DEVELOPMENT OF RF MEMS SYSTEMS

Size: px
Start display at page:

Download "DEVELOPMENT OF RF MEMS SYSTEMS"

Transcription

1 DEVELOPMENT OF RF MEMS SYSTEMS Ivan Puchades, Ph.D. Research Assistant Professor Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology 82 Lomb Memorial Dr. Rochester, NY tel: fax:

2 Outline What are RF MEMS? Basic Receiver Architecture Roles and advantages of RF MEMS Devices RF MEMS Devices and Applications RF Switches RF Resonators Integrated Process Flows Challenges Summary 2

3 What are RF MEMS? MEMS Micro Electro Mechanical Systems RF Radio Frequency applications C. T.-C. Nguyen and R. T. Howe, An integrated CMOS Micromechanical resonator high-q oscillator, IEEE J. Solid-State Circuits, vol. 34, no. 4, pp , April Ohmic switch and relays DC switching Capacitive switch Tunable RF Circuits Capacitive relay Matching networks Mechanical resonator Band pass filters Bulk acoustical resonator Local Oscillators 3

4 Basic Receiver Architecture Superheterodyne receiver Uses frequency mixing or heterodyning to convert a received signal to a fixed intermediate frequency, which can be more conveniently processed than the original radio carrier frequency. Demodulator or detector Initial tuning can be done manually, variable cap. LO tracks tuning. Mixing of incoming f d and local f LO Results in f LO -f d, f LO +f d, f d, f LO and harmonics. f LO tracks incoming f d so that f IF is always the same Bandpass filter f IF =f LO- f d f IF is constant IF 455 khz fo AM radio 10.7 MHz for broadcast FM receivers, 38.9 MHz (Europe) or 45 MHz (US) for television 70 MHz for satellite and terrestrial microwave equipment. 4

5 RF Tuning, Mixers and Band-Pass Filter Circuits Band-pass Filters Non-linearity Mixers Sampling mixers 5

6 Passive RF Components Typical passive devices: LC Resonators Bulky/large inductors and capacitors Low Q (low frequency selectivity, lossy Energy loss) Passive Devices with high Q s: Ceramic RF Filters SAW RF Filter surface acoustic wave filter Quartz Crystal Off chip inductors Disadvantages Off chip, large, expensive RF MEMS: Variable capacitors and switches Mechanically resonating structures Advantages: high Q, inexpensive, small and potentially integrated 6

7 RF MEMS Switches, switched capacitors and varactors Ohmic switch and relays Tunable RF Circuits Matching networks Deflecting cantilever or fixed-fixed beam Electrostatic, electrothermal, magnetostatic or piezoelectric Lateral or vertical Series or shunt Capacitive or ohmic RF Switches a) Capacitive shunt, fixed-fixed beam b) Ohmic series cantilever beam "Modeling RF MEMS Devices", by K. Van Caekenberghe, IEEE Microwave Magazine, vol. 13, no. 1, pp , Jan.-Feb

8 Ohmic RF MEMS Switches 8

9 Vibrating RF MEMS Resonators Filters and resonators Vibrating beam, comb, disc or ring which is sufficiently isolated from the surroundings in order to obtain a high Q m. Actuation mechanism Electrostatic, piezoelectric, thermal Suspension Fixed-fixed, free-free, stem Vibrating geometry Beam, comb, disc, ring Vibration mode Bulk (extensional), elliptical (wine glass), flexural, radial contour, torsional C. T.-C. Nguyen and R. T. Howe, An integrated CMOS Micromechanical resonator high-q oscillator, IEEE J. Solid-State Circuits, vol. 34, no. 4, pp , April

10 Types by vibration mode Vibration mode Bulk (extensional), elliptical (wine glass), flexural, radial contour, torsional Higher order vibration modes cannot also be used. "Modeling RF MEMS Devices", by K. Van Caekenberghe, IEEE Microwave Magazine, vol. 13, no. 1, pp , Jan.-Feb

11 Co-fabrication of Electrostatic MEMS Switches and Resonators Three poly layers (electrode, resonators and anchor structures) Conformal sacrificial layer for the formation of small gap <100nm High Conductivity layer for low resistance switch 6 mask layers Isolated conductive material Gate <100nm gap 1um Poly Resonator 3500 Å Si 3 N 4 2 um SiO 2 N+ Doping Source Body Drain RF Electrode Resonator RF Electrode

12 Tunable Filters Switches Filters Co-fabrication of switches and resonators 12

13 RF MEMS Challenges Bandwidth, insertion loss and isolation: High R ON C OFF or low C ON /C OFF Power handling: Electromigration (JRMS) and dielectric breakdown (VRMS) limits. Reliability: Temperature drift Dielectric charging Humidity-induced stiction Fatigue Contact degradation Creep 13

14 RF MEMS Challenges Temperature drift W. -T. Hsu and C. T. -C. Nguyen, Stiffness-compensated temperatureinsensitive micromechanical resonators, Tech. Digest, 2002 IEEE Int. Micro Electro Mechanical Systems Conf., Las Vegas, Nevada, Jan , 2002, pp Solutions: Temp compensation Passive SiO2 coating to cope with young s modulus temp dependence, degenerated doping and geometry changes Active Micro-oven to control temp, bias compensation and phase locking. 14

15 RF MEMS Challenges Dielectric charging doc.utwente.nl/66583/1/rodolf_icmts_ pdf Solutions: Reduce dc bias, use ac bias, Avoid hard contact (dimples, holes) Non-dielectric switches R.W. Herfst, Characterization of dielectric charging in RF MEMS capacitive switches, Semiconductor Components, University of Twente. 15

16 Humidity-induced stiction RF MEMS Challenges Vertical/horizontal Solutions: Supercritical drying (liquid CO2 at critical point) Dry etching Hydrophobic coatings Recoverable 16

17 Contact degradation RF MEMS Challenges Solutions: Reduce bias current Avoid hard contact (dimples, holes) Vacuum encapsulation Degradation resistant materials Dickrell, D.J.; Dugger, M.T.;, "Electrical Contact Resistance Degradation of a Hot-Switched Simulated Metal MEMS Contact," Components and Packaging Technologies, IEEE Transactions on, vol.30, no.1, pp.75-80, March

18 Conclusion RF MEMS applications o Band selective receivers RF MEMS fabrication o Co-fabrication of switches and resonators RF MEMS challenges o Fabrication, materials and reliability 18

19 Appendix 19

20 RF MEMS Devices/applications RF MEMS switches, switched capacitors and varactors Ohmic switch and relays Capacitive switch Tunable RF Circuits Capacitive relay Matching networks Vibrating RF MEMS resonators Band pass filters Mixers Reference oscillators 20

21 Resonator Modeling Flexural mode fixed-fixed beam Modeled by two capacitors in series. Most resonators can be modeled this way "Modeling RF MEMS Devices", by K. Van Caekenberghe, IEEE Microwave Magazine, vol. 13, no. 1, pp , Jan.-Feb

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 2 Topics MEMS for Wireless Communication Components for Wireless Communication Mechanical/Electrical Systems Mechanical Resonators o Quality

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion

Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion Intrinsic Temperature Compensation of Highly Resistive High-Q Silicon Microresonators via Charge Carrier Depletion Ashwin K. Samarao and Farrokh Ayazi School of Electrical and Computer Engineering Georgia

More information

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ The 26 th Microelectronics Workshop October, 2013 Maya Kato Electronic Devices and Materials Group Japan Aerospace Exploration

More information

MEMS in ECE at CMU. Gary K. Fedder

MEMS in ECE at CMU. Gary K. Fedder MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle

More information

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen First International Conference and School on Nanoscale/Molecular Mechanics: Maui, HI; May 2002 School Lecture/Tutorial on Micromechanical Signal Processors for Low-Power Communications Instructor: Clark

More information

Vibrating RF MEMS for Low Power Wireless Communications

Vibrating RF MEMS for Low Power Wireless Communications Vibrating RF MEMS for Low Power Wireless Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor,

More information

RF-MEMS Devices Taxonomy

RF-MEMS Devices Taxonomy RF- Devices Taxonomy Dr. Tejinder Pal Singh (T. P. Singh) A. P., Applied Sciences Department RPIIT Bastara, Karnal, Haryana (INDIA) tps5675@gmail.com Abstract The instrumentation and controls in the fields

More information

Piezoelectric Sensors and Actuators

Piezoelectric Sensors and Actuators Piezoelectric Sensors and Actuators Outline Piezoelectricity Origin Polarization and depolarization Mathematical expression of piezoelectricity Piezoelectric coefficient matrix Cantilever piezoelectric

More information

Low Actuation Wideband RF MEMS Shunt Capacitive Switch

Low Actuation Wideband RF MEMS Shunt Capacitive Switch Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 1292 1297 2012 International Workshop on Information and Electronics Engineering (IWIEE) Low Actuation Wideband RF MEMS Shunt Capacitive

More information

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS L12: Micromechanical filters S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Design, modeling

More information

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI Shuji Tanaka Tohoku University, Sendai, Japan 1 JSAP Integrated MEMS Technology Roadmap More than Moore: Diversification More

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Modeling

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9)

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) Jie Liang School o Engineering Science Simon Fraser University 1 Outline Frequency translation (page 128) Superhet

More information

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following :

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following : ABSTRACT This paper outlines the issues related to RF MEMS packaging and low actuation voltage. An original approach is presented concerning the modeling of capacitive contacts using multiphysics simulation

More information

MEMS Technologies and Devices for Single-Chip RF Front-Ends

MEMS Technologies and Devices for Single-Chip RF Front-Ends MEMS Technologies and Devices for Single-Chip RF Front-Ends Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Science University of Michigan Ann Arbor, Michigan 48105-2122 CCMT 06 April 25,

More information

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy Presented at the COMSOL Conference 2008 Hannover Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy Nouha ALCHEIKH (PhD) Pascal XAVIER Jean Marc DUCHAMP

More information

Sensitivity Analysis of MEMS Flexure FET with Multiple Gates

Sensitivity Analysis of MEMS Flexure FET with Multiple Gates Sensitivity Analysis of MEMS Flexure FET with Multiple Gates K.Spandana *1, N.Nagendra Reddy *2, N.Siddaiah #3 # 1 PG Student Department of ECE in K.L.University Green fields-522502, AP, India # 2 PG Student

More information

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter

Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter Waveguide-Mounted RF MEMS for Tunable W-band Analog Type Phase Shifter D. PSYCHOGIOU 1, J. HESSELBARTH 1, Y. LI 2, S. KÜHNE 2, C. HIEROLD 2 1 Laboratory for Electromagnetic Fields and Microwave Electronics

More information

RF MEMS Simulation High Isolation CPW Shunt Switches

RF MEMS Simulation High Isolation CPW Shunt Switches RF MEMS Simulation High Isolation CPW Shunt Switches Authored by: Desmond Tan James Chow Ansoft Corporation Ansoft 2003 / Global Seminars: Delivering Performance Presentation #4 What s MEMS Micro-Electro-Mechanical

More information

MEMS Technologies for Communications

MEMS Technologies for Communications MEMS Technologies for Communications Clark T.-C. Nguyen Program Manager, MPG/CSAC/MX Microsystems Technology Office () Defense Advanced Research Projects Agency Nanotech 03 Feb. 25, 2003 Outline Introduction:

More information

Micro Electro Mechanical System

Micro Electro Mechanical System Micro Electro Mechanical System Jung-Mu Kim Mechatronics Mechatronics -The combination of mechanical engineering, electronic engineering and software engineering. Purpose of this interdisciplinary engineering

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors

Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Electrostatically Tunable Analog Single Crystal Silicon Fringing-Field MEMS Varactors Joshua A. Small Purdue

More information

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London Advanced RF MEMS Edited by STEPAN LUCYSZYN Imperial College London n CAMBRIDGE UNIVERSITY PRESS Contents List of contributors Preface List of abbreviations page xiv xvii xx Introduction 1 1.1 Introduction

More information

MEM Switches Dr. Lynn Fuller, Artur Nigmatulin, Andrew Estroff

MEM Switches Dr. Lynn Fuller, Artur Nigmatulin, Andrew Estroff ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller, Artur Nigmatulin, Andrew Estroff 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Lynn.Fuller@rit.edu http://people.rit.edu/lffeee

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

TUNING AND CONTROL OF AN ON-CHIP PIEZOELECTRIC RESONATOR. Matthew J. Volkar

TUNING AND CONTROL OF AN ON-CHIP PIEZOELECTRIC RESONATOR. Matthew J. Volkar TUNING AND CONTROL OF AN ON-CHIP PIEZOELECTRIC RESONATOR by Matthew J. Volkar BS Electrical Engineering, University of Pittsburgh, 2001 BS Computer Science, University of Pittsburgh, 2001 Submitted to

More information

Conference Paper Cantilever Beam Metal-Contact MEMS Switch

Conference Paper Cantilever Beam Metal-Contact MEMS Switch Conference Papers in Engineering Volume 2013, Article ID 265709, 4 pages http://dx.doi.org/10.1155/2013/265709 Conference Paper Cantilever Beam Metal-Contact MEMS Switch Adel Saad Emhemmed and Abdulmagid

More information

Micromachining Technologies for Miniaturized Communication Devices

Micromachining Technologies for Miniaturized Communication Devices Micromachining Technologies for Miniaturized Communication Devices Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

RF Micro/Nano Resonators for Signal Processing

RF Micro/Nano Resonators for Signal Processing RF Micro/Nano Resonators for Signal Processing Roger T. Howe Depts. of EECS and ME Berkeley Sensor & Actuator Center University of California at Berkeley Outline FBARs vs. lateral bulk resonators Electrical

More information

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage S.Thenappan 1, N.Porutchelvam 2 1,2 Department of ECE, Gnanamani College of Technology, India Abstract The paper presents

More information

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper)

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper) 1486 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 8, AUGUST 1999 Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices Clark T.-C. Nguyen, Member, IEEE (Invited

More information

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad MEMS Reference Oscillators EECS 242B Fall 2014 Prof. Ali M. Niknejad Why replace XTAL Resonators? XTAL resonators have excellent performance in terms of quality factor (Q ~ 100,000), temperature stability

More information

Power Handling Capability of High-Q Evanescentmode RF MEMS Resonators with Flexible Diaphragm

Power Handling Capability of High-Q Evanescentmode RF MEMS Resonators with Flexible Diaphragm Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2009 Power Handling Capability of High-Q Evanescentmode RF MEMS Resonators with Flexible Xiaoguang Liu Purdue University

More information

A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage

A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage 2540 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000 A Low-Voltage Actuated Micromachined Microwave Switch Using Torsion Springs and Leverage Dooyoung Hah, Euisik Yoon,

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

RF Components and Circuits

RF Components and Circuits RF Components and Circuits RF Components and Circuits Joseph J. Carr Newnes OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes An imprint of Elsevier Science

More information

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers AI2Q April 2017 REVIEW: a VFO, phase-locked loop (PLL), or direct digital synthesizer (DDS), can

More information

Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications

Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications International Journal of Advances in Microwave Technology (IJAMT) Vol.1, No.1, May 2016 10 Conjoined Rectangular Beam Shaped RF Micro-Electro- Mechanical System Switch for Wireless Applications R.Raman

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy - Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy Yongho Seo Near-field Photonics Group Leader Wonho Jhe Director School of Physics and Center for Near-field

More information

Micro-nanosystems for electrical metrology and precision instrumentation

Micro-nanosystems for electrical metrology and precision instrumentation Micro-nanosystems for electrical metrology and precision instrumentation A. Bounouh 1, F. Blard 1,2, H. Camon 2, D. Bélières 1, F. Ziadé 1 1 LNE 29 avenue Roger Hennequin, 78197 Trappes, France, alexandre.bounouh@lne.fr

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

INF5490 RF MEMS. L7: RF MEMS switches, I. S2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. L7: RF MEMS switches, I. S2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS L7: RF MEMS switches, I S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Switches for RF and microwave Examples Performance requirements Technology Characteristics

More information

Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering

Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC0032 Introduction to MEMS Eighth semester, 2014-15 (Even Semester)

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Proceedings, 2000 European Solid-State Device Research Conference, Cork, Ireland, September 11-13, 2000, pp. 2-12. Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated

More information

RF(Radio Frequency) MEMS (Micro Electro Mechanical

RF(Radio Frequency) MEMS (Micro Electro Mechanical Design and Analysis of Piezoelectrically Actuated RF-MEMS Switches using PZT and AlN PrashantTippimath M.Tech., Scholar, Dept of ECE M.S.Ramaiah Institute of Technology Bengaluru tippimathprashant@gmail.com

More information

Design and Fabrication of RF MEMS Switch by the CMOS Process

Design and Fabrication of RF MEMS Switch by the CMOS Process Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 197 202 (2005) 197 Design and Fabrication of RF MEMS Switch by the CMOS Process Ching-Liang Dai 1 *, Hsuan-Jung Peng 1, Mao-Chen Liu 1, Chyan-Chyi

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

Chapter 6. FM Circuits

Chapter 6. FM Circuits Chapter 6 FM Circuits Topics Covered 6-1: Frequency Modulators 6-2: Frequency Demodulators Objectives You should be able to: Explain the operation of an FM modulators and demodulators. Compare and contrast;

More information

MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications

MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications A.R. Jha, Ph.D. C) CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

Microelectromechanical Devices for Wireless Communications

Microelectromechanical Devices for Wireless Communications Microelectromechanical Devices for Wireless Communications Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of Michigan

More information

Piezoelectric MEMS: High Performance Oscillators

Piezoelectric MEMS: High Performance Oscillators Piezoelectric MEMS: High Performance Oscillators March 6 th 2013 Harmeet.Bhugra@idt.com Managing Director MEMS Division, IDT Inc. 2012 Integrated Device Technology, Inc. 1 Introduction to IDT Overview:

More information

Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver. Dr. Mohammed Hawa. Electrical Engineering Department, University of Jordan

Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver. Dr. Mohammed Hawa. Electrical Engineering Department, University of Jordan Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver Dr. Mohammed Hawa Electrical Engineering Department University o Jordan EE421: Communications I: Lecture 14. For more inormation read Chapter

More information

EDCRO-200 is a stable ceramic based, sampling phase locked oscillator.

EDCRO-200 is a stable ceramic based, sampling phase locked oscillator. EDCRO-200 is a stable ceramic based, sampling phase locked oscillator. Commercial Military Airborne Space Missile Guidance Cable TV Links (CATV) Satellite Communications Low Cost External Reference Military/Commercial

More information

A Comparative Study Between a Micromechanical Cantilever Resonator and MEMS-based Passives for Band-pass Filtering Application

A Comparative Study Between a Micromechanical Cantilever Resonator and MEMS-based Passives for Band-pass Filtering Application Published in: Proceedings of the 2011 IEEE TechSym Conference, Kharagpur, India, Jan. 2011, pp. 247 252. 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

More information

Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc.

Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc. Self-Referenced, Trimmed and Compensated RF CMOS Harmonic Oscillators as Monolithic Frequency Generators Integrating Time Michael S. McCorquodale, Ph.D. Founder and CTO, Mobius Microsystems, Inc. 2008

More information

INC. MICROWAVE. A Spectrum Control Business

INC. MICROWAVE. A Spectrum Control Business DRO Selection Guide DIELECTRIC RESONATOR OSCILLATORS Model Number Frequency Free Running, Mechanically Tuned Mechanical Tuning BW (MHz) +10 MDR2100 2.5-6.0 +10 6.0-21.0 +20 Free Running, Mechanically Tuned,

More information

FROM MEMS DEVICES TO SMART INTEGRATED SYSTEMS. O. Soeraasen* and J. E. Ramstad*

FROM MEMS DEVICES TO SMART INTEGRATED SYSTEMS. O. Soeraasen* and J. E. Ramstad* Stresa, Italy, 25-27 April 2007 O. Soeraasen* and J. E. Ramstad* *Department of Informatics, University of Oslo, P O Box 1080 Blindern, N-0316 Oslo oddvar@ifi.uio.no, janera@student.matnat.uio.no ABSTRACT

More information

CHAPTER 2 RF MEMS BASICS. 2.1 Switches for Microwave Applications

CHAPTER 2 RF MEMS BASICS. 2.1 Switches for Microwave Applications CHAPTER 2 RF MEMS BASICS This chapter provides the basic introduction to RF MEMS switches. RF MEMS have in general seen a remarkable growth in the past two decades due to the immense potentials in defense

More information

Interdigital Bandpass Filter Using capacitive RF MEMS Switches

Interdigital Bandpass Filter Using capacitive RF MEMS Switches Interdigital Bandpass Filter Using capacitive RF MEMS Switches D.Pooja 1, C.Selvi 2 P.G. Student, Department of Communication Systems, Muthayammal Engineering College, Rasipuram, Namakkal, Tamilnadu, India.

More information

Design and Simulation of Compact, High Capacitance Ratio RF MEMS Switches using High-K Dielectric Material

Design and Simulation of Compact, High Capacitance Ratio RF MEMS Switches using High-K Dielectric Material Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 579-584 Research India Publications http://www.ripublication.com/aeee.htm Design and Simulation of Compact,

More information

DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L. Sirisha Vinjavarapu* 1, P. Venumadhav 2

DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L. Sirisha Vinjavarapu* 1, P. Venumadhav 2 ISSN 2277-2685 IJESR/November 214/ Vol-4/Issue-11/825-835 L. Sirisha Vinjavarapu et al./ International Journal of Engineering & Science Research ABSTRACT DESIGN AND ANALYSIS OF RF MEMS SWITCHABLE LPF L.

More information

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view Bauer, Ralf R. and Brown, Gordon G. and Lì, Lì L. and Uttamchandani, Deepak G. (2013) A novel continuously variable angular vertical combdrive with application in scanning micromirror. In: 2013 IEEE 26th

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA Optomechanical systems offer one of the most sensitive

More information

RFID Systems: Radio Architecture

RFID Systems: Radio Architecture RFID Systems: Radio Architecture 1 A discussion of radio architecture and RFID. What are the critical pieces? Familiarity with how radio and especially RFID radios are designed will allow you to make correct

More information

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET Proceedings of IMECE006 006 ASME International Mechanical Engineering Congress and Exposition November 5-10, 006, Chicago, Illinois, USA IMECE006-15176 IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR

More information

Vibrating Micromechanical Resonators With Solid Dielectric Capacitive Transducer Gaps

Vibrating Micromechanical Resonators With Solid Dielectric Capacitive Transducer Gaps Vibrating Micromechanical s With Solid Dielectric Capacitive Transducer s Yu-Wei Lin, Sheng-Shian Li, Yuan Xie, Zeying Ren, and Clark T.-C. Nguyen Center for Wireless Integrated Micro Systems Department

More information

An X band RF MEMS switch based on silicon-on-glass architecture

An X band RF MEMS switch based on silicon-on-glass architecture Sādhanā Vol. 34, Part 4, August 2009, pp. 625 631. Printed in India An X band RF MEMS switch based on silicon-on-glass architecture M S GIRIDHAR, ASHWINI JAMBHALIKAR, J JOHN, R ISLAM, C L NAGENDRA and

More information

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p.

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. Foreword p. xi Preface p. xiii Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. 3 What this book covers p. 3 Signals and

More information

Integrated Circuits for RF Communication with Graphene based Devices Daniel Neumaier. Advanced Microelectronic Center Aachen, AMO GmbH

Integrated Circuits for RF Communication with Graphene based Devices Daniel Neumaier. Advanced Microelectronic Center Aachen, AMO GmbH Integrated Circuits for RF Communication with Graphene based Devices Daniel Neumaier Advanced Microelectronic Center Aachen, AMO GmbH 1 State-of-the-art: GFETs f MAX is still improving due to optimized

More information

Variable Capacitance and Pull-in Voltage Analysis of Electrically Actuated Meander-Suspended Superconducting MEMS

Variable Capacitance and Pull-in Voltage Analysis of Electrically Actuated Meander-Suspended Superconducting MEMS Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Variable Capacitance and Pull-in Voltage Analysis of Electrically Actuated Meander-Suspended Superconducting MEMS N. Alcheikh *, 1, P. Xavier

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application

Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application Piezoelectric Aluminum Nitride Micro Electromechanical System Resonator for RF Application Prasanna P. Deshpande *, Pranali M. Talekar, Deepak G. Khushalani and Rajesh S. Pande Shri Ramdeobaba College

More information

World s First Piezoelectric MEMS Oscillators

World s First Piezoelectric MEMS Oscillators World s First Piezoelectric MEMS Oscillators September 29 th 2012 Harmeet.Bhugra@idt.com Managing Director MEMS Division, IDT Inc. 2012 Integrated Device Technology, Inc. 1 Introduction to IDT Overview:

More information

Simulation of Cantilever RF MEMS switch

Simulation of Cantilever RF MEMS switch International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (4): 442-446 Science Explorer Publications Simulation of Cantilever RF MEMS

More information

Catalog Continuing Education Courses

Catalog Continuing Education Courses Catalog Continuing Education Courses NanoMEMS Research, LLC P.O. Box 18614 Irvine, CA 92623-8614 Tel.: (949)682-7702 URL: www.nanomems-research.com E-mail: info@nanomems-research.com 2011 NanoMEMS Research,

More information

A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE

A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE To be presented at the 1998 MEMS Conference, Heidelberg, Germany, Jan. 25-29 1998 1 A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE P.-C. Hsu, C. H. Mastrangelo, and K. D. Wise Center for

More information

Frequency-Reconfigurable E-Plane Filters Using MEMS Switches

Frequency-Reconfigurable E-Plane Filters Using MEMS Switches Frequency-Reconfigurable E-Plane Filters Using MEMS Switches Luca PELLICCIA, Paola FARINELLI, Roberto SORRENTINO University of Perugia, DIEI, Via G. Duranti 93, 06125 Perugia, ITALY Phone: +39-075-585-3658

More information

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015 Issued: Monday, April 27, 2015 PROBLEM SET #7 Due (at 9 a.m.): Friday, May 8, 2015, in the EE C247B HW box near 125 Cory. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Gap Reduction Based Frequency Tuning for AlN Capacitive-Piezoelectric Resonators

Gap Reduction Based Frequency Tuning for AlN Capacitive-Piezoelectric Resonators Gap Reduction Based Frequency Tuning for AlN Capacitive-Piezoelectric Resonators Robert A. Schneider, Thura Lin Naing, Tristan O. Rocheleau, and Clark T.-C. Nguyen EECS Department, University of California,

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Final Exam Topics. IC Technology Advancement. Microelectronics Technology in the 21 st Century. Intel s 90 nm CMOS Technology. 14 nm CMOS Transistors

Final Exam Topics. IC Technology Advancement. Microelectronics Technology in the 21 st Century. Intel s 90 nm CMOS Technology. 14 nm CMOS Transistors ANNOUNCEMENTS Final Exam: When: Wednesday 12/10 12:30-3:30PM Where: 10 Evans (last names beginning A-R) 60 Evans (last names beginning S-Z) Comprehensive coverage of course material Closed book; 3 sheets

More information

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches Supplementary Information A large-area wireless power transmission sheet using printed organic transistors and plastic MEMS switches Tsuyoshi Sekitani 1, Makoto Takamiya 2, Yoshiaki Noguchi 1, Shintaro

More information

Vibrating RF MEMS for Next Generation Wireless Applications

Vibrating RF MEMS for Next Generation Wireless Applications C. T.-C. Nguyen, Vibrating RF MEMS for next generation wireless applications, Proceedings, 004 IEEE Custom Integrated Circuits Conf., Orlando, Florida, Oct. 3-6, 004, pp. 57-64. Vibrating RF MEMS for Next

More information

RF MEMS in Wireless Architectures

RF MEMS in Wireless Architectures 26.4 RF MEMS in Wireless Architectures Clark T.-C. Nguyen DARPA/MTO 3701 North Farifax Drive, Arlington, Virginia 22203-1714 (On leave from the University of Michigan, Ann Arbor, Michigan 48109-2122) 1-571-218-4586

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL Shailesh Kumar, A.K Meena, Monika Chaudhary & Amita Gupta* Solid State Physics Laboratory, Timarpur, Delhi-110054, India *Email: amita_gupta/sspl@ssplnet.org

More information