X-ray Tube and Generator Basic principles and construction

Size: px
Start display at page:

Download "X-ray Tube and Generator Basic principles and construction"

Transcription

1 X-ray Tube and Generator Basic principles and construction Dr Slavik Tabakov - Production of X-rays and Patient Dose OBJECTIVES - X-ray tube construction - Anode - types, efficiency - Classical X-ray generator (block diagram) - Medium frequency X-ray generator (block diagram) - Principle of radiographic contrast formation - X-ray film and film/screen combination -Various radiographic contrasts (definitions) - Image Intensifier construction - Fluoroscopic image and dose 1

2 . Data for mid-1980 NRPB, 1989 Estimated annual collective dose to UK population from Diagnostic Radiology for 1990 is approx. 20,000 mansv. On the basis of risk estimate this could be responsible for up to 700 cancer deaths/year! Safety in Diagnostic Radiology, IPEM, 1995 Approximately 90% of the total collective dose to UK population from man-made radiation sources arises from Diagnostic Radiology Diagnostic Radiology, IPEM, 1995 Safety in In most industrialised countries there are between 300 and 900 X-ray examinations for every 1000 inhabitants every year. Over half of these are chest examinations (these figures does not include dental X-ray examinations or mass screening programs). Doses varies widely from hospital to hospital, even in the same country, sometimes by a factor of 100. Radiation and You, EU, Luxembourg

3 Distribution of X-ray dose from the Tube through the Patient to the X-ray film Exposure ~ 80 kv, 30 1m 100% 2% 1% 0.25% ~100 kv High temp. ; Electron cloud vacuum Production of X-rays and Bremsstrahlung (stopping radiation) thermal electron emission in vacuum (10-6 mbar) and target bombardment White X-ray spectrum (gamma quanta with all energies) and its final view (after tube filtration) 3

4 Imaginary model Electron radius Nucleus radius Atom radius Real (approximate) m m m Scaled-up approx. model (linear) 1 mm 10 mm mm (100 m) Volume ratio: e vs A ~ Inter-atom dist in crystal m 100 m Space charge effect - X-ray tube function characteristics PRE-Heating of Cathode High temp. ; Electron cloud 4

5 Cathode W wire filament (~10x0.2 mm) Anode W plate (melting at 3370 o C) Construction: stationary and rotation Anode stem (Cu) with radiator Cathode assembly (inside broken Tube) Melted tungsten at anode target Stationary anode angle determines focal spot less power Anode angle EF = sin α. AF Rotational increased thermal focus more power Effective focus ; Thermal (Actual) focus 5

6 Anode heat - storage and dissipation (cooling) P max ~ f 3/2.D 1/2.n 1/2 / sin α The maximal power of the rotating anode(p max ) depends from the effective focal spot size (f); the diameter of the target track (D); the angle of the anode (α); and the speed of rotation (n - r.p.m.): Intensity of X-ray radiation : W ~ I.U 2.Z Anode efficiency η ~ k.u.z (Z-anode atom. No.) (intensity per energy unit - η = W/I.U ) X-ray Intensity distribution: -In all directions inside the Tube housing (only a fraction of X-rays used output dose) -The overall output intensity decreases with ageing of Tube - Decreased intensity at Anode site (Heel effect) it is more obvious with old Tubes 6

7 X-ray Tube Housing Insulating Oil; Output window; Pb lining; Leakage radiation Tube and Housing cooling and T o protection Fine focus and Large focus effects X-ray image resolution depends on the size of the X-ray tube focal spot (effective focus) Fine (~ 0.5mm) or Broad (~1mm) The BF smears the contours of the imaged objects (this increases with the increase of object-to-film distance) Focus Object Film 7

8 X-ray Generator Classified by: -Power -Rectification -Pulses or frequency -Circuits kvp and Dose pulses (waveforms) from various X-ray generators 8

9 kv control circuit (including auto-transf., HV Transformer, rectification) + - Filament circuit Basic diagram of Classical X-ray Generator with the Tube Contemporary medium-frequency X-ray Generator (smaller HV transformer; frequency varies the kv) 9

10 (smaller HV transformer; frequency varies the kv) U / f ~ A. n voltage U with frequency f A - cross section of the transform core; n - number of transformer windings (transformer ratio); Block-diagram of modern computer-controlled X-ray Generator 10

11 SUMMARY X-ray tube: - Focal spot (spatial resolution; power) - Total filtration at tube output (pat. dose) - Tube housing (leakage radiation) X-ray Generator: - kv control (image contrast, pat. dose 2 ) - ma control (image brightness, pat.dose) -Time (msec) control (image brightness and patient dose) X-ray output spectrum Radiographic Contrast and Film + Film-Screen Detector 11

12 The X-ray source radiation I o passes through the object (the body) and is modulated by the body tissues (µ.d) on its way. This modulated radiation beam I x interacts with the detector, where the modulated radiation is transformed into modulated light the X-ray image. The contrast of the image depends on the energy of the X-ray beam. I x = I o. e -(µ.d) 12

13 13

14 14

15 σ D 2 Radiographic contrast C = [D 2 D 1 ]/D 1 D 1 I Intensity D Density E - Exposure Film contrast γ = [D 2 D 1 ]/[loge 2 loge 1 ] Visual contrast C = logi 2 logi 1 Signal-to-Noise Ratio: SNR C = [D 2 D 1 ]/ σ Subject Contrast C =I 2 I 1 Anatomical X-ray contrast >> Artificial X-ray contrast: (various contrast agents) <<< Barium-based (ex.stomach) Iodine-based >>> (ex.heart/vessels) <<< Interventional Radiology 15

16 X-ray film with 1 or 2 sensitive layers (AgBr emulsions) over transparent base The film is exposed to both X-rays and light inside the cassette Light (X-ray) photon excites a Bromine atom (and it looses an e-). These free e- are trapped into crystal defects. The (+) Silver ions are attracted into these ( ) defects, where they are neutralised and become Ag atoms (sensitised grains). The combination of areas in the film with different number of sensitised grains forms a LATENT IMAGE. During the process of film development the sensitised grains are stabilised (the exposed AgBr crystals reduced to stable Ag atoms). During the next process of film fixing the remaining un-sensitised grains (which had not been exposed to light photons) are removed and washed out. The final visible image contains areas with various darkness (depending on the concentration of Ag atoms). 16

17 X-ray film characteristics: -Exposure latitude (dynamic range); -Resolution (grain size) -Sensitivity (film speed) Cassette intensifying screen influence Development process influence Exposure Kilovolts (kvp) X-ray spectrum quality and quantity change Change of kv leads to change of X-ray energy, Anode effectiveness, Dose and spectrum Energy in a single exposure X ~ Z. kv 2. mas The X-ray anode efficiency η ~ Z. U a Photographic analogue: none 17

18 Exposure milli Ampers (ma) X-ray spectrum quantity change Change of ma leads to change of X-ray intensity (with no spectrum change) Energy in a single exposure X ~ Z. kv 2. mas Photographic analogue: -speed mas influence Approx. Linear function 70 kvp, 25 mas 70 kvp, 50 mas 70 kvp, 80 mas kvp influence Approx. Square function * Loss of Contrast 60 kvp, 50 mas 70 kvp, 50 mas 81 kvp, 50 mas 18

19 X-RAY FLUOROSCOPY IMAGING SYSTEMS Fluoroscopy delivers very high patient dose. This can be illustrated with an example: The electrical energy imparted to the anode during an exposure is A = C 1. U a. I a. T The X-ray tube anode efficiency is E = C 2. Z. U a From the two equations follows that the energy produced in a single exposure will be X = C. A. E = C. Z. (U a ) 2. I a. T = (C. Z). kv 2. mas Radiography of the lumbar spine (with parameters 80 kv, 30 mas): X = k = k. 192,000 Fluoroscopy - 3 minutes Barium meal (with parameters 80 kv, 1mA) X = k = k. 1,152,000 In this example fluoroscopy delivers approx. 6 times more X-ray energy (dose) 19

20 Luminescence: Fluorescence - emitting narrow light spectrum (very short afterglow ~nsec) - PM detectors; II input screens (CsI:Tl) Phosphorescence - emitting broad light spectrum (light continues after radiation) - monitor screens, II output screens (ZnCdS:Ag) The old fluoroscopic screens are no longer used due to high dose and low resolution Basic Components of an Image Intensifier - Input window (Ti or Al) 95% transmission - Input screen: CsI (new) or ZnS (old) phosphor - Photocathode (a layer of CsSb 3 ) - Accelerating electrodes zoom (e.g. 30/23/15 cm) - Output screen (2.5 cm) - II housing (mu-metal) - Output coupling to the TV camera 20

21 II Input screen: Columnar crystals of CsI which reduces dispertion (collimation); absorbs approx. 60% of X-rays Photocathode applied directly to CsI both light spectrum match very well II Accelerating electrodes 21

22 II Output screen: Phosphor (ZnCdS:Ag) on glass base The accelerated e - produce multiple light photons; thin Al foil prevent return of light (veiling glare) Coupling: fibre optic or tandem optic Conversion factor ~ (cd.m -2 /µgy.s -1 ) = (output phosphor light / input screen dose rate) Total gain (inp. X photons / out. light photons) Total gain (inp. X photons / out. light photons) 1 X-ray photon >> 1000 light photons (input screen) >> >>50 photo e - >> 3000 light photons (output screen) in this case the total gain is

23 TV camera types: Vidicon - gamma 0.7; slow response, some contrast loss (light integration), high dark current, but low noise - suitable for organs Plumbicon - gamma 1; quick response, small dark current, but high noise - suitable for cardiac examinations Modulation Transfer Function MTF descriptor of image quality Overall II-TV system MTF = MTF 1 x MTF 2 x x MTF n 23

24 Dynamic range of II -much larger than this of radiographic film (output luminance per dose unit) Resolution and Magnification of II - electronic zoom up to 4 times (lp/mm) Summary Fluoroscopic contrast bone is black (white=intensive radiation) Radiographic contrast bone is white (black=intensive radiation) 60 kv 70 kv II contrast with different kv (constant ma) 90 kv 100 kv 24

X-ray Tube and Generator Basic principles and construction

X-ray Tube and Generator Basic principles and construction X-ray Tube and Generator Basic principles and construction Dr Slavik Tabakov - Production of X-rays OBJECTIVES - X-ray tube construction - Anode - types, efficiency - X-ray tube working characteristics

More information

X-RAY FLUOROSCOPY IMAGING SYSTEMS. Dr Slavik Tabakov. Luminescence: Dept. Medical Eng. & Physics King s College London

X-RAY FLUOROSCOPY IMAGING SYSTEMS. Dr Slavik Tabakov. Luminescence: Dept. Medical Eng. & Physics King s College London X-RAY FLUOROSCOPY IMAGING SYSTEMS Dr Slavik Tabakov OBJECTIVES - Image Intensifier construction - Input window - Accelerating and focusing electrodes - Output window - Conversion factor - II characteristics

More information

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage X-rays Ouch! 1 X-rays X-rays are produced when electrons are accelerated and collide with a target Bremsstrahlung x-rays Characteristic x-rays X-rays are sometimes characterized by the generating voltage

More information

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image Introduction Chapter 16 Diagnostic Radiology Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther In diagnostic radiology

More information

X-RAY IMAGING EE 472 F2017. Prof. Yasser Mostafa Kadah

X-RAY IMAGING EE 472 F2017. Prof. Yasser Mostafa Kadah X-RAY IMAGING EE 472 F2017 Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Stewart C. Bushong, Radiologic Science for Technologists: Physics, Biology, and Protection, 10 th ed., Mosby,

More information

Seminar 8. Radiology S8 1

Seminar 8. Radiology S8 1 Seminar 8 Radiology Medical imaging. X-ray image formation. Energizing and controlling the X-ray tube. Image detectors. The acquisition of analog and digital images. Digital image processing. Selected

More information

Overview. Professor Roentgen was a Physicist!!! The Physics of Radiation Oncology X-ray Imaging

Overview. Professor Roentgen was a Physicist!!! The Physics of Radiation Oncology X-ray Imaging The Physics of Radiation Oncology X-ray Imaging Charles E. Willis, Ph.D. DABR Associate Professor Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center Houston, Texas Overview

More information

BASICS OF FLUOROSCOPY

BASICS OF FLUOROSCOPY Medical Physics Residents Training Program BASICS OF FLUOROSCOPY Dr. Khalid Alyousef, PhD Department of Medical Imaging King Abdulaziz Medical City- Riyadh Edison examining the hand of Clarence Dally with

More information

I. PERFORMANCE OF X-RAY PRODUCTION COMPONENTS FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA

I. PERFORMANCE OF X-RAY PRODUCTION COMPONENTS FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA EDWARD L. NICKOLOFF DEPARTMENT OF RADIOLOGY COLUMBIA UNIVERSITY NEW YORK, NY ACCEPTANCE TESTING GOALS PRIOR TO 1st CLINICAL USAGE

More information

LECTURE 1 The Radiographic Image

LECTURE 1 The Radiographic Image LECTURE 1 The Radiographic Image Prepared by:- KAMARUL AMIN ABDULLAH @ ABU BAKAR UiTM Faculty of Health Sciences Medical Imaging Department 11/23/2011 KAMARUL AMIN (C) 1 Lesson Objectives At the end of

More information

Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over

Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over a lifetime Breast cancer screening programs rely on

More information

Radiology. Radiograph: Is the image of an object made with use of X- ray instead of light.

Radiology. Radiograph: Is the image of an object made with use of X- ray instead of light. Radiology د. اريج Lec. 3 X Ray Films Radiograph: Is the image of an object made with use of X- ray instead of light. Dental x- ray film: Is a recording media on which image of the object was made by exposing

More information

X-ray Imaging. PHYS Lecture. Carlos Vinhais. Departamento de Física Instituto Superior de Engenharia do Porto

X-ray Imaging. PHYS Lecture. Carlos Vinhais. Departamento de Física Instituto Superior de Engenharia do Porto X-ray Imaging PHYS Lecture Carlos Vinhais Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview Projection Radiography Anode Angle Focal Spot Magnification Blurring

More information

- KiloVoltage. Technique 101: Getting Back to Basics

- KiloVoltage. Technique 101: Getting Back to Basics Why do I need to know technique? Technique 101: Getting Back to Basics Presented by: Thomas G. Sandridge, M.S., M.Ed., R.T.(R) Program Director Northwestern Memorial Hospital School of Radiography Chicago,

More information

Beam-Restricting Devices

Beam-Restricting Devices Beam-Restricting Devices Three factors contribute to an increase in scatter radiation: Increased kvp Increased Field Size Increased Patient or Body Part Size. X-ray Interactions a some interact with the

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009 2033-6 Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation 11-15 May 2009 Dosimetry for Fluoroscopy Basics Renato Padovani EFOMP Joint ICTP-IAEA Advanced

More information

PD233: Design of Biomedical Devices and Systems

PD233: Design of Biomedical Devices and Systems PD233: Design of Biomedical Devices and Systems (Lecture-8 Medical Imaging Systems) (Imaging Systems Basics, X-ray and CT) Dr. Manish Arora CPDM, IISc Course Website: http://cpdm.iisc.ac.in/utsaah/courses/

More information

10/26/2015. Study Harder

10/26/2015. Study Harder This presentation is a professional collaboration of development time prepared by: Rex Christensen Terri Jurkiewicz and Diane Kawamura Study Harder CR detection is inefficient, inferior to film screen

More information

10/15/2012 SECTION III - CHAPTER 6 DIGITAL FLUOROSCOPY RADT 3463 COMPUTERIZED IMAGING

10/15/2012 SECTION III - CHAPTER 6 DIGITAL FLUOROSCOPY RADT 3463 COMPUTERIZED IMAGING RADT 3463 - COMPUTERIZED IMAGING Section III: Chapter 6 RADT 3463 Computerized Imaging 1 SECTION III - CHAPTER 6 DIGITAL FLUOROSCOPY RADT 3463 COMPUTERIZED IMAGING Section III: Chapter 6 RADT 3463 Computerized

More information

Acquisition, Processing and Display

Acquisition, Processing and Display Acquisition, Processing and Display Terri L. Fauber, R.T. (R)(M) Department of Radiation Sciences School of Allied Health Professions Virginia Commonwealth University Topics Image Characteristics Image

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: RADG 112 Department: Radiography Course Title: Image Production & Eval. Semester: Spring Year: 1997 Objectives/ Unit One: Introduction

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: RADG 212 Department: Radiography Course Title: Equip. Operation & Maint. Semester: Spring Year: 1997 Objectives/ Unit One: The X-ray

More information

1-1. GENERAL 1-2. DISCOVERY OF X-RAYS

1-1. GENERAL 1-2. DISCOVERY OF X-RAYS 1-1. GENERAL Radiography is a highly technical field, indispensable to the modern dental practice, but presenting many potential hazards. The dental radiographic specialist must be thoroughly familiar

More information

Fluoroscopy - Chapter 9

Fluoroscopy - Chapter 9 Fluoroscopy - Chapter 9 Kalpana Kanal, Ph.D., DABR Lecturer, Diagnostic Physics Dept. of Radiology UW Medicine a copy of this lecture may be found at: http://courses.washington.edu/radxphys/physicscourse04-05.html

More information

Veterinary Science Preparatory Training for the Veterinary Assistant. Floron C. Faries, Jr., DVM, MS

Veterinary Science Preparatory Training for the Veterinary Assistant. Floron C. Faries, Jr., DVM, MS Veterinary Science Preparatory Training for the Veterinary Assistant Floron C. Faries, Jr., DVM, MS Radiology Floron C. Faries, Jr., DVM, MS Objectives Determine the appropriate machine settings for making

More information

V SALAI SELVAM, AP & HOD, ECE, Sriram Engg. College, Perumalpattu 1 MEDICAL ELECTRONICS UNIT IV

V SALAI SELVAM, AP & HOD, ECE, Sriram Engg. College, Perumalpattu 1 MEDICAL ELECTRONICS UNIT IV V SALAI SELVAM, AP & HOD, ECE, Sriram Engg. College, Perumalpattu 1 MEDICAL ELECTRONICS UNIT IV Ionizing and non-ionizing radiations: The radiation that ionizes the gases through which it travels is known

More information

X-RAYS - NO UNAUTHORISED ENTRY

X-RAYS - NO UNAUTHORISED ENTRY Licencing of premises Premises Refer Guidelines A radiation warning sign and warning notice, X-RAYS - NO UNAUTHORISED ENTRY must be displayed at all entrances leading to the rooms where x-ray units are

More information

Photons interaction with matter

Photons interaction with matter ب س م هللا الر ح من الر حیم Photons interaction with matter Ionization Ionization is the process of removing an electron from an electrically neutral atom to produce an ion pair. An ion is an atom or subatomic

More information

Dose Reduction and Image Preservation After the Introduction of a 0.1 mm Cu Filter into the LODOX Statscan unit above 110 kvp

Dose Reduction and Image Preservation After the Introduction of a 0.1 mm Cu Filter into the LODOX Statscan unit above 110 kvp Dose Reduction and Image Preservation After the Introduction of a into the LODOX Statscan unit above 110 kvp Abstract: CJ Trauernicht 1, C Rall 1, T Perks 2, G Maree 1, E Hering 1, S Steiner 3 1) Division

More information

DENTAL RADIOGRAPHY KAMARUL AMIN BIN ABU BAKAR

DENTAL RADIOGRAPHY KAMARUL AMIN BIN ABU BAKAR DENTAL RADIOGRAPHY KAMARUL AMIN BIN ABDULLAH @ ABU BAKAR Components of the Dental X-Ray Machine Dental x-ray machines may vary somewhat in size and appearance, but all machines will have three primary

More information

X-rays in medical diagnostics

X-rays in medical diagnostics X-rays in medical diagnostics S.Dolanski Babić 2017/18. History W.C.Röntgen (1845-1923) discovered a new type of radiation Nature, Jan. 23. 1896.; Science, Feb.14. 1896. X- rays: Induced the ionization

More information

P R E S E N T E D B Y. K A M A R U L A M I N A B D U L L A H Dip. MED. IMG., BSc. MED. IMG. (UiTM)

P R E S E N T E D B Y. K A M A R U L A M I N A B D U L L A H Dip. MED. IMG., BSc. MED. IMG. (UiTM) + - P R E S E N T E D B Y K A M A R U L A M I N A B D U L L A H Dip. MED. IMG., BSc. MED. IMG. (UiTM) 1 I N T R O D U C T I O N : An x-ray generator is a device that Supplies electrical power to x-ray

More information

X-RAY. Lecture No.4. Image Characteristics:

X-RAY. Lecture No.4. Image Characteristics: Lecture No.4 X-RAY أ.م.د. اسامة مراد ابراهيم Image Characteristics: *Radiographic density: It s the degree of blackness of the film. when a film is exposed by an x-ray beam (or by light in case of screenfilm

More information

DIGITAL IMAGE PROCESSING IN X-RAY IMAGING

DIGITAL IMAGE PROCESSING IN X-RAY IMAGING DIGITAL IMAGE PROCESSING IN X-RAY IMAGING Shalini Kumari 1, Bachan Prasad 2,Aliya Nasim 3 Department of Electronics And Communication Engineering R.V.S College of Engineering & Technology, Jamshedpur,

More information

Nuclear Associates

Nuclear Associates Nuclear Associates 07-591 Focal Spot Test Tool Users Manual February 2005 Manual No. 07-591-1 Rev. 2 2004, 2005 Fluke Corporation, All rights reserved. Printed in U.S.A. All product names are trademarks

More information

10/3/2012. Study Harder

10/3/2012. Study Harder This presentation is a professional collaboration of development time prepared by: Rex Christensen Terri Jurkiewicz and Diane Kawamura Study Harder CR detection is inefficient, inferior to film screen

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. RA110 test 3 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. An object 35 cm in width is radiographed at 100 cm SID and at a 50 cm SOD. What

More information

Amorphous Selenium Direct Radiography for Industrial Imaging

Amorphous Selenium Direct Radiography for Industrial Imaging DGZfP Proceedings BB 67-CD Paper 22 Computerized Tomography for Industrial Applications and Image Processing in Radiology March 15-17, 1999, Berlin, Germany Amorphous Selenium Direct Radiography for Industrial

More information

Ludlum Medical Physics

Ludlum Medical Physics Ludlum Medical Physics Medical Imaging Radiology QA Test Tools NEW LUDLUM PRODUCT LINE Medical Physics Products Medical Physics Products What are they? Products used to measure radiation output and to

More information

CR Basics and FAQ. Overview. Historical Perspective

CR Basics and FAQ. Overview. Historical Perspective Page: 1 of 6 CR Basics and FAQ Overview Computed Radiography is a term used to describe a system that electronically records a radiographic image. Computed Radiographic systems use unique image receptors

More information

RADIOGRAPHIC EXPOSURE

RADIOGRAPHIC EXPOSURE RADIOGRAPHIC EXPOSURE Receptor Exposure Receptor Exposure the that interacts with the receptor. Computed Radiography ( ) requires a. Direct Digital Radiography (DR) requires a. Exposure Indicators Exposure

More information

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893 Digital Radiography D. J. Hall, Ph.D. x20893 djhall@ucsd.edu Background Common Digital Modalities Digital Chest Radiograph - 4096 x 4096 x 12 bit CT - 512 x 512 x 12 bit SPECT - 128 x 128 x 8 bit MRI -

More information

Exposure System Selection

Exposure System Selection Principles of Imaging Science II (RAD120) Exposure Systems Exposure System Selection Radiographic exposure is a very complex process Best technique systems manipulate one variable while holding others

More information

Version 1.0. TechnicVR. Student Guide

Version 1.0. TechnicVR. Student Guide Version 1.0 TechnicVR s h a d e r w a r e. c o m Student Guide TechnicVR s h a d e r w a r e. c o m Student Guide shaderware 2008 PO Box 103 Saltburn Cleveland TS12 1WP w w w. s h a d e r w a r e. c o

More information

MILADY. Product Data. Page 1 of 8

MILADY. Product Data. Page 1 of 8 Page 1 of 8 The MILADY Mammographic Unit offers the best quality-to-price ratio to our customers worldwide. The unit advanced technology together with the application of industrial production standards,

More information

Examination of Pipe Welds by Image Plate Based Computed Radiography System

Examination of Pipe Welds by Image Plate Based Computed Radiography System Examination of Pipe Welds by Image Plate Based Computed Radiography System Sanjoy Das, M.S.Rana, Benny Sebastian, D. Mukherjee and K.K. Abdulla Atomic Fuels Division Bhabha Atomic Research Centre Mumbai

More information

Setting up digital imaging department!

Setting up digital imaging department! Outline Setting up digital imaging department! From screen/film to digital radiography PACS/Tele radiology Setting up digital department Digital Imaging Napapong Pongnapang, Ph.D. Department of Radiological

More information

The importance of radiation quality for optimisation in radiology

The importance of radiation quality for optimisation in radiology Available online at http://www.biij.org/2007/2/e38 doi: 10.2349/biij.3.2.e38 biij Biomedical Imaging and Intervention Journal COMMENTARY The importance of radiation quality for optimisation in radiology

More information

Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016

Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016 Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016 Current technology in digital image production (CR/DR and other modalities) 2/ Overview Digital

More information

TESTING FLAT-PANEL IMAGING SYSTEMS: What the Medical Physicist Needs to Know. JAMES A. TOMLINSON, M.S., D.A.B.R. Diagnostic Radiological Physicist

TESTING FLAT-PANEL IMAGING SYSTEMS: What the Medical Physicist Needs to Know. JAMES A. TOMLINSON, M.S., D.A.B.R. Diagnostic Radiological Physicist TESTING FLAT-PANEL IMAGING SYSTEMS: What the Medical Physicist Needs to Know JAMES A. TOMLINSON, M.S., D.A.B.R. Diagnostic Radiological Physicist Topics Image Uniformity and Artifacts Image Quality - Detail

More information

X-RAY TUBE ARCING: MANIFESTATION AND DETECTION DURING QUALUTY CONTROL

X-RAY TUBE ARCING: MANIFESTATION AND DETECTION DURING QUALUTY CONTROL X-RAY TUBE ARCING: MANIFESTATION AND DETECTION DURING QUALUTY CONTROL S. Tabakov 1,2 1 Dept. Medical Eng. and Physics, King s College London, SE5 9RS, UK; 2 President IOMP, York YO24 1ES, UK Abstract X-ray

More information

Radiographic sensitivity improved by optimized high resolution X -ray detector design.

Radiographic sensitivity improved by optimized high resolution X -ray detector design. DIR 2007 - International Symposium on Digital industrial Radiology and Computed Tomography, June 25-27, 2007, Lyon, France Radiographic sensitivity improved by optimized high resolution X -ray detector

More information

CIRCLEX 0.3/0.8P324&0.6/1.2P324DK-85

CIRCLEX 0.3/0.8P324&0.6/1.2P324DK-85 PD53-012 p Rotating Anode X-ray tube Assembly 0.3/0.8P32&0.6/1.2P32DK-85 GENERAL The Shimadzu 0.3/0.8P32DK-85 & 0.6/1.2P32DK-85, Rotating Anode X-ray tube assemblies are rated to 150kV and feature a 100mm

More information

Contrast. Contrast: the difference in density on adjacent areas of a radiograph or other image receptor. Subjective. Long Scale (Low Contrast)

Contrast. Contrast: the difference in density on adjacent areas of a radiograph or other image receptor. Subjective. Long Scale (Low Contrast) Contrast Contrast: the difference in density on adjacent areas of a radiograph or other image receptor. Subject Subjective Radiographic Long Scale (Low Contrast) Short Scale (High Contrast) Factors affecting

More information

Overview of Safety Code 35

Overview of Safety Code 35 Common Quality Control Procedures for All s Quality Control Procedures Film All s Daily Quality Control Tests Equipment Warm-up (D1) According to manufacturers instructions Can include auto calibration(d1)

More information

Radiographic Testing (RT) [10]

Radiographic Testing (RT) [10] Radiographic Testing (RT) [10] Definition: An NDT method that utilizes x-rays or gamma radiation to detect discontinuities in materials, and to present their images on recording medium. 1> Electromagnetic

More information

Basis of Computed Radiography & PACS

Basis of Computed Radiography & PACS Basis of Computed Radiography & PACS Slavik Tabakov Computed Radiography (CR) refers to new types of X-ray detectors (i.e. replaces the X-ray Film) The CR output media is a digital image, which can be

More information

X-Ray Medical Imaging and Pixel detectors

X-Ray Medical Imaging and Pixel detectors X-Ray Medical Imaging and Pixel detectors PIXEL 2000 Genova, June 5-8 th 2000 J.P.Moy, TRI XELL, Moirans, France 1 OUTLINE - X-ray medical imaging. The requirements, some particular features - Present

More information

ProX Intraoral X-ray. PLANMECA is proud to introduce a new intraoral X-ray unit to its comprehensive collection of imaging products- the ProX.

ProX Intraoral X-ray. PLANMECA is proud to introduce a new intraoral X-ray unit to its comprehensive collection of imaging products- the ProX. The premium intraoral X-ray unit... ProX Intraoral X-ray PLANMECA is proud to introduce a new intraoral X-ray unit to its comprehensive collection of imaging products- the ProX. This advanced unit provides

More information

Principle of X-Ray Systems

Principle of X-Ray Systems Principle of X-Ray Systems Hossein Ebrahimi Nasab PHYSICS OF X-RAYS Nature of X-rays Energy unit Interaction with matter INTERACTION WITH THE MATTER In vacuum: photon move along a straight line In materials,

More information

Rotating Anode X-ray Tube

Rotating Anode X-ray Tube Datasheet RADII KL74-1.0/2.0-125 Rotating Anode X-ray Tube Rotating anode X-ray tube for the purpose of general diagnostic X-ray procedures. Specially processed Tungsten faced molybdenum target of 74 mm

More information

MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and mas with APR menu programmed.

MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and mas with APR menu programmed. R/F TV X-RAY SYSTEM DIAGNOSTIC RADIOGRAPHIC FLUOROSCOPIC TV SYSTEM MXHF-1500RF SYSTEM OUTLINE Product Data No. 041021-01 MXHF-1500RF is controlled by Digital key panel console that displays KV, ma and

More information

SPECIFICATION. Kilovoltage X-ray calibration system for protection and diagnostic level dosimetry. Prepared by

SPECIFICATION. Kilovoltage X-ray calibration system for protection and diagnostic level dosimetry. Prepared by SPECIFICATION Kilovoltage X-ray Prepared by Igor Gomola, Technical Officer, Project ECU6023, Date 2015-Oct-06 Revision Date Status Comments 0.1 2015-Oct-06 Draft Igor Gomola Page 1 of 12 1. Scope This

More information

A Comprehensive Review of Image Production

A Comprehensive Review of Image Production A Comprehensive Review of Image Production Presented by: John Fleming, M.Ed., RT(R)(MR)(CT) St. Petersburg College Office: (727) 341-3758 E-mail: flemingj@spcollege.edu Lesson Objectives: ARRT Content

More information

Do you have any other questions? Please call us at (Toll Free) or , or

Do you have any other questions? Please call us at (Toll Free) or , or INSTRUCTIONS Read the appropriate course/ textbook. This is an open book test. A score of 75% or higher is needed to receive CE credit. You will have a maximum of three attempts to pass this course. Please

More information

QC in Diagnostic Radiology. Main steps for a QC survey in Diagnostic Radiology

QC in Diagnostic Radiology. Main steps for a QC survey in Diagnostic Radiology EVALUATING X-RAY TUBE AND GENERATOR PERFORMANCE : DEMO for PRACTICAL QUALITY CONTROL (QC) Dr Slavik Tabakov Dept. Medical Eng. & Physics, King's College London slavik.tabakov@kcl.ac.uk QC in Diagnostic

More information

Rotating Anode X-ray Tube Assembly

Rotating Anode X-ray Tube Assembly RADII H18X H18Y Datasheet Rotating Anode X-ray Tube Assembly The tube unit is so constructed that an X-ray tube is sealed in a diagnostic type protective tube housing of electric shockproof, radiation

More information

Visibility of Detail

Visibility of Detail Visibility of Detail Radiographic Quality Quality radiographic images represents the, and information is for diagnosis. The of the anatomic structures and the accuracy of their ( ) determine the overall

More information

Nuclear Associates

Nuclear Associates Nuclear Associates 07-649 CDRH Fluoroscopic Phantom Users Manual March 2005 Manual No. 07-649-1 Rev. 2 2004, 2005 Fluke Corporation, All rights reserved. Printed in U.S.A. All product names are trademarks

More information

Stationary Anode X-Ray Tube. General Data

Stationary Anode X-Ray Tube. General Data Technical Data TD TOSHIBA X-RAY TUBE D-041 D-041S D-041SB Stationary Anode X-Ray Tube Especially designed for dental radiography unit. Provided with an insulation cylinder (D-041S) and lead cylinder. (D-041SB)

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

BCA 9RK. 60 Hz on request Absorbed current on Stationary Vac and Vac in fluoro mode

BCA 9RK. 60 Hz on request Absorbed current on Stationary Vac and Vac in fluoro mode ELECTRICAL CHARACTERISTICS RADIOLOGICAL DATA MONOBLOC Voltage 230 Vac ±10% monophase standard 105 / 115 / 125 / 220 / 240 Vac ±10% monophase on request Frequency 50 Hz standard 60 Hz on request Absorbed

More information

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS JAMES A. TOMLINSON, M.S. Diagnostic Radiological Physicist American Board of Radiology Certified Medical Physics Consultants, Inc. Bio 28 yrs experience 100%

More information

SYLLABUS. TITLE: Equipment Operation I. DEPARTMENT: Radiologic Technology

SYLLABUS. TITLE: Equipment Operation I. DEPARTMENT: Radiologic Technology CODE: RADT 156 INSTITUTE: Health Science TITLE: Equipment Operation I DEPARTMENT: Radiologic Technology COURSE DESCRIPTION: This course covers the principles of equipment operation and maintenance of radiographic

More information

Mammography: Physics of Imaging

Mammography: Physics of Imaging Mammography: Physics of Imaging Robert G. Gould, Sc.D. Professor and Vice Chair Department of Radiology and Biomedical Imaging University of California San Francisco, California Mammographic Imaging: Uniqueness

More information

Using Carbon Nano-Tube Field Emitters to Miniaturize X-Ray Tubes

Using Carbon Nano-Tube Field Emitters to Miniaturize X-Ray Tubes Using Carbon Nano-Tube Field Emitters to Miniaturize X-Ray Tubes Authors: Martin Pesce, RT(R), Xiaohui Wang, PhD, Peter Rowland X-rays are produced by the impact of an accelerated electron beam on a tungsten

More information

Uses of Electromagnetic Waves

Uses of Electromagnetic Waves Uses of Electromagnetic Waves 1 of 42 Boardworks Ltd 2016 Uses of Electromagnetic Waves 2 of 42 Boardworks Ltd 2016 What are radio waves? 3 of 42 Boardworks Ltd 2016 The broadcast of every radio and television

More information

MaxRay Handheld X-ray Systems Operator Training Exam

MaxRay Handheld X-ray Systems Operator Training Exam MaxRay Handheld X-ray Systems Operator Training Exam Employee: Instructor: ate: Score: Instructions Read each question carefully and choose the best answer. 1) LR is 2) 3) 4) a. a safety principle meant

More information

Basis of Computed Radiography & PACS

Basis of Computed Radiography & PACS Basis of Computed Radiography & PACS Slavik Tabakov slavik.tabakov@emerald2.co.uk Digital Film-screen Image comparison and image transfer through various systems 1 Source: A. Pascoal CR system using laser

More information

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer :

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer components Excitation sources Deuterium Lamp Tungsten

More information

Digital Imaging Considerations Computed Radiography

Digital Imaging Considerations Computed Radiography Digital Imaging Considerations Digital Radiography Computed Radiography o Cassette based Direct or Indirect Digital Radiography o Cassetteless Computed Radiography 1 CR Image Acquisition Most like conventional

More information

DALLA LUCE VISIBILE AI RAGGI X: NUOVI RIVELATORI DI IMMAGINI PER RAGGI X A DISCRIMINAZIONE IN ENERGIA ED APPLICAZIONI

DALLA LUCE VISIBILE AI RAGGI X: NUOVI RIVELATORI DI IMMAGINI PER RAGGI X A DISCRIMINAZIONE IN ENERGIA ED APPLICAZIONI DALLA LUCE VISIBILE AI RAGGI X: NUOVI RIVELATORI DI IMMAGINI PER RAGGI X A DISCRIMINAZIONE IN ENERGIA ED APPLICAZIONI D. Pacella ENEA - Frascati LIMS, Frascati 14-15 ottobre 2015 Come per la fotografia:

More information

CHAPTER 6 QC Test For Fluoroscopic Equipment. Prepared by:- Kamarul Amin bin Abu Bakar School of Medical Imaging KLMUC

CHAPTER 6 QC Test For Fluoroscopic Equipment. Prepared by:- Kamarul Amin bin Abu Bakar School of Medical Imaging KLMUC CHAPTER 6 QC Test For Fluoroscopic Equipment Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC Lesson Outcomes Describe the objectives of each QC test done. Identify QC

More information

BCA 9SK. 60 Hz on request Absorbed current on Stationary Vac and Vac in fluoro mode

BCA 9SK. 60 Hz on request Absorbed current on Stationary Vac and Vac in fluoro mode ELECTRICAL CHARACTERISTICS Voltage 230 Vac ±10% monophase standard 105 / 115 / 125 / 220 / 240 Vac ±10% monophase on request Frequency 50 Hz standard 60 Hz on request Absorbed current on Stationary 4.5

More information

1. Carlton, Richard R., and Arlene M. Adler. Principles of Radiographic Imaging: An Art and a Science, 5th edition (2013).

1. Carlton, Richard R., and Arlene M. Adler. Principles of Radiographic Imaging: An Art and a Science, 5th edition (2013). CODE: RADT 151 INSTITUTE: Health Science TITLE: Radiographic Exposure DEPARTMENT: Radiologic Technology COURSE DESCRIPTION: This course covers the principles of radiographic exposure selection and manipulation

More information

X-Rays and endoscopes

X-Rays and endoscopes X-Rays and endoscopes 1 What are X-rays? X-ray refers to electromagnetic radiation with a wavelength between 0.01nm - 10nm. increasing wavelength visible light ultraviolet x-ray increasing energy X-rays

More information

Safelight Fog does what to contrast and density on film?

Safelight Fog does what to contrast and density on film? Terri Jurkiewicz Safelight Fog does what to contrast and density on film? ANSWER INCREASES DENSITY DECREASES CONTRAST Explain how you determine if the focal spot size is within appropriate limits.

More information

AN ABSTRACT OF THE THESIS OF. W. Scott Helms for the degree of Master of Science in Radiation Health Physics

AN ABSTRACT OF THE THESIS OF. W. Scott Helms for the degree of Master of Science in Radiation Health Physics AN ABSTRACT OF THE THESIS OF W. Scott Helms for the degree of Master of Science in Radiation Health Physics presented on November 24, 2014 Title: A Quantitative Comparison of Cardiovascular Imaging Systems

More information

Radiographic Contrast-Enhancement Masks in Digital Radiography

Radiographic Contrast-Enhancement Masks in Digital Radiography Radiographic Contrast-Enhancement Masks in Digital Radiography Submitted by Robert Andrew Davidson MAppSc(Medical Imaging) (Charles Sturt University) BBus(Marketing) (University of South Australia) A thesis

More information

STUDENT REVIEW QUESTION SET K CR/DR CONTENT AREA

STUDENT REVIEW QUESTION SET K CR/DR CONTENT AREA STUDENT REVIEW QUESTION SET K CR/DR CONTENT AREA RADT 2913 COMPREHENSIVE REVIEW 1 The CR cassette is backed by aluminum that: A. reflects x-rays B. absorbs x-rays C. captures the image D. transmits x-rays

More information

Investigation of the line-pair pattern method for evaluating mammographic focal spot performance

Investigation of the line-pair pattern method for evaluating mammographic focal spot performance Investigation of the line-pair pattern method for evaluating mammographic focal spot performance Mitchell M. Goodsitt, a) Heang-Ping Chan, and Bob Liu Department of Radiology, University of Michigan, Ann

More information

S200 Course LECTURE 1 TEM

S200 Course LECTURE 1 TEM S200 Course LECTURE 1 TEM Development of Electron Microscopy 1897 Discovery of the electron (J.J. Thompson) 1924 Particle and wave theory (L. de Broglie) 1926 Electromagnetic Lens (H. Busch) 1932 Construction

More information

Digital radiography (DR) post processing techniques for pediatric radiology

Digital radiography (DR) post processing techniques for pediatric radiology Digital radiography (DR) post processing techniques for pediatric radiology St Jude Children s Research Hospital Samuel Brady, MS PhD DABR samuel.brady@stjude.org Purpose Review common issues and solutions

More information

Explain what is meant by a photon and state one of its main properties [2]

Explain what is meant by a photon and state one of its main properties [2] 1 (a) A patient has an X-ray scan taken in hospital. The high-energy X-ray photons interact with the atoms inside the body of the patient. Explain what is meant by a photon and state one of its main properties....

More information

SYLLABUS. 1. Identification of Subject:

SYLLABUS. 1. Identification of Subject: SYLLABUS Date/ Revision : 30 January 2017/1 Faculty : Life Sciences Approval : Dean, Faculty of Life Sciences SUBJECT : Biophysics 1. Identification of Subject: Name of Subject : Biophysics Code of Subject

More information

Digital Detector Array Image Quality for Various GOS Scintillators

Digital Detector Array Image Quality for Various GOS Scintillators Digital Detector Array Image Quality for Various GOS Scintillators More info about this article: http://www.ndt.net/?id=22768 Brian S. White 1, Mark E. Shafer 2, William H. Russel 3, Eric Fallet 4, Jacques

More information

ART Plus CdTe-Sensor Technology

ART Plus CdTe-Sensor Technology ART Plus CdTe-Sensor Technology Best Sensor Technology for Great Diagnostic Value The AJAT sensor provides the unique opportunity among panoramic systems to adjust the focal layer to the ideal for the

More information

3/31/2011. Objectives. Emory University. Historical Development. Historical Development. Historical Development

3/31/2011. Objectives. Emory University. Historical Development. Historical Development. Historical Development Teaching Radiographic Technique in a Digital Imaging Paradigm Objectives 1. Discuss the historical development of digital imaging. Dawn Couch Moore, M.M.Sc., RT(R) Assistant Professor and Director Emory

More information

Product Information PI

Product Information PI Product Information PI TOSHIBA X-RAY TUBE D-045 Stationary Anode X-ray Tube Especially designed for dental radiography unit. This tube has focus 0.4, and is available for maximum tube voltage 70 kv. Installed

More information