MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications

Size: px
Start display at page:

Download "MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications"

Transcription

1 MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications A.R. Jha, Ph.D. C) CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business AN AUERBACH BOOK

2 Contents Foreword Preface Author xix xxi xxix 1 Highlights and Chronological Developmental History of MEMS Devices Involving Nanotechnology Introduction What Is MEMS? Frequently Used Terms in Nanotechnology MEMS Industry Overview and Sales Projections for MEMS Devices Potential Applications of MEMS Devices in Commercial and Space Systems MEMS for Wireless, Base Stations, Satellites, and Nanosatellites RF-MEMS Amplifier-Switched Filter Bank Capabilities Passive RF-MEMS Components RF-MEMS Technology for Base Station Requirements MEMS Technology for Military Systems Applications Material Requirements for Fabrication of MEMS Devices Types of Nanostructures and Their Properties Surface Plasmon Resonance Ceramics for MEMS Sensors Fabrication of Critical Elements of a MEMS Device 17 v

3 vi MEMS Technology for Electronic Circuits and Detectors for Military Applications Passive MEMS Devices for Commercial, Military, and Space Applications Nanotechnology for Armors to Provide Protection to Soldiers Nanotechnology-Based Biometrie Structures to Monitor Soldier Health Nanomaterials for External Support Muscles and Artificial Muscles for Injured Soldiers on the Battlefield Robotic Arms for Battlefield Applications Portable Radar Using MEMS/Nanotechnology for Military Applications MEMS for Commercial, Industrial, Scientific, and Biomedical System Applications Nanotubes and Nanotube Arrays for Various Applications MEMS-Based Video Projection System Nanotechnology for Photovoltaic Solar Cells and 3-D Lithium Ion Microbatteries for MEMS Devices MEMS Technology for Hard-Disk Drives MEMS Devices for Thermographic Nondestructive Testing MEMS Devices for Uncooled Thermal Imaging Arrays and Cooled Focal Planar Arrays for Various Applications Applications of Nanotechnology in IR and Electro-Optical Sensors for Biomettic and Security Applications Nanotechnology-Based Laser Scanning Systems MEMS-Based Sensors for Detection of Chemical and Biological Threats Potential Applications of Nanophotonic Sensors and Devices MEMS Technology for Photonic Signal Processing and Optical Communications MEMS Technology for Medical Applications MEMS Technology for Satellite Communications and Space Systems Applications MEMS Devices for Auto Industry Applications MEMS Technology for Aerospace System Applications Summary 38 References 39

4 VII 2 Potential Actuation Mechanisms, Their Performance Capabilities, and Applications Introduction Classification of Actuation Mechanisms Structural Requirements and Performance Capabilities of Electrostatic Actuation Mechanism Electrostatic Actuation Mechanism Cantilever Beam Design Requirements Electrostatic Force Computation Pull-In and Pull-Out Voltage Requirements Pull-In Voltage Pull-Out Voltage Electrostatic Microactuator Configurations for Generating Higher Force and Energy Density Capabilities Piezoelectric Actuation Mechanism Structural Material Requirements for Cantilever Beams Threshold Voltage Tip Deflection of the Cantilever Beam Bending Moment of the Cantilever Beam Contact Force Requirements Electrothermal Actuation Mechanism Electromagnetic Actuation Mechanism Pull-In and Pull-Out Magnetomotive Forces Actuation Force due to Induced Magnetic Force Parametric Trade-Off Computations Electrodynamic Actuation Mechanism Electrochemical Actuation Mechanism Classification and Major Benefits of CNT MWCNT Arrays and Electrochemical Actuator Performance Fabrication and Material Requirements for the Actuator Summary 94 References 95 3 Latest and Unique Methods for Actuation Introduction Electrostatic Rotary Microactuator with Improved Shaped Design Performance Limitation of Conventional Parallel-Plate Electrodes ESRM with Tilted Configuration 100

5 3.2.3 Requirements for Optimum Shaped Electrodes Force Generation Computations of Rotary Actuator with Conventional and Tilted Configurations Actuation Force Computation for Conventional Configuration Force Generation Computation for Tilted Configuration Torque-Generating Capability of the Rotary Actuator with Tilted Configuration Optimum Curve Shape of the Electrodes Potential Electrode Shapes Normalized Torque as a Function of Normalized Angular Displacement Parametric Requirements for Optimum Rotary Microactuator 115 Unique Microactuator Design for HHD Applications Introduction Benefits and Design Aspects of a Dual-Stage Servomechanism (or MEMS Piggyback Actuator) Architecture of a Third-Generation Microactuator Performance Capabilities of the MEMS Piggyback Microactuator Force Generation Capability, Displacement Limit, and Mechanical Resonance Frequency Range Electrostatic Force Calculation Mechanical Resonance Frequency Calculation Electrode Mass Computation Displacement (x) as a Function of Gap Size (g) and Number of Electrodes (N) 126 Capabilities of Vertical Comb Array Microactuator Structural Requirements and Critical Design Aspects of VCA Actuator VCAM Performance Comparison with Other Actuators Potential Comb Finger Shapes 130 Capabilities of Bent-Beam Electrothermal Actuators Performance Capabilities and Design Configuration of Bent-Beam Electrothermal Actuators 133

6 ix Brief Description of the BBET Structure Input Power Requirements for BBET Actuators Summary 140 References Packaging, Processing, and Material Requirements for MEMS Devices Introduction Packaging and Fabrication Materials Packaging Material Requirements and Packaging Processes Sealing Methods Effects of Temperature on Packaging Effect of Pressure on Packaging and Device Function Fabrication Aspects for MEMS Devices Incorporating Nanotechnology Thin-Film Capping Requirements for MEMS Devices Chip Capping and Bonding Requirements Transition and Feedthrough Requirements for MEMS Devices Material Requirements for Piezoelectric Actuators Material Requirements for Structural Support, Electrodes, and Contact Pads Requirements for Electrodeposition and Electroplating Materials Impact of Environments on MEMS Performance Impact of Temperature Variations on Coefficient of Thermal Expansion Effects of Temperature on Thermal Conductivity of Materials Used in MEMS Special Alloys Best Suited for MEMS Applications Benefits of CE-Alloys in RF/Microwave MEMS Packaging Benefits of CE-Alloys for Thermal Backing Plates Benefits of CE-Alloys in Integrated Circuit Assemblies Bulk Materials Best Suited for Mechanical Design of MEMS Devices 161

7 X 4.4 Material Requirements for Electrostatic Actuator Components Material Properties for MEMS Membranes Sacrificial Material Requirements for MEMS Devices Three-Dimensional Freely Movable Mechanical Structure Requirements Substrate Materials Best Suited for Various MEMS Devices Soft Dielectric Substrates Hard Dielectric Substrates Electrical Properties of Soft and Hard Substrates Glass-Ceramic Hybrid Substrate for MEMS Para-Electronic Ceramic Substrates for MEMS Applications Insulation and Passivation Layer Materials Material Requirements for MEMS in Aerospace Systems Summary 173 References RF-MEMS Switches Operating at Microwave and mm-wave Frequencies Introduction Operating Principle and Critical Performance Parameters of MEMS Devices Critical Performance Parameters Affected by Environments Two Distinct Configurations of RF-MEMS Switches and Design Aspects Performance Capabilities and Design Aspects of RF-MEMS Shunt Switches Electrostatic Actuation Requirements for the Shunt Switch Using Membranes Sample Calculations for Spring Constant and Pull-in Voltage Computer Modeling Parameters for MEMS Shunt Switch Computation of Upstate and Downstate Capacitances Current Distribution and Series Resistance of the MEMS Bridge Structure Estimates of Switch Inductance and Capacitance Parameters Insertion Loss in a MEMS Switch 188

8 xi Estimation of Series Resistance of the Bridge and Impact of Switch Inductance on the Isolation Typical Upstate and Downstate Insertion Losses in a MEMS Shunt Switch MEMS Shunt Switch Configuration for High Isolation Tuned Two-Bridge Design and Its Performance Capabilities Design Aspects and Performance Capabilities of Four-Bridge Cross Switch High Isolation with Inductively Tuned MEMS Switches MEMS Shunt Switches for Higher mm-wave Frequencies W-Band MEMS Shunt-Capacitive Switch Switching Speed of MEMS Shunt Switches MEMS Switches Using Metallic Membranes Introduction Operating Principle and Design Aspects of Capacitive Membrane Switches RF Performance Parameters of Membrane Shunt Switch RF-MEMS Switches with Low-Actuation Voltage Introduction Fabrication Process Steps and Critical Elements of the Switch Reliability Problems and Failure Mechanisms in the Shunt MEMS Switches RF Performance Capabilities RF-MEMS Series Switches Introduction Description and Design Aspects of the MEMS Series Switch Fabrication Process Steps and Switch Operational Requirements RF Design Aspects RF Performance Parameters of the Switch Effects of Packaging Environments on the Functionality and Reliability of the MEMS Switches Introduction Impact of Temperature on the Functionality and Reliability Impact of Pressure on Switch Reliability and RF Performance 219

9 5.8.4 Effects of Zero-Level Packaging on MEMS Switch Performance Packaging Material Requirements for MEMS Switches Properties and Applications of CE-Alloys for RF-MEMS Devices and Sensors Summary 222 References 223 RF/Microwave MEMS Phase Shifter Introduction Properties and Parameters of CPW Transmission Lines Computations of CPW Line Parameters Distributed MEMS Transmission-Line Phase Shifters Introduction Computations of DMTL Parameters Bragg Frequency Computations Computations of Bridge Impedance (2Г В ) and Phase Velocity (V p ) Insertion Loss in the DMTL Section Design Aspects and DMTL Parameter Requirements for TTD Phase Shifters Operating at mm-wave Frequencies Computations of Unloaded Line Impedance (Z u \), Line Inductance, and Capacitance per Unit Length of the Transmission Line Digital MEMS Distributed X-Band Phase Shifter Design Procedure for mm-wave DMTL Phase Shifters Expression for Phase Shift Optimized Design Parameters for a W-Band DMTL Phase Shifter Two-Bit MEMS DMTL Phase Shifter Designs Design Parameters and Performance Capabilities of 2-Bit, X-Band Phase Shifter Insertion Loss in a DMTL Phase Shifter Digital Version of the DMTL Phase Shifter with 360 Phase Capability Design Parameter Requirements for Digital, 360 Phase Shifter Insertion Loss Contributed by MIM Capacitors and Its Effect on CPW Line Loss Phase Noise Contribution from DMTL Phase Shifters 253

10 XIII 6.6 Multi-Bit Digital Phase Shifter Operating at /fand K 3 Frequencies Introduction Design Aspects and Critical Elements of the MDDM Phase Shifter Ultrawide Band Four-Bit True-Time-Delay MEMS Phase Shifter Operating over dc-40 GHz Introduction Design Requirements and Parameters to Meet Specific Performance for a Wideband 4-Bit, TTD Phase Shifter Performance Parameter of the Device Two-Bit, V-Band Reflection-Type MEMS Phase Shifter Introduction Design Aspects and Performance Capabilities Three-Bit, Ultralow Loss Distributed Phase Shifter Operating over K-Band Frequencies Introduction Design Aspects, Operating Principle, and Description of Critical Elements Three-Bit, V-Band, Reflection-Type Distributed MEMS Phase Shifter Design Aspects and Critical Performance Parameters RF Performance of the 3 db CPW Coupler and the 3-Bit, V-Band Phase Shifter Maximum Phase Shift Available from a Multibridge DMTL Phase Shifter Summary 269 References Applications of Micropumps and Microfluidics Introduction Potential Applications of Micropumps Design Aspects of Fixed-Valve Micropumps Models Most Suited for Performance Optimization Reliable Modeling Approach for MPs with Fixed Valves Electrical and Mechanical Parameters for Low-Order Model Mathematical Expression for Critical Pump Parameters Chamber Parameters 276

11 Fluidic Valve Parameters and Their Typical Values Description of Micropumps with Straight-Channel Configurations Impact of Viscosity and Membrane Parameters on Valve Performance Dynamic Modeling for Piezoelectric Valve-Free Micropumps Introduction Modeling for the Piezoelectric Valve-Free Pump Natural Frequency of the Micropump System Pump Performance in Terms of Critical Parameters Design Aspects and Performance Capabilities of an Electrohydrodynamic Ion-Drag Micropump Introduction Design Concepts and Critical Parameters of an EHD Pump Benefits of EHD Ion-Drag Pumps Critical Design Aspects of Ion-Drag Pump and Electrode Geometries Capabilities of a Ferrofluidic Magnetic Micropump Introduction Design Aspects and Critical Performance Parameters Operational Requirements for Optimum Pump Performance Summary 300 References 301 Miscellaneous MEMS/Nanotechnology Devices and Sensors for Commercial and Military Applications Introduction MEMS Varactors or Tunable Capacitors Benefits and Shortcomings of MEMS Varactors MEMS Varactor Design Aspects and Fabrication Requirements Effects of Nonlinearity Generated by MEMS Capacitors Micromechanical Resonators Introduction Types of Micro-Resonators and Their Potential Applications 311

12 XV Free-Free Beam High-Q Micro-Resonators Structural Design Aspects and Requirements of FFB Micro-Resonators Operational Requirements and Parameters FFB Micro-Resonator Folded-Beam Comb-Transducer Micro-Resonator Clamped-Clamped Beam Micro-Resonator Effects of Environmental Factors on Micro-Resonator Performance Performance Summary of Various Micromechanical Resonators Micromechanical Filters Micromechanical Filter Design Aspects Critical Elements and Performance Parameters of Micromechanical Filters Performance Summary of a Two-Resonator High-Frequency Filter Transceivers Introduction Transceiver Performance Improvement from Integration of Micromechanical Resonator Technology Oscillator Using Micromechanical Resonator Technology Design Concepts and Performance Parameters of the 16.5 khz Oscillator V-Band MEMS-Based Tunable Band-Pass Filters Introduction Design Parameters and Fabrications Techniques for a V-Band MEMS-Filter Performance Parameters of a V-Band, Two-Stage MEMS Tunable Filter MEMS-Based Strain Sensors Introduction Design Aspects and Requirements for Strain Sensor Installation and Calibration Gauge Factor Computation MEMS Interferometric Accelerometers Introduction Design Aspects and Requirements for an Interferometric Accelerometer 338

13 xvi 8.10 MEMS-Based Micro-Heat Pipes Introduction Design Aspects and Critical Parameters of Micro-Heat Pipes MEMS-Based Thin-Film Microbatteries Introduction Critical Design Aspects and Requirements for the 3-D, Thin-Film Microbatteries Projected Performance Parameters of a 3-D, Thin-Film Microbattery Unique Features and Potential Applications of Microbatteries Summary 350 References Materials for MEMS and Nanotechnology-Based Sensors and Devices Introduction Photonic Crystals Photonic Bandgap Fiber Core Material Requirements for PCF Unique Properties of PCFs and Their Potential Applications Nanotechnology-Based Materials and Applications Nanocrystals Photonic Nanocrystals Nanowires and Rods and Their Applications Zinc Oxide Nanowires Silicon Nanowires Zinc Selenium Nanowires Zinc Phosphide Nanowires Cadmium Sulfide Nanowires Iron-Gallium Nanowires Nanoparticles Quantum Dots Applications of Quantum Dots Unique Security Aspects of Quantum Dots Lead Sulfide Quantum Dots with Nonlinear Properties Nanobubbles Applications of Nanobubbles MEMS Deformable Micro-Mirrors 366

14 XVII Applications of MEMS Deformable Mirrors 367 Carbon Nanotubes and CNT Arrays Potential Applications of CNT Arrays Nanostructures/Nanocomposites Using CNT Arrays CNTs as Field Emitters or Electron Sources CNT Technology for Biosensor Chemical and Environmental Applications Nanotube Arrays for Electrochemical Actuators Nanotube Probes and Dispensing Devices 372 Nanotechnology- and MEMS-Based Sensors and Devices for Specific Applications Acoustic Sensors Using Nanotechnology for Underwater Detection Applications MEMS Technology for mm-wave Microstrip Patch Antennas Carbon Nanotube-Based Transistors and Solar Cells Nanotechnology-Based Sensors for Weapon Health and Battlefield Environmental Monitoring Applications Nanotechnology-Based Sensors to Monitor Weapon Health Nanotechnology-Based Sensors to Monitor Battlefield Environmental Conditions MEMS-Based Gyros and Applications MEMS-Based Accelerometers and Applications Material Requirements and Properties for MEMS- and NT-Based Sensors and Devices Introduction Material Requirements for Fabrication of MEMS Sensors and Devices Properties of Materials Required for Mechanical Design of MEMS Devices Properties of Materials Required for Thermal Design of MEMS Devices 381 Summary

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London Advanced RF MEMS Edited by STEPAN LUCYSZYN Imperial College London n CAMBRIDGE UNIVERSITY PRESS Contents List of contributors Preface List of abbreviations page xiv xvii xx Introduction 1 1.1 Introduction

More information

MEMS in ECE at CMU. Gary K. Fedder

MEMS in ECE at CMU. Gary K. Fedder MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

More information

RF MEMS Simulation High Isolation CPW Shunt Switches

RF MEMS Simulation High Isolation CPW Shunt Switches RF MEMS Simulation High Isolation CPW Shunt Switches Authored by: Desmond Tan James Chow Ansoft Corporation Ansoft 2003 / Global Seminars: Delivering Performance Presentation #4 What s MEMS Micro-Electro-Mechanical

More information

DEVELOPMENT OF RF MEMS SYSTEMS

DEVELOPMENT OF RF MEMS SYSTEMS DEVELOPMENT OF RF MEMS SYSTEMS Ivan Puchades, Ph.D. Research Assistant Professor Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology 82 Lomb

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 2 Topics MEMS for Wireless Communication Components for Wireless Communication Mechanical/Electrical Systems Mechanical Resonators o Quality

More information

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ The 26 th Microelectronics Workshop October, 2013 Maya Kato Electronic Devices and Materials Group Japan Aerospace Exploration

More information

CONTENTS. Foreword S. D. Senturia. M. E. Motamedi Acknowledgments

CONTENTS. Foreword S. D. Senturia. M. E. Motamedi Acknowledgments CONTENTS Foreword S. D. Senturia Preface M. E. Motamedi Acknowledgments xv xvii xix 1 Introduction 1 M. E. Motamedi 1.1 Integrated circuits and the evolution of micromachining 1 1.2 MEMS review 3 1.3 New

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

High Power RF MEMS Switch Technology

High Power RF MEMS Switch Technology High Power RF MEMS Switch Technology Invited Talk at 2005 SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics Conference Dr Jia-Sheng Hong Heriot-Watt University Edinburgh U.K. 1

More information

Silicon Light Machines Patents

Silicon Light Machines Patents 820 Kifer Road, Sunnyvale, CA 94086 Tel. 408-240-4700 Fax 408-456-0708 www.siliconlight.com Silicon Light Machines Patents USPTO No. US 5,808,797 US 5,841,579 US 5,798,743 US 5,661,592 US 5,629,801 US

More information

Catalog Continuing Education Courses

Catalog Continuing Education Courses Catalog Continuing Education Courses NanoMEMS Research, LLC P.O. Box 18614 Irvine, CA 92623-8614 Tel.: (949)682-7702 URL: www.nanomems-research.com E-mail: info@nanomems-research.com 2011 NanoMEMS Research,

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

RF(Radio Frequency) MEMS (Micro Electro Mechanical

RF(Radio Frequency) MEMS (Micro Electro Mechanical Design and Analysis of Piezoelectrically Actuated RF-MEMS Switches using PZT and AlN PrashantTippimath M.Tech., Scholar, Dept of ECE M.S.Ramaiah Institute of Technology Bengaluru tippimathprashant@gmail.com

More information

Antennas and Propagation for Body-Centric Wireless Communications

Antennas and Propagation for Body-Centric Wireless Communications Antennas and Propagation for Body-Centric Wireless Communications Peter S. Hall Yang Hao Editors ARTECH H O U S E BOSTON LONDON artechhouse.com Preface CHAPTER 1 Introduction to Body-Centric Wireless Communications

More information

SMART SENSOR SYSTEMS. WILEY A John Wiley and Sons, Ltd, Publication. Edited by. Gerard CM. Meijer

SMART SENSOR SYSTEMS. WILEY A John Wiley and Sons, Ltd, Publication. Edited by. Gerard CM. Meijer SMART SENSOR SYSTEMS Edited by Gerard CM. Meijer Delft University of Technology, the Netherlands SensArt, Delft, the Netherlands WILEY A John Wiley and Sons, Ltd, Publication Preface About the Authors

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

Sensors & Actuators. Transduction principles Sensors & Actuators - H.Sarmento

Sensors & Actuators. Transduction principles Sensors & Actuators - H.Sarmento Sensors & Actuators Transduction principles 2014-2015 Sensors & Actuators - H.Sarmento Outline Resistive transduction. Photoconductive transduction (resistive). Capacitive transduction. Inductive transduction.

More information

Micro- and nano-scale switches and tuning elements for microwave applications

Micro- and nano-scale switches and tuning elements for microwave applications University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 26 Micro- and nano-scale switches and tuning elements for microwave applications Thomas P. Ketterl University

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

Interdigital Bandpass Filter Using capacitive RF MEMS Switches

Interdigital Bandpass Filter Using capacitive RF MEMS Switches Interdigital Bandpass Filter Using capacitive RF MEMS Switches D.Pooja 1, C.Selvi 2 P.G. Student, Department of Communication Systems, Muthayammal Engineering College, Rasipuram, Namakkal, Tamilnadu, India.

More information

Simulation of Cantilever RF MEMS switch

Simulation of Cantilever RF MEMS switch International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (4): 442-446 Science Explorer Publications Simulation of Cantilever RF MEMS

More information

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe Journal of Physics: Conference Series Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe To cite this article: Y H

More information

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view Bauer, Ralf R. and Brown, Gordon G. and Lì, Lì L. and Uttamchandani, Deepak G. (2013) A novel continuously variable angular vertical combdrive with application in scanning micromirror. In: 2013 IEEE 26th

More information

ENABLING TECHNOLOGY FOR ULTRALOW-COST RF MEMS SWITCHES ON LTCC

ENABLING TECHNOLOGY FOR ULTRALOW-COST RF MEMS SWITCHES ON LTCC ENABLING TECHNOLOGY FOR ULTRALOW-COST RF MEMS SWITCHES ON LTCC Mario D'Auria 1, Ayodeji Sunday 2, Jonathan Hazell 1, Ian D. Robertson 2 and Stepan Lucyszyn 1 Abstract 1 Imperial College London 2 University

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

Industrialization of Micro-Electro-Mechanical Systems. Werner Weber Infineon Technologies

Industrialization of Micro-Electro-Mechanical Systems. Werner Weber Infineon Technologies Industrialization of Micro-Electro-Mechanical Systems Werner Weber Infineon Technologies Semiconductor-based MEMS market MEMS Market 2004 (total 22.7 BUS$) Others mostly Digital Light Projection IR Sensors

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

RF-MEMS Devices Taxonomy

RF-MEMS Devices Taxonomy RF- Devices Taxonomy Dr. Tejinder Pal Singh (T. P. Singh) A. P., Applied Sciences Department RPIIT Bastara, Karnal, Haryana (INDIA) tps5675@gmail.com Abstract The instrumentation and controls in the fields

More information

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following :

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following : ABSTRACT This paper outlines the issues related to RF MEMS packaging and low actuation voltage. An original approach is presented concerning the modeling of capacitive contacts using multiphysics simulation

More information

Optically reconfigurable balanced dipole antenna

Optically reconfigurable balanced dipole antenna Loughborough University Institutional Repository Optically reconfigurable balanced dipole antenna This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

A ZERO DISPLACEMENT ACTIVE ULTRASONIC FORCE SENSOR FOR MOBILE APPLICATIONS HOTCHIPS AUGUST 2016

A ZERO DISPLACEMENT ACTIVE ULTRASONIC FORCE SENSOR FOR MOBILE APPLICATIONS HOTCHIPS AUGUST 2016 A ZERO DISPLACEMENT ACTIVE ULTRASONIC FORCE SENSOR FOR MOBILE APPLICATIONS HOTCHIPS 2016 23 AUGUST 2016 Ask an RF Engineer to Build a Touch Sensor. Use scattering/absorption of a propagating wave to detect

More information

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015 Issued: Monday, April 27, 2015 PROBLEM SET #7 Due (at 9 a.m.): Friday, May 8, 2015, in the EE C247B HW box near 125 Cory. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux Outline Application hyperfréquence à THALES: Antenne à réseau réflecteur

More information

Low Actuation Wideband RF MEMS Shunt Capacitive Switch

Low Actuation Wideband RF MEMS Shunt Capacitive Switch Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 1292 1297 2012 International Workshop on Information and Electronics Engineering (IWIEE) Low Actuation Wideband RF MEMS Shunt Capacitive

More information

An Instrumentation System

An Instrumentation System Transducer As Input Elements to Instrumentation System An Instrumentation System Input signal (measurand) electrical or non-electrical Input Device Signal Conditioning Circuit Output Device? -amplifier

More information

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 9, September 2014,

More information

Piezoelectric Sensors and Actuators

Piezoelectric Sensors and Actuators Piezoelectric Sensors and Actuators Outline Piezoelectricity Origin Polarization and depolarization Mathematical expression of piezoelectricity Piezoelectric coefficient matrix Cantilever piezoelectric

More information

Electronic Instrumentation and Measurements

Electronic Instrumentation and Measurements Electronic Instrumentation and Measurements A fundamental part of many electromechanical systems is a measurement system that composed of four basic parts: Sensors Signal Conditioning Analog-to-Digital-Conversion

More information

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter D. PSYCHOGIOU 1, J. HESSELBARTH 1, Y. LI 2, S. KÜHNE 2, C. HIEROLD 2 1 Laboratory for Electromagnetic Fields and Microwave Electronics

More information

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO INF 5490 RF MEMS LN12: RF MEMS inductors Spring 2011, Oddvar Søråsen Department of informatics, UoO 1 Today s lecture What is an inductor? MEMS -implemented inductors Modeling Different types of RF MEMS

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors

Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors Joshua A. Small Purdue

More information

DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L. Sirisha Vinjavarapu* 1, P. Venumadhav 2

DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L. Sirisha Vinjavarapu* 1, P. Venumadhav 2 ISSN 2277-2685 IJESR/November 214/ Vol-4/Issue-11/825-835 L. Sirisha Vinjavarapu et al./ International Journal of Engineering & Science Research ABSTRACT DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L.

More information

Deformable Membrane Mirror for Wavefront Correction

Deformable Membrane Mirror for Wavefront Correction Defence Science Journal, Vol. 59, No. 6, November 2009, pp. 590-594 Ó 2009, DESIDOC SHORT COMMUNICATION Deformable Membrane Mirror for Wavefront Correction Amita Gupta, Shailesh Kumar, Ranvir Singh, Monika

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

Special Lecture Series Biosensors and Instrumentation

Special Lecture Series Biosensors and Instrumentation !1 Special Lecture Series Biosensors and Instrumentation Lecture 6: Micromechanical Sensors 1 This is the first part of the material on micromechanical sensors which deals with piezoresistive and piezoelectric

More information

Sensors for Mechatronics

Sensors for Mechatronics Sensors for Mechatronics Paul P.L Regtien Hertgelo The Netherlands AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK' OXFORD ELSEVIER PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Contents Preface xi

More information

Passive Wireless Sensors

Passive Wireless Sensors Passive Wireless Sensors Sandia National Laboratories Robert Brocato 505-844-2714 rwbroca@sandia.gov RF Tags RF tags are everywhere now. Most passive tags are for ID only. Most passive tags are short range

More information

Conference Paper Cantilever Beam Metal-Contact MEMS Switch

Conference Paper Cantilever Beam Metal-Contact MEMS Switch Conference Papers in Engineering Volume 2013, Article ID 265709, 4 pages http://dx.doi.org/10.1155/2013/265709 Conference Paper Cantilever Beam Metal-Contact MEMS Switch Adel Saad Emhemmed and Abdulmagid

More information

Reconfigurable antenna using photoconducting switches

Reconfigurable antenna using photoconducting switches Loughborough University Institutional Repository Reconfigurable antenna using photoconducting switches This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Nanotechnology, the infrastructure, and IBM s research projects

Nanotechnology, the infrastructure, and IBM s research projects Nanotechnology, the infrastructure, and IBM s research projects Dr. Paul Seidler Coordinator Nanotechnology Center, IBM Research - Zurich Nanotechnology is the understanding and control of matter at dimensions

More information

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI Shuji Tanaka Tohoku University, Sendai, Japan 1 JSAP Integrated MEMS Technology Roadmap More than Moore: Diversification More

More information

Microwave Circuit Analysis and Amplifier Design

Microwave Circuit Analysis and Amplifier Design Microwave Circuit Analysis and Amplifier Design SAMUEL Y. LIAO Professor of Electrical Engineering California State University, Fresno PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632 Contents PREFACE

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Modeling

More information

SIMULTANEOUS DETECTION OF ORGANIC AND IN- ORGANIC SUBSTANCES IN A MIXED AQUEOUS SO- LUTION USING A MICROWAVE DIELECTRIC SENSOR

SIMULTANEOUS DETECTION OF ORGANIC AND IN- ORGANIC SUBSTANCES IN A MIXED AQUEOUS SO- LUTION USING A MICROWAVE DIELECTRIC SENSOR Progress In Electromagnetics Research C, Vol. 14, 163 171, 21 SIMULTANEOUS DETECTION OF ORGANIC AND IN- ORGANIC SUBSTANCES IN A MIXED AQUEOUS SO- LUTION USING A MICROWAVE DIELECTRIC SENSOR L. J. Li School

More information

INF5490 RF MEMS. L7: RF MEMS switches, I. S2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. L7: RF MEMS switches, I. S2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS L7: RF MEMS switches, I S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Switches for RF and microwave Examples Performance requirements Technology Characteristics

More information

Velocity and Acceleration Measurements

Velocity and Acceleration Measurements Lecture (8) Velocity and Acceleration Measurements Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan AMSS-MSc Prof. Kasim Al-Aubidy 1 Introduction: The measure of velocity depends on the scale of

More information

Printed Electronics. Applications

Printed Electronics. Applications Printed Electronics Research Through University-Industry Partnerships Outline Background on Printed Electronics (PE) Corporate Partnerships Raytheon UMass Lowell Research Institute (RURI) Printed Electronics

More information

Herzlich willkommen. Druckbare Sensoren für Food Packaging ICT-Agri-Food Symposium. Sören Fricke Section Head Large Area & Flexible Systems

Herzlich willkommen. Druckbare Sensoren für Food Packaging ICT-Agri-Food Symposium. Sören Fricke Section Head Large Area & Flexible Systems Herzlich willkommen Druckbare Sensoren für Food Packaging ICT-Agri-Food Symposium Sören Fricke Section Head Large Area & Flexible Systems Agroscope Tänikon, 05.09.2017 Motivation Printed Sensors can be

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [5895-27] Introduction Various deformable mirrors for high-speed wavefront control have been demonstrated

More information

Micro Electro Mechanical System

Micro Electro Mechanical System Micro Electro Mechanical System Jung-Mu Kim Mechatronics Mechatronics -The combination of mechanical engineering, electronic engineering and software engineering. Purpose of this interdisciplinary engineering

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

Low Loss 2-bit Distributed MEMS Phase Shifter using Chamfered Transmission Line

Low Loss 2-bit Distributed MEMS Phase Shifter using Chamfered Transmission Line Indian Journal of Science and Technology, Vol 8(6), 51 517, March 215 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 DOI : 1.17485/ijst/215/v8i6/7 Low Loss 2-bit Distributed MEMS Phase Shifter using

More information

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Microwave Science and Technology Volume 213, Article ID 8929, 4 pages http://dx.doi.org/1.11/213/8929 Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Leung Chiu and Quan Xue Department

More information

Lecture 3. Mass sensors Optical sensors. SPR Sensors.

Lecture 3. Mass sensors Optical sensors. SPR Sensors. Lecture 3 Mass sensors Optical sensors. SPR Sensors. Lecture plan mass sensors (QCM, SAW, u-cantilevers) thermal sensors optical sensors: adsorption diffractive index change SPR history concept performance

More information

Touchscreens, tablets and digitizers. RNDr. Róbert Bohdal, PhD.

Touchscreens, tablets and digitizers. RNDr. Róbert Bohdal, PhD. Touchscreens, tablets and digitizers RNDr. Róbert Bohdal, PhD. 1 Touchscreen technology 1965 Johnson created device with wires, sensitive to the touch of a finger, on the face of a CRT 1971 Hurst made

More information

Transformer Engineering

Transformer Engineering Transformer Engineering Design, Technology, and Diagnostics Second Edition S.V. Kulkarni S.A. Khaparde / 0 \ CRC Press \Cf*' J Taylor & Francis Group ^ч_^^ Boca Raton London NewYork CRC Press is an imprint

More information

On the Development of Tunable Microwave Devices for Frequency Agile Applications

On the Development of Tunable Microwave Devices for Frequency Agile Applications PIERS ONLINE, VOL. 4, NO. 7, 28 726 On the Development of Tunable Microwave Devices for Frequency Agile Applications Jia-Sheng Hong and Young-Hoon Chun Department of Electrical, Electronic and Computer

More information

MEMS Optical Scanner "ECO SCAN" Application Notes. Ver.0

MEMS Optical Scanner ECO SCAN Application Notes. Ver.0 MEMS Optical Scanner "ECO SCAN" Application Notes Ver.0 Micro Electro Mechanical Systems Promotion Dept., Visionary Business Center The Nippon Signal Co., Ltd. 1 Preface This document summarizes precautions

More information

Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications

Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications International Journal of Advances in Microwave Technology (IJAMT) Vol.1, No.1, May 2016 10 Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications R.Raman

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p.

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. Foreword p. xi Preface p. xiii Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. 3 What this book covers p. 3 Signals and

More information

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS L12: Micromechanical filters S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Design, modeling

More information

Microprobe-enabled Terahertz sensing applications

Microprobe-enabled Terahertz sensing applications Microprobe-enabled Terahertz sensing applications World of Photonics, Laser 2015, Munich Protemics GmbH Aachen, Germany Terahertz microprobing technology: Taking advantage of Terahertz range benefits without

More information

Design and Fabrication of RF MEMS Switch by the CMOS Process

Design and Fabrication of RF MEMS Switch by the CMOS Process Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 197 202 (2005) 197 Design and Fabrication of RF MEMS Switch by the CMOS Process Ching-Liang Dai 1 *, Hsuan-Jung Peng 1, Mao-Chen Liu 1, Chyan-Chyi

More information

An X band RF MEMS switch based on silicon-on-glass architecture

An X band RF MEMS switch based on silicon-on-glass architecture Sādhanā Vol. 34, Part 4, August 2009, pp. 625 631. Printed in India An X band RF MEMS switch based on silicon-on-glass architecture M S GIRIDHAR, ASHWINI JAMBHALIKAR, J JOHN, R ISLAM, C L NAGENDRA and

More information

Passive Direct Print Sensors

Passive Direct Print Sensors Passive Wireless Sensor Technology Workshop June 6-7, 2012 Hyatt Regency, La Jolla, CA Passive Direct Print Sensors Mike Newton mnewton@nscrypt.com nscrypt Inc. Orlando, Florida University of Texas at

More information

Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007

Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007 Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007 Outline Brief Motivation Optical Processes in Semiconductors Reflectors and Optical Cavities Diode

More information

Tunable Ultra Wideband Phase Shifter using Liquid Crystal Polymer

Tunable Ultra Wideband Phase Shifter using Liquid Crystal Polymer Tunable Ultra Wideband Phase Shifter using Liquid Crystal Polymer Author Abbosh, Amin, Bailkowski, Marek, Thiel, David Published 2009 Conference Title Proceedings of the Asia-Pacific Microwave Conference

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #10 Microstrip Circuits and Measurements 1. Objective The objective of Experiment #8 is to investigate the application of microstrip technology. A precision

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy - Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy Yongho Seo Near-field Photonics Group Leader Wonho Jhe Director School of Physics and Center for Near-field

More information

Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering

Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC0032 Introduction to MEMS Eighth semester, 2014-15 (Even Semester)

More information

GLOBAL MARKETS, TECHNOLOGIES AND MATERIALS FOR THIN AND ULTRATHIN FILMS

GLOBAL MARKETS, TECHNOLOGIES AND MATERIALS FOR THIN AND ULTRATHIN FILMS GLOBAL MARKETS, TECHNOLOGIES AND MATERIALS FOR THIN AND ULTRATHIN FILMS SMC057C August Margareth Gagliardi Project Analyst ISBN: 1-62296-338-5 BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481

More information

Introduction to Microdevices and Microsystems

Introduction to Microdevices and Microsystems PHYS 534 (Fall 2008) Module on Microsystems & Microfabrication Lecture 1 Introduction to Microdevices and Microsystems Srikar Vengallatore, McGill University 1 Introduction to Microsystems Outline of Lecture

More information

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1 Sensors Chapter 3 Introduction Describing Sensor Performance Temperature Sensors Light Sensors Force Sensors Displacement Sensors Motion Sensors Sound Sensors Sensor Interfacing Storey: Electrical & Electronic

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Instructor: Prof. Clark T.-C. Nguyen EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

Dinesh Micro Waves & Electronics

Dinesh Micro Waves & Electronics Wave Guide Components RECTANGULAR WAVE GUDES Dinesh Microwaves and Electronics manufacturers of high power waveguide in the microwaves industry, this experience had resulted in designing, manufacturing

More information

the pilot valve effect of

the pilot valve effect of Actiive Feedback Control and Shunt Damping Example 3.2: A servomechanism incorporating a hydraulic relay with displacement feedback throughh a dashpot and spring assembly is shown below. [Control System

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Microwave Engineering Third Edition

Microwave Engineering Third Edition Microwave Engineering Third Edition David M. Pozar University of Massachusetts at Amherst WILEY John Wiley & Sons, Inc. ELECTROMAGNETIC THEORY 1 1.1 Introduction to Microwave Engineering 1 Applications

More information