB collaboration. HAPD Status. 1st SuperKEKB Meeting 1 S. Nishida KEK 1st Open Meeting of the SuperKEKB collaboration Dec 11, 2008 1 Contents 144ch HAPD Key Issues Summary I. Adachia, R. Dolenecb, K. Harac, T. Iijimac, H. Ikedad, Y. Ishiie, H. Kawaie, S. Korparb,f,

More information

PMT tests at UMD. Vlasios Vasileiou Version st May 2006

PMT tests at UMD. Vlasios Vasileiou Version st May 2006 PMT tests at UMD Vlasios Vasileiou Version 1.0 1st May 2006 Abstract This memo describes the tests performed on three Milagro PMTs in UMD. Initially, pulse-height distributions of the PMT signals were

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

CHAPTER 11 HPD (Hybrid Photo-Detector)

CHAPTER 11 HPD (Hybrid Photo-Detector) CHAPTER 11 HPD (Hybrid Photo-Detector) HPD (Hybrid Photo-Detector) is a completely new photomultiplier tube that incorporates a semiconductor element in an evacuated electron tube. In HPD operation, photoelectrons

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

SiPMs as detectors of Cherenkov photons

SiPMs as detectors of Cherenkov photons SiPMs as detectors of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Light07, September 26, 2007 Contents Photon detection for Ring Imaging CHerenkov counters Can G-APDs

More information

A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC

A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A.

More information

Engineering Medical Optics BME136/251 Winter 2018

Engineering Medical Optics BME136/251 Winter 2018 Engineering Medical Optics BME136/251 Winter 2018 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) *1/17 UPDATE Wednesday, 1/17 Optics and Photonic Devices III: homework

More information

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009 , Ljubljana, 7-9 July 2009 Outline: MCP aging waveform readout (MPPC) summary (slide 1) Aging preliminary news from Photonis Old information: Current performance (no Al protection layer): 50% drop of efficiency

More information

Design, Fabrication and Performance of the 10-inch TOM HPD

Design, Fabrication and Performance of the 10-inch TOM HPD 1 Design, Fabrication and Performance of the 10-inch TOM HPD A. Braem a,e.chesi a, C. Joram a,j.séguinot b, P. Weilhammer a M. Giunta c,n.malakhov c, A. Menzione c,r.pegna d,a.piccioli d, F. Raffaelli

More information

HERA-B RICH. Samo Korpar

HERA-B RICH. Samo Korpar HERA- RICH 1. Introduction 2. The design of the RICH 3. Measured parameters of the RICH 4. Particle identification 5. Conclusions HERA- RICH (page 1) HERA- RICH group P. Križan 1, A. Gorišek 1, S. Korpar

More information

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010 Seminar BELLE II Particle Identification Detector and readout system Andrej Seljak advisor: Prof. Samo Korpar October 2010 Outline Motivation BELLE experiment and future upgrade plans RICH proximity focusing

More information

Bandpass Edge Dichroic Notch & More

Bandpass Edge Dichroic Notch & More Edmund Optics BROCHURE Filters COPYRIGHT 217 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/17 Bandpass Edge Dichroic Notch & More Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE:

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

The Commissioning of the ATLAS Pixel Detector

The Commissioning of the ATLAS Pixel Detector The Commissioning of the ATLAS Pixel Detector XCIV National Congress Italian Physical Society Genova, 22-27 Settembre 2008 Nicoletta Garelli Large Hadronic Collider MOTIVATION: Find Higgs Boson and New

More information

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration The LHCb Upgrade BEACH 2014 XI International Conference on Hyperons, Charm and Beauty Hadrons! University of Birmingham, UK 21-26 July 2014 Simon Akar on behalf of the LHCb collaboration Outline The LHCb

More information

Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector

Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector Test Beam Measurements for the Upgrade of the CMS Phase I Pixel Detector Simon Spannagel on behalf of the CMS Collaboration 4th Beam Telescopes and Test Beams Workshop February 4, 2016, Paris/Orsay, France

More information

Noise Analysis of AHR Spectrometer Author: Andrew Xiang

Noise Analysis of AHR Spectrometer Author: Andrew Xiang 1. Introduction Noise Analysis of AHR Spectrometer Author: Andrew Xiang The noise from Spectrometer can be very confusing. We will categorize different noise and analyze them in this document from spectrometer

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

Reminder on the TOB electronics architecture Test of the first SS rod prototype

Reminder on the TOB electronics architecture Test of the first SS rod prototype Reminder on the TOB electronics architecture Test of the first SS rod prototype Results Further steps Duccio Abbaneo CMS Electronics Week November 2002 1 The rod CCU Module SC out LV out SC in LV in LV

More information

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments Components of Optical Instruments Chapter 7_III UV, Visible and IR Instruments 1 Grating Monochromators Principle of operation: Diffraction Diffraction sources: grooves on a reflecting surface Fabrication:

More information

Photomultiplier & Photodiode User Guide

Photomultiplier & Photodiode User Guide Photomultiplier & Photodiode User Guide This User Manual is intended to provide guidelines for the safe operation of Photek PMT Photomultiplier Tubes and Photodiodes. Please contact Sales or visit: www.photek.co.uk

More information

Minimizes reflection losses from UV-IR; Optional AR coatings & wedge windows are available.

Minimizes reflection losses from UV-IR; Optional AR coatings & wedge windows are available. Now Powered by LightField PyLoN:2K 2048 x 512 The PyLoN :2K is a controllerless, cryogenically-cooled CCD camera designed for quantitative scientific spectroscopy applications demanding the highest possible

More information

arxiv:hep-ex/ v1 19 Apr 2002

arxiv:hep-ex/ v1 19 Apr 2002 STUDY OF THE AVALANCHE TO STREAMER TRANSITION IN GLASS RPC EXCITED BY UV LIGHT. arxiv:hep-ex/0204026v1 19 Apr 2002 Ammosov V., Gapienko V.,Kulemzin A., Semak A.,Sviridov Yu.,Zaets V. Institute for High

More information

Simulation studies of a novel, charge sharing, multi-anode MCP detector

Simulation studies of a novel, charge sharing, multi-anode MCP detector Simulation studies of a novel, charge sharing, multi-anode MCP detector Photek LTD E-mail: tom.conneely@photek.co.uk James Milnes Photek LTD E-mail: james.milnes@photek.co.uk Jon Lapington University of

More information

Properties of a Detector

Properties of a Detector Properties of a Detector Quantum Efficiency fraction of photons detected wavelength and spatially dependent Dynamic Range difference between lowest and highest measurable flux Linearity detection rate

More information

Phase 1 upgrade of the CMS pixel detector

Phase 1 upgrade of the CMS pixel detector Phase 1 upgrade of the CMS pixel detector, INFN & University of Perugia, On behalf of the CMS Collaboration. IPRD conference, Siena, Italy. Oct 05, 2016 1 Outline The performance of the present CMS pixel

More information

Commissioning and operation of the CDF Silicon detector

Commissioning and operation of the CDF Silicon detector Commissioning and operation of the CDF Silicon detector Saverio D Auria On behalf of the CDF collaboration International conference on Particle Physics and Advanced Technology, Como, Italy, 15-19 October

More information

Final Results from the APV25 Production Wafer Testing

Final Results from the APV25 Production Wafer Testing Final Results from the APV Production Wafer Testing M.Raymond a, R.Bainbridge a, M.French b, G.Hall a, P. Barrillon a a Blackett Laboratory, Imperial College, London, UK b Rutherford Appleton Laboratory,

More information

CMS Tracker Upgrades. R&D Plans, Present Status and Perspectives. Benedikt Vormwald Hamburg University on behalf of the CMS collaboration

CMS Tracker Upgrades. R&D Plans, Present Status and Perspectives. Benedikt Vormwald Hamburg University on behalf of the CMS collaboration R&D Plans, Present Status and Perspectives Benedikt Vormwald Hamburg University on behalf of the CMS collaboration EPS-HEP 2015 Vienna, 22.-29.07.2015 CMS Tracker Upgrade Program LHC HL-LHC ECM[TeV] 7-8

More information

The LHCb Vertex Locator : Marina Artuso, Syracuse University for the VELO Group

The LHCb Vertex Locator : Marina Artuso, Syracuse University for the VELO Group The LHCb Vertex Locator : status and future perspectives Marina Artuso, Syracuse University for the VELO Group The LHCb Detector Mission: Expore interference of virtual new physics particle in the decays

More information

Lecture 12 OPTICAL DETECTORS

Lecture 12 OPTICAL DETECTORS Lecture 12 OPTICL DETECTOS (eference: Optical Electronics in Modern Communications,. Yariv, Oxford, 1977, Ch. 11.) Photomultiplier Tube (PMT) Highly sensitive detector for light from near infrared ultraviolet

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection historical example: particle impinging on ZnS screen -> emission of light flash principle

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection particle impinging on ZnS screen -> emission of light flash principle of scintillation

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes HF Upgrade Studies: Characterization of Photo-Multiplier Tubes 1. Introduction Photomultiplier tubes (PMTs) are very sensitive light detectors which are commonly used in high energy physics experiments.

More information

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A. N. Otte a,, J. Hose a,r.mirzoyan a, A. Romaszkiewicz a, M. Teshima a, A. Thea a,b a Max Planck Institute for Physics, Föhringer

More information

Radiation transducer. ** Modern electronic detectors: Taking the dark current into account, S = kp + bkgnd over the dynamic range.

Radiation transducer. ** Modern electronic detectors: Taking the dark current into account, S = kp + bkgnd over the dynamic range. Radiation transducer ** Radiation transducer (photon detector) Any device that converts an amount of radiation into some other measurable phenomenon. electric signals. - External photoelectric (photomultiplier),

More information

Development of the MCP-PMT for the Belle II TOP Counter

Development of the MCP-PMT for the Belle II TOP Counter Development of the MCP-PMT for the Belle II TOP Counter July 2, 2014 at NDIP 2014 Shigeki Hirose (Nagoya University) K. Matsuoka, T. Yonekura, T. Iijima, K. Inami, D. Furumura, T. Hayakawa, Y. Kato, R.

More information

Development of New Large-Area Photosensors in the USA

Development of New Large-Area Photosensors in the USA Development of New Large-Area Photosensors in the USA @BURLE classical PMTs (separate talk) @UC Davis: (1) ReFerence Flat Panels for mass production (2) Light Amplifiers (flat and spherical) Daniel Ferenc

More information

The Argonne 6cm MCP-PMT System. Bob Wagner for Argonne LAPPD Collaboration ANNIE Collaboration Meeting Monday 27 Oct 2014

The Argonne 6cm MCP-PMT System. Bob Wagner for Argonne LAPPD Collaboration ANNIE Collaboration Meeting Monday 27 Oct 2014 The Argonne 6cm MCP-PMT System Bob Wagner for Argonne LAPPD Collaboration ANNIE Collaboration Meeting Monday 27 Oct 2014 Thanks to Argonne Postdocs Junqi Xie (photocathode) & Jingbo Wang (analysis) for

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

Application of avalanche photodiodes as a readout for scintillator tile-fiber systems

Application of avalanche photodiodes as a readout for scintillator tile-fiber systems Application of avalanche photodiodes as a readout for scintillator tile-fiber systems C. Cheshkov a, G. Georgiev b, E. Gouchtchine c,l.litov a, I. Mandjoukov a, V. Spassov d a Faculty of Physics, Sofia

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

Light Collection. Plastic light guides

Light Collection. Plastic light guides Light Collection Once light is produced in a scintillator it must collected, transported, and coupled to some device that can convert it into an electrical signal (PMT, photodiode, ) There are several

More information

What do the experiments want?

What do the experiments want? What do the experiments want? prepared by N. Hessey, J. Nash, M.Nessi, W.Rieger, W. Witzeling LHC Performance Workshop, Session 9 -Chamonix 2010 slhcas a luminosity upgrade The physics potential will be

More information

Advances in microchannel plate detectors for UV/visible Astronomy

Advances in microchannel plate detectors for UV/visible Astronomy Advances in microchannel plate detectors for UV/visible Astronomy Dr. O.H.W. Siegmund Space Sciences Laboratory, U.C. Berkeley Advances in:- Photocathodes (GaN, Diamond, GaAs) Microchannel plates (Silicon

More information

BASLER A601f / A602f

BASLER A601f / A602f Camera Specification BASLER A61f / A6f Measurement protocol using the EMVA Standard 188 3rd November 6 All values are typical and are subject to change without prior notice. CONTENTS Contents 1 Overview

More information

PoS(PD07)035. Development of 144 Multi-Anode HPD for Belle Aerogel RICH Photon Detector

PoS(PD07)035. Development of 144 Multi-Anode HPD for Belle Aerogel RICH Photon Detector Development of 144 Multi-Anode HPD for Belle Aerogel RICH Photon Detector a, R. Dolenec b, A. Petelin b, K. Fujita c, A. Gorišek b, K. Hara c, D. Hayashi c, T. Iijima c, T. Ikado c, H. Kawai d, S. Korpar

More information

Silicon Photomultiplier

Silicon Photomultiplier Silicon Photomultiplier Operation, Performance & Possible Applications Slawomir Piatek Technical Consultant, Hamamatsu Corp. Introduction Very high intrinsic gain together with minimal excess noise make

More information

Ultra fast single photon counting chip

Ultra fast single photon counting chip Ultra fast single photon counting chip P. Grybos, P. Kmon, P. Maj, R. Szczygiel Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering AGH University of Science and

More information

Photons and solid state detection

Photons and solid state detection Photons and solid state detection Photons represent discrete packets ( quanta ) of optical energy Energy is hc/! (h: Planck s constant, c: speed of light,! : wavelength) For solid state detection, photons

More information

Improvement of the MCP-PMT performance under a high count rate

Improvement of the MCP-PMT performance under a high count rate Improvement of the MCP-PMT performance under a high count rate K. Matsuoka (KMI, Nagoya Univ.) S. Hirose, T. Iijima, K. Inami, Y. Kato, K. Kobayashi, Y. Maeda, G. Muroyama, R. Omori, K. Suzuki (Nagoya

More information

Timing Measurement in the CALICE Analogue Hadronic Calorimeter.

Timing Measurement in the CALICE Analogue Hadronic Calorimeter. Timing Measurement in the CALICE Analogue Hadronic Calorimeter. AHCAL Main Meeting Motivation SPS CERN Testbeam setup Timing Calibration Results and Conclusion Eldwan Brianne Hamburg 16/12/16 Motivation

More information

INFN Milano Bicocca. Andrea Giachero Claudio Gotti Matteo Maino Gianluigi Pessina. Alessandro Baù Andrea Passerini (partial support)

INFN Milano Bicocca. Andrea Giachero Claudio Gotti Matteo Maino Gianluigi Pessina. Alessandro Baù Andrea Passerini (partial support) INFN Milano Bicocca Andrea Giachero Claudio Gotti Matteo Maino Gianluigi Pessina INFN Milano Bicocca Alessandro Baù Andrea Passerini (partial support) Faculty o Physics of the University of Milano Bicocca

More information

Attilio Andreazza INFN and Università di Milano for the ATLAS Collaboration The ATLAS Pixel Detector Efficiency Resolution Detector properties

Attilio Andreazza INFN and Università di Milano for the ATLAS Collaboration The ATLAS Pixel Detector Efficiency Resolution Detector properties 10 th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors Offline calibration and performance of the ATLAS Pixel Detector Attilio Andreazza INFN and Università

More information

Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes

Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes Thomas Conneely R&D Engineer, Photek LTD James Milnes, Jon Lapington, Steven Leach 1 page 1 Company overview Founded

More information

Photon Diagnostics. FLASH User Workshop 08.

Photon Diagnostics. FLASH User Workshop 08. Photon Diagnostics FLASH User Workshop 08 Kai.Tiedtke@desy.de Outline What kind of diagnostic tools do user need to make efficient use of FLASH? intensity (New GMD) beam position intensity profile on the

More information

OPTIMIZATION OF CRYSTALS FOR APPLICATIONS IN DUAL-READOUT CALORIMETRY. Gabriella Gaudio INFN Pavia on behalf of the Dream Collaboration

OPTIMIZATION OF CRYSTALS FOR APPLICATIONS IN DUAL-READOUT CALORIMETRY. Gabriella Gaudio INFN Pavia on behalf of the Dream Collaboration OPTIMIZATION OF CRYSTALS FOR APPLICATIONS IN DUAL-READOUT CALORIMETRY Gabriella Gaudio INFN Pavia on behalf of the Dream Collaboration 1 Dual Readout Method Addresses the limiting factors of the resolution

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University Outline Experimental apparatus, current status Installation plan Draft run plan Summary PRad Experimental Setup Main detectors and elements:

More information

Measurements With Irradiated 3D Silicon Strip Detectors

Measurements With Irradiated 3D Silicon Strip Detectors Measurements With Irradiated 3D Silicon Strip Detectors Michael Köhler, Michael Breindl, Karls Jakobs, Ulrich Parzefall, Liv Wiik University of Freiburg Celeste Fleta, Manuel Lozano, Giulio Pellegrini

More information

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response

DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response DETECTORS Important characteristics: 1) Wavelength response 2) Quantum response how light is detected 3) Sensitivity 4) Frequency of response (response time) 5) Stability 6) Cost 7) convenience Photoelectric

More information

Sensor production readiness

Sensor production readiness Sensor production readiness G. Bolla, Purdue University for the USCMS FPIX group PMG review 02/25/2005 2/23/2005 1 Outline Sensor requirements Geometry Radiation hardness Development Guard Rings P stops

More information

MCP photon detectors studies for the TORCH detector

MCP photon detectors studies for the TORCH detector MCP photon detectors studies for the TORCH detector Lucía Castillo García On behalf of the TORCH Collaboration (CERN, Bristol and Oxford Universities) Ring Imaging Cherenkov Detectors session 2 nd July

More information

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol University of Bristol E-mail: sophie.richards@bristol.ac.uk The upgrade of the LHCb experiment is planned for beginning of 2019 unitl the end of 2020. It will transform the experiment to a trigger-less

More information

Spring 2018 Group Update

Spring 2018 Group Update Spring 2018 Group Update Jonathan Nikoleyczik Todays update starts on slide 57 1 Current tasks Gamma-X events from calibration sources Phase 1 optical maps Simulate LZ calibrations and see how they are

More information

Diamond sensors as beam conditions monitors in CMS and LHC

Diamond sensors as beam conditions monitors in CMS and LHC Diamond sensors as beam conditions monitors in CMS and LHC Maria Hempel DESY Zeuthen & BTU Cottbus on behalf of the BRM-CMS and CMS-DESY groups GSI Darmstadt, 11th - 13th December 2011 Outline 1. Description

More information

The HERA-B Ring Imaging Cerenkov ˇ Detector

The HERA-B Ring Imaging Cerenkov ˇ Detector The HERA-B Ring Imaging Cerenkov ˇ Detector Requirements Physics Genova, July 3, 1998 Jörg Pyrlik University of Houston HERA-B Collaboration Space Limitations Rate Capabilities and Aging Design Radiator

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group The LHCb VELO Upgrade Stefano de Capua on behalf of the LHCb VELO group Overview [J. Instrum. 3 (2008) S08005] LHCb / Current VELO / VELO Upgrade Posters M. Artuso: The Silicon Micro-strip Upstream Tracker

More information

First Results with the Prototype Detectors of the Si/W ECAL

First Results with the Prototype Detectors of the Si/W ECAL First Results with the Prototype Detectors of the Si/W ECAL David Strom University of Oregon Physics Design Requirements Detector Concept Silicon Detectors - Capacitance and Trace Resistance Implications

More information

Red Laser for Monitoring Light Source

Red Laser for Monitoring Light Source Red Laser for Monitoring Light Source Liyuan Zhang, Kejun Zhu and Ren-yuan Zhu Caltech Duncan Liu JPL CMS ECAL Week, CERN April 16, 22 A Brief History. Red Laser Specification. Result of Market Survey.

More information

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Work supported partly by DOE, National Nuclear Security Administration

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Rita De Masi IPHC-Strasbourg On behalf of the IPHC-IRFU collaboration Physics motivations. Principle of operation

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information